JPS63251483A - Alga-preventive and mildewproofing paint composition - Google Patents

Alga-preventive and mildewproofing paint composition

Info

Publication number
JPS63251483A
JPS63251483A JP8779887A JP8779887A JPS63251483A JP S63251483 A JPS63251483 A JP S63251483A JP 8779887 A JP8779887 A JP 8779887A JP 8779887 A JP8779887 A JP 8779887A JP S63251483 A JPS63251483 A JP S63251483A
Authority
JP
Japan
Prior art keywords
algae
metal
mold
encapsulated
paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8779887A
Other languages
Japanese (ja)
Other versions
JPH086053B2 (en
Inventor
Hisayoshi Takeuchi
竹内 久佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Kaken Co Ltd
Original Assignee
Shikoku Kaken Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Kaken Industry Co Ltd filed Critical Shikoku Kaken Industry Co Ltd
Priority to JP8779887A priority Critical patent/JPH086053B2/en
Publication of JPS63251483A publication Critical patent/JPS63251483A/en
Publication of JPH086053B2 publication Critical patent/JPH086053B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title composition having resistances to algae and mildew with excellent persistence, and excellent stability and safety, by incorporating an alga-preventive and mildewproofing agent comprising a core substance comprising organic polymer beads and encapsulated with a specified metallic shell substance into a paint. CONSTITUTION:A core substance comprising the beads of an organic polymer such as PS, having an average particle diameter of 0.1-500mum and static build-up characteristics in terms of a volume resistivity of 10<9>OMEGA.cm or higher is encapsulated in a capsule, formed from a metallic shell substance having an average particle diameter of 0.01-50mum and comprising a transition metal element selected from Cu, Zn, Ag, Co, Ni, Mn, Fe, and Pt, or at least one compound selected from the oxides, complexes or salts thereof, by the heat impact method to give an alga-preventive and mildewproofing agent. This agent is then incorporated into a paint.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、低毒性で長期持続性に優れ、主として建築分
野等に用いる防藻防カビ塗料に関する。 〔従来の技術〕 一般に防カビ塗料は、水性、溶剤系を問わず、防カビ剤
を液状塗料中に混入攪拌し、被塗物上に塗付し、硬化塗
膜を形成し、該硬化塗膜上でのカビの発育を防止、抑制
するものである。 又、上記防カビ剤については農薬系
の有機合成薬剤が多く使われている。一方ある種の金属
、例えばCu、Zn、Ag、Fe等の金属が抗菌性を持
っていることは古くより知られており、殺菌剤として用
いられてきた。その為、かかる金属を効率よく維持させ
、使用する方法としてシリカゲル、ゼオライト等への物
理化学的吸着による使用等が知られている。 〔発明が解決しようとする問題点〕 農薬系の有機合成薬剤が使用されている防カビ塗料にお
いて、これらの薬剤は水(あるいは他の媒体)により溶
出することで、その防カビ効果を示す為、カビに対する
速効性は見られるものの、長期的持続的効果を得る為に
は多量の添加を必要とし、その為コスト高となり、さら
には塗膜の変色或いは耐水性の低下等の問題点を生ずる
事が少なくない。 次に、特定の金属をシリカゲル、ゼオライト等へ物理化
学的吸着により使用する方法においては、担持体そのも
のの活性が高く、塗料へ応用される場合塗料バインダー
の凝集等により、その用途が限定を受けることとなる。 又、金属の脱落による溶出が見られ、安全性に問題を生
じることとなる。さらに、塗膜の変色等、耐候性等が低
下するという問題点がある。 又、本発明者らは、建築物における微生物汚染について
調査を行った結果、一般によく知られているカビ(真菌
類)による汚染以外に、特に外壁を中心として藻類(緑
藻類等)による汚染が大きな要因となっていることを見
いだした。 これら藻類に対して、現在市販されている農薬系の有機
合成薬剤は効果を示さないものが殆どである。 〔解決の手段〕 そこで本発明者らは、以上のような従来技術に対し、本
発明に使用される安定且つ安全で長期に亙る持続性を有
する防藻防カビ塗料組成物を提供する為に、鋭意研究を
重ねた結果、金属系殻物質は、カビのみならず藻類に対
しても幅広い抵抗性を示すことを各種実験により見いだ
し本発明を完成するに至ったものである。 即ち、塗料中に防藻防カビ剤として、金属元素がCu、
、Zn、、Ag、、C01Ni、、Mn、、Fe。 pt等の遷移金属元素より選ばれる抗菌性を有する金属
、あるいは金属酸化物、あるいは金属錯化合物、あるい
は金属塩よりなる化合物(平均粒子系0.01〜50μ
m)の1種あるいは2種以上を、ポリスチレンあるいは
ポリメチルメタクリレート等の有機ポリマービーズ(平
均粒子系0. 1〜500μm)を核物質として、加熱
衝撃法により(例えば奈良機械製作所:ハイブリダイゼ
ーションシステム)、カプセル化を行ったものを用いる
ことを特徴とする安定且つ安全で長期に亙る持続性を有
する防藻防カビ塗料組成物を提供することにある。 〔発明の構成〕 本発明において利用されている加熱衝撃法によるカプセ
ル化技術は、メカノケミカルなマイクロカプセル化法と
して近年注目されている技術で、界面による静電気的結
合と摩擦による衝撃力及び熱エネルギーによる融解等が
生じ、非常に安定した結合ができ、又この結合は化学反
応によらない為、カプセル化された物質の核物質と被覆
物質の特徴が失われることもない。 本発明において、カプセル化防藻防カビ剤ニ核物質とし
て使用される有機ポリマーヒーズは、球状又は球状に近
い連続面を有するビーズであってその平均粒子径が0.
 1〜500μrnでなければならない。500IIm
より大きい場合加熱衝撃法によるカプセル化工程で摩砕
作用を受けその粒子径を維持できず、また、0.1μm
以下では加熱衝撃法によるカプセル化工程において核物
質として十分なカプセル化がなされない。 さらに、有機ポリマービーズの組成は、その体積固有抵
抗値が10  ohm−cmである有機ポリマーを用い
る。これば、本カプセル化法はメカノケミカル的カプセ
ル化であり、核物質と殻物質の間での摩擦帯電により1
次的静電気結合を生じることを利用している。その為、
核物質となる有機ポリマーヒースはその体積固有抵抗値
か10  ohm−cm以上の帯電性を示すものを用い
る必要がある。 又、核物質と殻物質の帯電性が異なる符号になるもので
なければ強い結合が得られず十分なカプセル化を行うこ
とができない。 本発明に用いる有機ポリマーヒーズは上記条件を満たず
樹脂組成のものが利用でき、例えばポリウレタン樹脂、
ポリスチレン樹脂、ポリ酢酸ビニル樹脂、ポリブタジェ
ン樹脂、ポリビニルアルコール+A4 脂、ポリエチレ
ン)L4脂、ポリプロピレン樹脂、ポリメタクリレート
樹脂、ポリアミド樹脂、ポリアクリレート樹脂、セルロ
ース系プラスチ・7り樹脂等が例示できる。 次に、金属系殻物質は、抗菌性を有する金属あるいは金
属化合物より選ばれるが、その安全性および核物質との
結合性より、遷移金属であるCu、Zn、、Ag、、C
01N iXMn、、F e、 P tから選ばれる金
属、あるいは金属酸化物、あるいは金属錯化合物、ある
いは金属塩の1種または2種以上からなる。これら金属
系殻物質の平均粒子径は、核物質である有機ポリマーヒ
ースに対し有効に作用させる為、有機ポリマーピースの
平均粒子径0.1〜500μmとの関連において、0.
01〜50μmの範囲に規定される。平均粒子径が50
μm以上になると核物質との平均粒子径の差が小さくな
りすぎ不適当であり、又、平均粒子径0.01μm以下
になると極めて微小な粒子となる為、粒子の再凝集等実
用上の問題点がある。 本発明に用いるカプセル化防藻防カヒ剤は、抗菌性を有
する金属系殻物質が効率よくかつ安定に有機ポリマービ
ーズ核上に被覆されている為、抗菌性を有する金属系殻
物質の使用量は従来の使用量に比べ格段に少なくてよく
、かつ脱落もないことにより安全性についても極めて優
れている。 又、本発明のカプセル化防藻防カビ剤の比重は、核とし
て有機ポリマービーズを使用する為、抗菌性を有する金
属系殻物質自体の比重に比べ格段に小さくなる。この結
果カプセル化防藻防カビ剤は、防藻防カビ塗料組成物中
での分散性、分散安定性に優れ、該塗料が被塗物上に塗
布され塗膜を形成する際にも有効に作用すると考えられ
る。 本発明の塗料組成物は一般の塗料組成物と同様の塗装方
法により各被塗物に塗布可能であり、形成された塗膜は
防藻防カビ性に極めて優れ、かつ従来のものに比べ効果
の持続性、塗膜の耐候性および耐変色性に優れるもので
あり、安全性に高い塗料組成物である。 以下、実施例に従い本発明の詳細な説明する。 〔実施例〕 (実施例1)
[Industrial Application Field] The present invention relates to an anti-algae and anti-mold paint that is low in toxicity and has excellent long-term sustainability, and is mainly used in the construction field. [Prior Art] In general, anti-fungal paints, whether water-based or solvent-based, are prepared by mixing an anti-mold agent into a liquid paint, stirring it, applying it onto the object to be coated, forming a cured film, and then applying the cured coating. It prevents and suppresses the growth of mold on the membrane. Moreover, as for the above-mentioned antifungal agent, agrochemical-based organic synthetic chemicals are often used. On the other hand, it has been known for a long time that certain metals, such as Cu, Zn, Ag, and Fe, have antibacterial properties and have been used as bactericidal agents. Therefore, as a method for efficiently maintaining and using such metals, methods such as use by physicochemical adsorption on silica gel, zeolite, etc. are known. [Problem to be solved by the invention] In antifungal paints that use synthetic organic chemicals such as pesticides, these chemicals exhibit their antifungal effects by being eluted by water (or other media). Although it can be seen to be fast-acting against mold, it requires the addition of a large amount to obtain a long-term, sustained effect, which increases costs and also causes problems such as discoloration of the paint film and decreased water resistance. There are many things happening. Next, in methods in which specific metals are used by physicochemical adsorption onto silica gel, zeolite, etc., the carrier itself has high activity, and when applied to paints, the use is limited due to aggregation of paint binders, etc. It happens. In addition, elution due to metal falling off is observed, which poses a safety problem. Furthermore, there are problems such as discoloration of the coating film and a decrease in weather resistance. Furthermore, as a result of investigating microbial contamination in buildings, the present inventors found that in addition to the generally well-known contamination by mold (fungi), contamination by algae (green algae, etc.) is significant, especially on exterior walls. We found that this was a contributing factor. Most of the agricultural chemicals and organic synthetic drugs currently on the market are ineffective against these algae. [Means for Solving] Therefore, in order to provide an anti-algae and anti-mildew paint composition that is stable, safe and long-lasting and used in the present invention, the present inventors have overcome the above-mentioned conventional techniques. As a result of extensive research, it was discovered through various experiments that metal shell materials exhibit a wide range of resistance not only to mold but also to algae, leading to the completion of the present invention. That is, as an anti-algae and anti-mold agent in the paint, the metal elements are Cu,
,Zn, ,Ag, ,C01Ni, ,Mn, ,Fe. Compounds consisting of metals with antibacterial properties selected from transition metal elements such as PT, metal oxides, metal complex compounds, or metal salts (average particle size 0.01 to 50μ
m) using organic polymer beads (average particle size 0.1 to 500 μm) such as polystyrene or polymethyl methacrylate as a core material, by a heating shock method (for example, Nara Kikai Seisakusho: Hybridization System). An object of the present invention is to provide an anti-algae and anti-mold paint composition which is stable and safe and has long-term sustainability, which is characterized by using an encapsulated product. [Structure of the Invention] The encapsulation technology using the heating shock method utilized in the present invention is a technology that has recently attracted attention as a mechanochemical microencapsulation method, and is a technology that has attracted attention in recent years as a mechanochemical microencapsulation method. As a result, a very stable bond is formed, and since this bond is not based on a chemical reaction, the characteristics of the core material and coating material of the encapsulated material are not lost. In the present invention, the organic polymer beads used as the core substance of the encapsulated algae and fungicidal agent are beads having a spherical or nearly spherical continuous surface, and have an average particle diameter of 0.
Must be between 1 and 500 μrn. 500IIm
If the particle size is larger than 0.1 μm, the particle size cannot be maintained due to the grinding effect during the encapsulation process using the heating impact method.
In the following, sufficient encapsulation as a nuclear material is not achieved in the encapsulation process using the heating shock method. Further, the composition of the organic polymer beads is an organic polymer having a volume resistivity of 10 ohm-cm. This means that the present encapsulation method is mechanochemical encapsulation, and the frictional electrification between the core material and the shell material causes 1
It takes advantage of the fact that secondary electrostatic bonding occurs. For that reason,
The organic polymer heather serving as the core material must have a volume resistivity value of 10 ohm-cm or more or more. Further, unless the chargeability of the core material and the shell material have different signs, strong bonding cannot be obtained and sufficient encapsulation cannot be achieved. The organic polymer heat used in the present invention can be one having a resin composition that does not meet the above conditions, such as polyurethane resin,
Examples include polystyrene resin, polyvinyl acetate resin, polybutadiene resin, polyvinyl alcohol + A4 resin, polyethylene) L4 resin, polypropylene resin, polymethacrylate resin, polyamide resin, polyacrylate resin, cellulose plasti-7 resin, and the like. Next, the metal shell material is selected from metals or metal compounds having antibacterial properties, but transition metals Cu, Zn, Ag, C
It consists of one or more metals selected from 01N iXMn, Fe, Pt, metal oxides, metal complex compounds, or metal salts. In order to effectively act on the organic polymer heath, which is the core material, the average particle diameter of these metallic shell materials is set to 0.00000000000000000000000000000000000000000000000000000000000000000000,000,0000000000000000000,000,
It is defined in the range of 01 to 50 μm. Average particle size is 50
If the average particle size is 0.01 μm or more, the difference in average particle size with the nuclear material will be too small, making it unsuitable.If the average particle size is 0.01 μm or less, the particles will become extremely small, resulting in practical problems such as particle re-agglomeration. There is a point. The encapsulated algae-proofing and anti-caking agent used in the present invention efficiently and stably coats the organic polymer bead core with the metal shell material having antibacterial properties, so the amount of metal shell material having antibacterial properties used is The amount used is much smaller than in the past, and it is extremely safe as it does not fall off. Furthermore, since organic polymer beads are used as the core, the specific gravity of the encapsulated algae and fungicidal agent of the present invention is much smaller than the specific gravity of the metal shell material itself having antibacterial properties. As a result, the encapsulated algae and fungicide has excellent dispersibility and dispersion stability in the algae and fungicide paint composition, and is also effective when the paint is applied to the object to be coated to form a coating film. It is thought that it works. The coating composition of the present invention can be applied to various objects by the same coating method as general coating compositions, and the coating film formed has extremely excellent anti-algae and anti-mildew properties, and is more effective than conventional ones. It is a highly safe coating composition that has excellent durability, weather resistance and discoloration resistance of the coating film. Hereinafter, the present invention will be explained in detail according to Examples. [Example] (Example 1)

【カプセル化防藻防カビ剤の作成】[Creation of encapsulated algae and fungicide]

抗菌性金属殻物質として、酸化亜鉛(Z n O)(平
均粒子径0.5μm)を40重量部、核物質として、ポ
リスチレンビーズ(平均粒子径200μm)を100市
量部準備し、これらを混合後、加熱衝撃法(例えば奈良
機械製作所:ハイブリダイゼーションシステム)により
カプセル化を行った。
Prepare 40 parts by weight of zinc oxide (ZnO) (average particle size 0.5 μm) as an antibacterial metal shell material and 100 parts by weight of polystyrene beads (average particle size 200 μm) as a core material, and mix these. Thereafter, encapsulation was performed by a heating shock method (for example, Nara Kikai Seisakusho: Hybridization System).

【防藻防カビ塗料組成物の作成】[Creation of anti-algae and anti-mold paint composition]

次に上記カプセル化防藻防カビ剤を用いて、下記に示す
処方により、水系塗料を調合した。 アクリル系エマルション (固形分50重量%)  32.0重量部酸化チタン(
ルチル)   28.0重量部炭酸カルシウム    
 15.0重量部増粘剤          5.0重
量部添加剤          4.0重量部水   
        15.0重量部カプセル化防藻防カビ
剤  1.0重量部(合計         100.
.0重量部)得られた塗料は長期わたり分離、新築等が
なく安定なものであった。
Next, a water-based paint was prepared using the encapsulated algae and fungicidal agent according to the formulation shown below. Acrylic emulsion (solid content 50% by weight) 32.0 parts by weight Titanium oxide (
rutile) 28.0 parts by weight calcium carbonate
15.0 parts by weight Thickener 5.0 parts by weight Additives 4.0 parts by weight Water
15.0 parts by weight Encapsulated algae and fungicide 1.0 parts by weight (total 100.
.. (0 parts by weight) The obtained paint was stable over a long period of time without separation or new buildup.

【防カビ性の確認】[Confirmation of mold resistance]

上記塗料についてrJIs  Z  2911 7、塗
料の試験」に準じて防カビ性試験を行い、カビの発生状
況を観察した。なお、カビの発生の促進の為、1週間毎
に胞子懸濁液の噴霧を行った。 結果は表−1に示したように、優れた防カビ性と持続性
を有する。
The above paint was subjected to a mold resistance test according to rJIs Z 2911 7, "Testing of Paints", and the growth of mold was observed. In order to promote the growth of mold, a spore suspension was sprayed every week. As shown in Table 1, it has excellent anti-fungal properties and durability.

【防藻性の確認】[Confirmation of algae resistance]

次にrJls  Z  2911 7.塗料の試験」に
準拠し胞子懸濁液をクロレラ(D藻類)の懸濁液に置き
換えたもので防藻性試験を行い、藻の発生状況を観察し
た。防藻試験については1、下記に示した緑藻用寒天培
地上に塗膜試験体をはりつけたものにクロレラ(緑藻類
)の懸濁溶液を噴霧し、螢光灯照射下で培養を行った。 なお、促進培養の為1週間毎にクロレラ懸濁液の噴霧を
行った。 結果は表−2に示したように、優れた防藻性と効果の持
続性を有する。 製作所:ハイブリダイゼーションシステム)によりカプ
セル化を行った。
Next rJls Z 2911 7. An anti-algae test was conducted using a suspension of chlorella (D algae) in place of the spore suspension in accordance with the "Paint Test", and the status of algae growth was observed. Regarding the anti-algae test, 1. A suspended solution of chlorella (green algae) was sprayed onto a coating film test piece attached to an agar medium for green algae shown below, and cultured under irradiation with a fluorescent lamp. In addition, for accelerated culture, a chlorella suspension was sprayed every week. As shown in Table 2, it has excellent anti-algae properties and long-lasting effects. Encapsulation was performed using Hybridization System (Manufacturer: Hybridization System).

【防藻防カビ塗料組成物の作成】[Creation of anti-algae and anti-mold paint composition]

次に上記カプセル化防藻防カビ剤を用いて、下記に示す
処方により、水系塗料を調合した。 アクリル系樹脂 (固形分50市量%)  55.0重量部酸化チタン(
ルチル)   30.0重量部添加剤        
  5.0重量部溶剤(トルエン)     9.0重
量部カプセル化防藻防カビ剤  1.0重量部(合計 
        100.0重量部)得られた塗料は長
期わたり分離、凝集等がなく安定なものであった。
Next, a water-based paint was prepared using the encapsulated algae and fungicidal agent according to the formulation shown below. Acrylic resin (solid content 50% market weight) 55.0 parts by weight Titanium oxide (
Rutile) 30.0 parts by weight additive
5.0 parts by weight Solvent (toluene) 9.0 parts by weight Encapsulated algae and fungicide 1.0 parts by weight (total
(100.0 parts by weight) The resulting coating material was stable over a long period of time without separation or aggregation.

【防カビ性の確認】[Confirmation of mold resistance]

上記塗料について、実施例1と同一の方法にて防カビ性
試験を行った。 結果は表−1に示したように、優れた防カビ性と持続性
を有する。 緑藻用寒天培地 KNO30,25g Kl−h  Po、         0. 175 
gKzHPO+         01075gMg 
SO+ ・7 H□0   0.075gNaC10,
025g CaC1z  ・2H200,01g FeSO+  ・7H200,02g 寒天          15.0g 蒸留水         1000ml(100O,0
) (実施例2)
The above paint was subjected to a mildew resistance test in the same manner as in Example 1. As shown in Table 1, it has excellent anti-fungal properties and durability. Agar medium for green algae KNO30, 25g Kl-h Po, 0. 175
gKzHPO+ 01075gMg
SO+ ・7 H□0 0.075gNaC10,
025g CaC1z ・2H200,01g FeSO+ ・7H200,02g Agar 15.0g Distilled water 1000ml (100O,0
) (Example 2)

【カプセル化防藻防カビ剤の作成】[Creation of encapsulated algae and fungicide]

抗菌性金属殻物質として、銅(Cu)(平均粒子径0.
1μm)を5重量部、酸化亜鉛(ZnO)(平均粒子径
0.5μm)を35重量部、核物質として、ポリウレタ
ンビーズ(平均粒子径100μm)を100重量部準備
し、これらを混合後、実施例1と同様に加熱1h撃法(
例えば奈良機械【防藻性の確認] 上記塗料について、実施例1と同一の方法にて防藻性試
験を行った。 結果は表−2に示したように、優れた防藻性と効果の持
続性を有する。 (比較例1) 実施例1に示した水系塗料処方で、カプセル化防藻防カ
ビ1.0重量部を市販農薬系防カビ剤(イソフタロ系)
に置き換えたものを調合し、実施例1と同様に評価を行
った。 結果は表−1および表−2に示す。 (比較例2) 実施例2に示した溶剤系塗料処方で、カプセル化防藻防
カビ1.0重量部を銅粉末0.05重量部および酸化亜
鉛0.30重量部に置き換えたものを調合し、実施例2
と同様に評価を行った。 結果は表−1および表−2に示す。 (比較例3) 実施例1に示した水系塗料処方で、カプセル化防藻防カ
ビ1.0市量部を水に置き換えたものを調合し、実施例
1と同様に評価を行った。 結果は表−1および表−2に示す。 (比較例4) 実施例1に示した水系塗料処方で、カプセル化防藻防カ
ビ1.0重量部を硫酸銅に置き換えたものを調合したが
塗料が新築し塗料化不可能であった。従って防藻防カビ
の評価は出来なかった。 試験結果 評価 3:カビまたは藻の生育が見られない。 2:カビまたは藻の生育が見られる。 l:カビまたは藻の生育が著しい。 さらに、実施例1〜2比較例1〜3の各塗料について「
JTS  K  5400 6.17  促進耐候性試
験」に準じ、サンシャインカーボンアークウェザ−メー
ター(スガ試験機)により、耐候性試験を250時間行
い塗膜の変化を観察した。 この結果を表−3に示す。 ここで、 ΔYI:サンシャインカーボンアークウエザーメーター
250時間照射後の黄変度 ΔY  I  =Y  +  −Y  IYI :標準
状態での黄色度 Y■ :サンシャインカーボンアークウエザーメーター
250時間照射後の黄色度 すなわち、ΔYlか大きい程黄変しており、値が小さい
程耐黄変性に優れる。 表−3の結果より、実施例1、実施例2および比較例3
に比べ、比較例 1および比較例2の黄変が大きいこと
がわかる。なお、黄変以外の塗膜の異常はいずれの試験
体においても観察されなかった。 表−3促進耐候性試験による黄変度 〔発明の効果〕 上記の実施例から明らかなように、本発明の防藻防カビ
塗料組成物は、安定かつ安全で力し゛及び藻類のいずれ
に対しての抵抗性を持ち、しかも効果持続性に優れる極
めて有用な発明である。 −以上−
As an antibacterial metal shell material, copper (Cu) (average particle size 0.
Prepare 5 parts by weight of zinc oxide (ZnO) (average particle size 0.5 μm), 35 parts by weight of zinc oxide (ZnO) (average particle size 0.5 μm), and 100 parts by weight of polyurethane beads (average particle size 100 μm) as a core material, mix these, and carry out. Same as Example 1, heating 1h bombardment method (
For example, Nara Kikai [Confirmation of algae-proofing property] The above paint was subjected to an algae-proofing test in the same manner as in Example 1. As shown in Table 2, it has excellent anti-algae properties and long-lasting effects. (Comparative Example 1) In the water-based paint formulation shown in Example 1, 1.0 part by weight of the encapsulated algae and fungicide was added to a commercially available pesticide-based fungicide (isophthalo-based).
A substituted product was prepared and evaluated in the same manner as in Example 1. The results are shown in Table-1 and Table-2. (Comparative Example 2) The solvent-based paint formulation shown in Example 2 was prepared by replacing 1.0 part by weight of the encapsulated algae and mold prevention with 0.05 part by weight of copper powder and 0.30 part by weight of zinc oxide. Example 2
The evaluation was carried out in the same way. The results are shown in Table-1 and Table-2. (Comparative Example 3) A water-based paint formulation shown in Example 1 was prepared in which 1.0 part of the encapsulated algae- and anti-mold was replaced with water, and evaluated in the same manner as in Example 1. The results are shown in Table-1 and Table-2. (Comparative Example 4) A water-based paint formulation shown in Example 1 was prepared in which 1.0 part by weight of the encapsulated anti-algae and anti-mold was replaced with copper sulfate, but the paint was new and could not be made into a paint. Therefore, it was not possible to evaluate the anti-algae and anti-mold properties. Test result evaluation 3: No growth of mold or algae observed. 2: Growth of mold or algae is observed. l: Significant growth of mold or algae. Furthermore, regarding each paint of Examples 1 to 2 and Comparative Examples 1 to 3, "
A weather resistance test was conducted for 250 hours using a Sunshine Carbon Arc Weather Meter (Suga Test Instruments) in accordance with JTS K 5400 6.17 Accelerated Weather Resistance Test, and changes in the coating film were observed. The results are shown in Table-3. Here, ΔYI: Yellowing degree after 250 hours of irradiation with Sunshine Carbon Arc Weather Meter ΔY I = Y + −Y IYI: Yellowness in standard state Y■: Yellowing degree after 250 hours of irradiation with Sunshine Carbon Arc Weather Meter, that is, The larger ΔYl is, the more yellowing occurs, and the smaller the value, the better the yellowing resistance. From the results in Table 3, Example 1, Example 2 and Comparative Example 3
It can be seen that the yellowing of Comparative Example 1 and Comparative Example 2 is greater than that of Comparative Example 1 and Comparative Example 2. In addition, no abnormality of the coating film other than yellowing was observed in any of the test specimens. Table 3 Yellowing degree determined by accelerated weathering test [Effect of the invention] As is clear from the above examples, the algae- and anti-mold paint composition of the present invention is stable, safe and effective against both algae and algae. It is an extremely useful invention that has excellent resistance to all types of cancer and has excellent long-lasting effects. -And more-

Claims (4)

【特許請求の範囲】[Claims] (1)塗料中に防藻防カビ剤として、有機ポリマービー
ズを核物質とし、金属系殻物質によりカプセル化を行っ
たものを用いることを特徴とする塗料組成物であり、該
金属系殻物質が遷移金属元素より選ばれた金属、あるい
は金属酸化物、あるいは金属錯化合物、あるいは金属塩
よりなる化合物の1種あるいは2種以上であることを特
徴とする安定でかつ安全で、長期に亙る持続性を有する
防藻防カビ塗料組成物。
(1) A paint composition characterized in that an algae-proofing and mold-proofing agent is used in the paint, in which organic polymer beads are used as a core material and are encapsulated with a metal shell material. is a metal selected from transition metal elements, a metal oxide, a metal complex compound, or one or more compounds consisting of a metal salt, and is stable, safe, and long-lasting. An anti-algae and anti-mold paint composition.
(2)体積固有抵抗値が、10^9 ohm−cm(5
0%RH23℃)以上であり、かつ平均粒子径が0.1
〜500μmである有機ポリマービーズを核物質とし、
平均粒子径0.01〜50μmである金属系殻物質によ
りカプセル化を行った防藻防カビ剤を用いることを特徴
とする特許請求の範囲第1項記載の防藻防カビ塗料組成
物。
(2) Volume resistivity value is 10^9 ohm-cm (5
0% RH (23°C) or higher, and the average particle size is 0.1
~500μm organic polymer beads as core material,
The anti-algal and anti-fungal paint composition according to claim 1, which uses an anti-algal and anti-fungal agent encapsulated with a metal shell material having an average particle size of 0.01 to 50 μm.
(3)金属系殻物質が、遷移金属元素であるCu、Zn
、Ag、Co、Ni、Mn、Fe、 Ptより選ばれる金属、金属酸化物、あるいは金属錯化
合物、あるいは金属塩の1種あるいは2種以上の化合物
である金属系殻物質によりカプセル化を行った防藻防カ
ビ剤を用いることを特徴とする特許請求の範囲第1項記
載の防藻防カビ塗料組成物。
(3) The metal shell substance is a transition metal element such as Cu or Zn.
, Ag, Co, Ni, Mn, Fe, and Pt, metal oxides, metal complex compounds, or metal salts. The anti-algae and anti-mold paint composition according to claim 1, characterized in that an anti-algae and anti-mold agent is used.
(4)有機ポリマービーズと金属系殻物質が帯電性の異
なる物質であり、これらを用いてカプセル化された防藻
防カビ剤を用いることを特徴とする特許請求の範囲第1
項記載の防藻防カビ塗料組成物。
(4) The first claim is characterized in that the organic polymer beads and the metal shell material are substances with different chargeability, and an algae and fungicide encapsulated using these is used.
The anti-algae and anti-mold paint composition described in .
JP8779887A 1987-04-08 1987-04-08 Antialgae and antifungal paint composition Expired - Fee Related JPH086053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8779887A JPH086053B2 (en) 1987-04-08 1987-04-08 Antialgae and antifungal paint composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8779887A JPH086053B2 (en) 1987-04-08 1987-04-08 Antialgae and antifungal paint composition

Publications (2)

Publication Number Publication Date
JPS63251483A true JPS63251483A (en) 1988-10-18
JPH086053B2 JPH086053B2 (en) 1996-01-24

Family

ID=13924997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8779887A Expired - Fee Related JPH086053B2 (en) 1987-04-08 1987-04-08 Antialgae and antifungal paint composition

Country Status (1)

Country Link
JP (1) JPH086053B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992007037A1 (en) * 1990-10-11 1992-04-30 A.B.O.E. Pty Ltd. Anti-fouling composition

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11143379A (en) 1997-09-03 1999-05-28 Semiconductor Energy Lab Co Ltd Semiconductor display device correcting system and its method
TW459275B (en) 1999-07-06 2001-10-11 Semiconductor Energy Lab Semiconductor device and method of fabricating the same
US7205716B2 (en) 2003-10-20 2007-04-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
JP5469851B2 (en) 2007-11-27 2014-04-16 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992007037A1 (en) * 1990-10-11 1992-04-30 A.B.O.E. Pty Ltd. Anti-fouling composition

Also Published As

Publication number Publication date
JPH086053B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
JP4740322B2 (en) Antibacterial resin composition containing silver-containing solution and steel sheet coated with resin composition
US20030096017A1 (en) Anti-microbial powder coatings
US11292923B2 (en) Composite resins containing silver nanoparticles
JPS63251483A (en) Alga-preventive and mildewproofing paint composition
JP2003171619A (en) Water paint composition
JP2773286B2 (en) Antibacterial agent
CN109169706A (en) Complex antimicrobials and antibacterial bacteriostatic type multifunctional inorganic ecologic coating obtained
JPH07118114A (en) Metallic powder for antimicrobial use and antimicrobial coating composition
JPH02282303A (en) Carrier granulated agent containing liquid active compound
JPH0219308A (en) Antimicrobial silicate having film-forming property
JPH0587480B2 (en)
JP4387664B2 (en) Repellent composition, repellent paint, and repellent method using the same
JPH06219906A (en) Animal-repelling aqueous coating composition
JPH08113729A (en) Antimicrobial composition and production thereof
DE102005032236A1 (en) Process for coating dimensionally stable particles with finely divided, dimensionally stable particles
US2506636A (en) Insecticidal dusts containing 2, 2-bis (4-methoxyphenyl)-1, 1, 1-trichloroethane andprocess for making same
JP2640270B2 (en) Algae-proof powder and method for producing the same
JPH0688884B2 (en) Method for producing particles for metal compound-supported antifouling paint
JPH06219907A (en) Coating type animal-repelling composition
JPH04231063A (en) Antimicrobial composition
JPH06305922A (en) Processed sand, antibacterial material and production of antibacterial material
JPH0789818A (en) Method for giving sandbox antimicrobial
JPS59172562A (en) Magnetic paint
JPH03273040A (en) Antibacterial material
JP2021122195A (en) Seed coating, coated seed and seed coating method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees