JPS63250598A - Method of removing sodium of fast-reactor core component - Google Patents

Method of removing sodium of fast-reactor core component

Info

Publication number
JPS63250598A
JPS63250598A JP8528487A JP8528487A JPS63250598A JP S63250598 A JPS63250598 A JP S63250598A JP 8528487 A JP8528487 A JP 8528487A JP 8528487 A JP8528487 A JP 8528487A JP S63250598 A JPS63250598 A JP S63250598A
Authority
JP
Japan
Prior art keywords
sodium
inert gas
core components
storage container
reactor core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8528487A
Other languages
Japanese (ja)
Other versions
JP2564132B2 (en
Inventor
範明 高橋
保 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP62085284A priority Critical patent/JP2564132B2/en
Publication of JPS63250598A publication Critical patent/JPS63250598A/en
Application granted granted Critical
Publication of JP2564132B2 publication Critical patent/JP2564132B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高速炉プラントの炉心燃料集合体である炉心
構成要素に付着しているナトリウムを除去する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for removing sodium adhering to core components, which are core fuel assemblies of fast reactor plants.

(従来の技術) 高速炉プラントの炉心燃料集合体である炉心構成要素は
、使用後炉心容器から炉外中継槽に移され、さらに洗浄
槽で洗浄された後、水ブールに移されて貯蔵される。
(Prior art) Core components, which are core fuel assemblies of fast reactor plants, are transferred from the core vessel to an external relay tank after use, and after being cleaned in a cleaning tank, they are transferred to a water tank and stored. Ru.

炉心構成要素を洗浄槽で洗浄してナトリウムを除去する
方法としては、従来湿潤不活性ガス洗浄法と真空蒸発法
がある。
Conventional methods for removing sodium by cleaning core components in a cleaning tank include a wet inert gas cleaning method and a vacuum evaporation method.

湿潤不活性ガス洗浄法は、第4図に示す如く洗浄槽であ
る収納容器1に炉心構成要素2を収納し、収納容器1に
設けた循、環回路3に不活性ガスを送給し、途中加熱器
4にて加熱した後水蒸気を添加し、この混合ガスを収納
容器1中の炉心構成要素2に制御しながら吹き付けて、
付着しているナトリウムを、Na+H20→NaOH+
 1/2)12反応を利用して、水酸化ナトリウム(N
aOH)に変換し、温度上昇した混合ガスは収納容器1
から循環回路3に出て、途中冷却器5にて冷却され、ミ
ストトラップ6を経て、混合ガス中に蒸散している水酸
化ナトリウムが取り除かれた後ブロワ7にて送られ、加
熱器4を経て加熱され、再び゛収納容器1内の炉心構成
要素2に吹き付けて、付着しているナトリウムを水酸化
ナトリウムに変換する。こうして混合ガスの循環により
炉心構成要素2に付着しているナトリウムを完全に水酸
化ナトリウムに変換したならば、収納容器1内に純水を
洗浄水口路8を通して循環水ポンプ9にて供給循環させ
て炉心構成要素2を洗浄し、付着している水酸化ナトリ
ウムを洗い落す。
In the wet inert gas cleaning method, as shown in FIG. 4, core components 2 are stored in a storage container 1, which is a cleaning tank, and inert gas is supplied to a circulation circuit 3 provided in the storage container 1. After heating in the intermediate heater 4, steam is added, and this mixed gas is blown onto the core components 2 in the storage vessel 1 in a controlled manner.
Remove the attached sodium from Na+H20→NaOH+
1/2) Using reaction 12, sodium hydroxide (N
The mixed gas, which has been converted into aOH) and whose temperature has risen, is stored in storage container 1.
The gas flows out into the circulation circuit 3, is cooled by a cooler 5, passes through a mist trap 6, removes the sodium hydroxide that has evaporated into the mixed gas, and is sent to a blower 7, where it is heated to a heater 4. The reactor core components 2 inside the storage vessel 1 are then heated and blown again to convert the adhering sodium into sodium hydroxide. Once the sodium adhering to the core components 2 has been completely converted into sodium hydroxide through the circulation of the mixed gas, pure water is supplied and circulated into the storage container 1 through the cleaning water port 8 using the circulating water pump 9. The reactor core components 2 are then cleaned to remove adhering sodium hydroxide.

真空蒸発法は、第5図に示す如く収納容器1内に炉心構
成要素2を収納し、収納容器1に設けた吸引回路10の
真空ポンプユニット11を駆動して収納容器1内の不活
性気体を吸引し、収納容器1内を真空にし、炉心構成要
素2に付着しているナトリウムを蒸発させ、ナトリウム
トラップ13を経て気体に蒸散しているナトリウムが取
り除かれた後真空ポンプユニット11より排気される。
In the vacuum evaporation method, as shown in FIG. 5, the core components 2 are stored in a storage container 1, and the vacuum pump unit 11 of the suction circuit 10 provided in the storage container 1 is driven to remove inert gas from the storage container 1. The inside of the storage container 1 is vacuumed, the sodium adhering to the core components 2 is evaporated, and the sodium that has evaporated into gas is removed through the sodium trap 13. After that, the sodium is evacuated from the vacuum pump unit 11. Ru.

こうして収納容器1内を真空にして、炉心構成要素2に
付着しているナトリウムを蒸発させるが炉心構成要素2
に付着したナトリウムの量が多い場合には蒸発IA埋に
時間がかかる為、大容量の真空槽12を一基又は複数基
設け、この中を予め真空にしておき、弁18を開いて収
納容器1を真空にして炉心構成要素2に付着しているナ
トリウムを蒸発させる操作を繰返し、多量のナトリウム
除去を行わせる場合もある。さらにこの場合には炉心構
成要素自体崩壊熱を出している為、この真空蒸発操作の
合い間に炉心構成要素2の冷却が必要となり、循環ブロ
ワ5、ナトリウムトラップ16.ガス冷却器17を有す
る冷却系を設けている。
In this way, the inside of the storage container 1 is evacuated and the sodium adhering to the core components 2 is evaporated.
If there is a large amount of sodium attached to the container, it will take time to evaporate the IA, so one or more large-capacity vacuum chambers 12 are provided, the interior of which is evacuated in advance, and the valve 18 is opened to remove the storage container. In some cases, a large amount of sodium may be removed by repeating the operation of evacuating reactor core component 1 to evaporate sodium adhering to core component 2. Furthermore, in this case, since the core components themselves generate decay heat, it is necessary to cool the core components 2 between vacuum evaporation operations, and the circulation blower 5, sodium trap 16. A cooling system having a gas cooler 17 is provided.

(発明が解決しようとする問題点) ところが、前記湿潤不活性ガス洗浄法では、放射性物質
を含有する洗浄廃液が大量に発生し、この廃液処理の為
の設備費、運転費負担が大きい。
(Problems to be Solved by the Invention) However, in the wet inert gas cleaning method, a large amount of cleaning waste liquid containing radioactive substances is generated, and the equipment and operating costs for processing this waste liquid are large.

また前記の真空蒸発法では、炉心構成要素2の付着ナト
リウム量が多い場合、蒸発処理に時間がかかり、設備規
模も大きくなる。
Furthermore, in the vacuum evaporation method described above, when the amount of sodium adhering to the core component 2 is large, the evaporation process takes time and the scale of the equipment becomes large.

そこで本発明は放射性廃棄物量を飛躍的に減少でき、し
かも能率良くナトリウムを分離除去できる高速炉炉心構
成要素のナトリウム除去法を提供しようとするものであ
る。
Therefore, the present invention aims to provide a method for removing sodium from fast reactor core components, which can dramatically reduce the amount of radioactive waste and can efficiently separate and remove sodium.

(問題点を解決するための手段) 上記問題点を解決するための本発明の高速炉炉心構成要
素のナトリウム除去法は、収納容器内に炉心構成要素を
収納した後、高温不活性ガスにより炉心構成要素を加熱
し、構造材表面に付着している金属ナトリウムを蒸発さ
せ、そのナトリウム蒸気を同伴した不活性ガスを冷伝熱
面を有するナトリウム分離器に導入し、ナトリウムを凝
縮分離することを特徴とするものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the method for removing sodium from fast reactor core components of the present invention is to store the core components in a storage container and then remove the sodium from the core components using high-temperature inert gas. The component is heated to evaporate the metallic sodium adhering to the surface of the structural material, and the inert gas accompanied by the sodium vapor is introduced into a sodium separator with a cold heat transfer surface to condense and separate the sodium. This is a characteristic feature.

上記高温不活性ガスは、N2. Ar、 He等をヒー
タにより加熱したものと、炉心構成要素の残留崩壊熱に
より加熱したものとがある。
The high temperature inert gas is N2. There are two types: one in which Ar, He, etc. is heated by a heater, and the other in which heat is generated by residual decay heat of core components.

尚、不活性ガスの純度は、いずれも99.999%以上
で、酸素、水の濃度は1 ppm以下が望ましい。
The purity of the inert gas is preferably 99.999% or more, and the concentration of oxygen and water is preferably 1 ppm or less.

(実施例) 本発明の高速炉炉心構成要素のナトリウム除去法の一実
施例を第1図によって説明する。使用済の炉心燃料集合
体である炉心構成要素22を図示せぬ炉外中i 49か
ら取り出して収納容器21内に収納する。次に収納容器
21に付設した循環回路23の循環ガスブロワ24を駆
動して、その上流で循環回路23の途中に接続された不
活性ガス送給通路23aより送給された不活性ガスをヒ
ータ25にて300〜500℃まで加熱した上で収納容
器21に送り込み、炉心構成要素22と接触させ、その
構造材表面に付着している金属ナトリウムを蒸発させる
。その際構造材及び金属ナトリウムは約600℃に加熱
されている。ナトリウム蒸気は不活性ガスと共に収納容
器21より循環回路23に出て、先ずエコノマイザ−2
6で冷却された後、ナトリウム分離器27に人りて冷伝
熱面28により冷却されてナトリウム蒸気が凝縮分離さ
れて、ナトリウム回収容器29に金属ナトリウムとして
回収される。分離された不活性ガスは、前記エコノマイ
ザ−26の吸熱側に入り、ナトリウム蒸気同伴の不活性
ガスの冷却に携わって温度上昇した後、ヒータ25に送
られ、ここで300〜500℃まで加熱された上再び収
納容器21に送り込まれて、炉心構成要素22と接触し
、その構造材表面に付着している金属ナトリウムを蒸発
させる。以後上記の如く高温不活性ガスの循環により収
納容器21内の炉心構成要素22の構造材表面に付着し
ている金属ナトリウムは容易に蒸発し、ナトリウム回収
容器29に金属ナトリウムとして回収される。
(Example) An example of the method for removing sodium from fast reactor core components of the present invention will be described with reference to FIG. The core components 22, which are used core fuel assemblies, are taken out from the outside of the reactor (not shown) 49 and stored in the storage container 21. Next, the circulating gas blower 24 of the circulating circuit 23 attached to the storage container 21 is driven, and the inert gas supplied from the inert gas supply passage 23a connected midway in the circulating circuit 23 upstream thereof is supplied to the heater 25. After being heated to 300 to 500° C., it is sent into the storage container 21 and brought into contact with the core components 22 to evaporate metallic sodium adhering to the surface of the structural material. In this case, the structural material and metallic sodium are heated to approximately 600°C. Sodium vapor exits from the storage container 21 to the circulation circuit 23 together with the inert gas, and first passes through the economizer 2.
After being cooled at step 6, the sodium vapor is transferred to a sodium separator 27, cooled by a cold heat transfer surface 28, condensed and separated, and recovered as metallic sodium in a sodium recovery container 29. The separated inert gas enters the endothermic side of the economizer 26, and after being involved in cooling the inert gas accompanied by sodium vapor and increasing its temperature, it is sent to the heater 25, where it is heated to 300 to 500°C. After that, it is fed into the storage container 21 again and comes into contact with the core components 22 to evaporate the metallic sodium adhering to the surface of the structural material. Thereafter, the metallic sodium adhering to the surface of the structural material of the core component 22 in the storage container 21 is easily evaporated by the circulation of the high temperature inert gas as described above, and is recovered as metallic sodium in the sodium recovery container 29.

金属ナトリウムが蒸発し終えた炉心構成要素22は、収
納容器21より取り出す前に所定温度まで冷却される。
The core component 22, in which the metallic sodium has been completely evaporated, is cooled to a predetermined temperature before being taken out from the storage container 21.

冷却はヒータ25による不活性ガスの加熱を止め、不活
性ガスの循環回路23中のバルブを切換えて、ガス冷却
器31を通る循環回路23cとヒータ25をバイパスす
る循環回路23bを不活性ガスが通るようにする。この
ように構成された循環回路によりエコノマイザ−26を
出た不活性ガスはガス冷却器31を通り冷却され、ヒー
タ25をバイパスして収納容器21に入る。ここで不活
性ガスは炉心構成要素22と接触し冷却する。温度が上
昇した不活性ガスは収納容器21を出て循環回路23に
入り、エコノマイザ−26の放熱側を通りナトリウム分
離器2フの冷伝熱面28とガスプレクーラー30により
冷却されブロワ24に入る。ブロワ24を出た不活性ガ
スはエコノマイザ−26の吸熱側に入る。エコノマイザ
−26を出た不活性ガスはガス冷却器31を通り冷却さ
れ、ヒータ25をバイパスして収納容器21に入る。こ
こで不活性ガスは炉心構成要素22と接触して冷却する
。以後、上記の如く冷却された不活性ガスの循環により
炉心構成要素22が冷却される。
For cooling, the heating of the inert gas by the heater 25 is stopped, the valve in the inert gas circulation circuit 23 is switched, and the inert gas is passed through the circulation circuit 23c passing through the gas cooler 31 and the circulation circuit 23b bypassing the heater 25. Let it pass. The inert gas leaving the economizer 26 passes through the gas cooler 31 and is cooled by the circulation circuit configured in this manner, bypasses the heater 25, and enters the storage container 21. Here, the inert gas contacts and cools core components 22. The inert gas whose temperature has risen leaves the storage container 21 and enters the circulation circuit 23, passes through the heat radiation side of the economizer 26, is cooled by the cold heat transfer surface 28 of the sodium separator 2F and the gas pre-cooler 30, and is sent to the blower 24. enter. The inert gas leaving the blower 24 enters the endothermic side of the economizer 26. The inert gas leaving the economizer 26 is cooled through a gas cooler 31, bypasses the heater 25, and enters the storage container 21. Here, the inert gas contacts and cools core components 22. Thereafter, the core components 22 are cooled by circulating the cooled inert gas as described above.

尚、上記実施例に於いて、第2図に示す如く循環回路2
3の途中のガスプレクーラー30の上流にガスチラー3
2.ナトリウムトラップ33、真空ポンプユニット34
を有する真空排気路35を付加して、高温不活性ガスの
循環を一定時間行った後、真空ポンプユニット34を駆
動して収納容器1内のナトリウム蒸気を同伴した不活性
ガスを吸引し、エコノマイザ−26で冷却し、ナトリウ
ム分離器27でナトリウム蒸気を凝縮分離し、ナトリウ
ム回収容器29に金属ナトリウムとして回収する。分離
された低温の不活性ガスは真空排気路35に入り、ガス
チラー32でン令却され、ナトリウムトラップ33で残
余のナトリウム蒸気が取り除かれ、真空ポンプユニット
34を経由して排気される。
In the above embodiment, as shown in FIG.
Gas chiller 3 is installed upstream of gas pre-cooler 30 in the middle of 3.
2. Sodium trap 33, vacuum pump unit 34
After circulating the high-temperature inert gas for a certain period of time, the vacuum pump unit 34 is driven to suck the inert gas accompanied by the sodium vapor in the storage container 1, and the economizer -26, the sodium vapor is condensed and separated in the sodium separator 27, and recovered as metallic sodium in the sodium recovery container 29. The separated low-temperature inert gas enters the vacuum exhaust path 35, is decomposed by the gas chiller 32, residual sodium vapor is removed by the sodium trap 33, and is exhausted via the vacuum pump unit 34.

尚、収納容器21の真空度が高くなった時点でバルブを
切換え、真空排気路35′を用いて収納容器21だけを
真空排気し、より真空度を高めて金属ナトリウムの蒸発
をさらに良好にする。このように真空吸引することによ
り、収納容器21内の炉心構成要素22の構造材表面に
付着している金属ナトリウムは高温かつ真空下での蒸発
であるのでより多く蒸発し、回収される。従ってナトリ
ウムの除去率が向上する。
In addition, when the degree of vacuum in the storage container 21 becomes high, the valve is switched and only the storage container 21 is evacuated using the vacuum exhaust path 35' to further increase the degree of vacuum and improve the evaporation of metallic sodium. . By vacuum suction in this manner, more of the metallic sodium adhering to the surface of the structural material of the core component 22 in the storage container 21 is evaporated and recovered since it is evaporated at high temperature and under vacuum. Therefore, the sodium removal rate is improved.

次に本発明の高速炉炉心構成要素のナトリウム除去法の
他の実施例を第3図によフて説明する。収納容器21内
に、使用済みの炉心燃料集合体である炉心構成要素22
を図示せぬ炉外中m槽から取り出して収納する。次に収
納容器21内に不活性ガスを充填する。次いでこの不活
性ガスを炉心構成要素22の残留崩壊熱により温度上昇
させると共に、収納容器1に付設した不活性ガス予熱回
路36の循環ガスブロワ38を駆動して予熱回路36を
循環させ、残留崩壊熱が小さい炉心構成要素22に付着
したナトリウムを除去する場合にはヒータ37にて加熱
して収納容器1に戻す。
Next, another embodiment of the method for removing sodium from fast reactor core components according to the present invention will be described with reference to FIG. Inside the storage container 21, there are core components 22, which are used core fuel assemblies.
is taken out from a tank outside the furnace (not shown) and stored. Next, the storage container 21 is filled with inert gas. Next, the temperature of this inert gas is raised by the residual decay heat of the core components 22, and the circulating gas blower 38 of the inert gas preheating circuit 36 attached to the storage vessel 1 is driven to circulate the inert gas through the preheating circuit 36, thereby removing the residual decay heat. When removing sodium adhering to the core components 22 having a small amount of sodium, the sodium is heated by the heater 37 and returned to the storage container 1.

こうして不活性ガスを所要の温度まで加熱すると、炉心
構成要素22の構造材表面に付着している金属ナトリウ
ムが蒸発するので、循環ガスブロワ38の駆動を停止す
る。
When the inert gas is heated to the required temperature in this manner, the metallic sodium adhering to the surface of the structural material of the core component 22 evaporates, so the driving of the circulating gas blower 38 is stopped.

次に真空排気路39の真空ポンプユニット41を駆動し
て、収納容器1内にナトリウム蒸気を同伴した不活性ガ
スを吸引し、ナトリウム分離器27でナトリウム蒸気を
凝縮分離した後の低温の不活性ガスを真空排気路39に
導き、ナトリウムトラック40で残余のナトリウム蒸気
を取り除き、真空ポンプユニット41を経由して排気す
る。このように真空吸引することにより、収納容器21
内の炉心構成要素22の構造材表面に付着している金属
ナトリウムは高温かつ真空下での蒸発であるので、良好
に蒸発し、回収される。従って、ナトリウムの除去率が
向上する。
Next, the vacuum pump unit 41 of the vacuum exhaust path 39 is driven to suck inert gas accompanied by sodium vapor into the storage container 1, and after the sodium vapor is condensed and separated in the sodium separator 27, the low-temperature inert gas is The gas is led to a vacuum exhaust path 39, residual sodium vapor is removed by a sodium truck 40, and exhausted via a vacuum pump unit 41. By vacuum suction in this way, the storage container 21
Since the metallic sodium adhering to the structural material surface of the core components 22 inside is evaporated at high temperature and under vacuum, it is well evaporated and recovered. Therefore, the sodium removal rate is improved.

(発明の効果) 以上′の説明で判るように本発明の高速炉炉心構成要素
のナトリウム除去法は、ナトリウム除去に用いる不活性
ガスを循環使用するので、放射性廃棄物を飛躍的に減少
できる。また高温の不活性ガスを炉心構成要素に接触さ
せるので、その構造材表面に付着している金属ナトリウ
ムは容易に蒸発し、しかもナトリウム蒸気を同伴した不
活性ガスを冷伝熱面を有するナトリウム分離器に導入し
、ナトリウムを凝縮分離するので、能率良くナトリウム
を炉心構成要素より分離除去できるという効果がある。
(Effects of the Invention) As can be seen from the above explanation, the method for removing sodium from fast reactor core components of the present invention can dramatically reduce radioactive waste because the inert gas used for sodium removal is recycled. In addition, since high-temperature inert gas is brought into contact with the core components, the metallic sodium adhering to the structural material surface easily evaporates, and the inert gas accompanied by sodium vapor is separated from the sodium using the cold heat transfer surface. Since sodium is introduced into the reactor and condensed and separated, it has the effect of efficiently separating and removing sodium from the core components.

さらに、真空吸引を組み合せることにより、真空下での
ナトリウム蒸発率が1気圧下における蒸発率より100
〜1000倍も大きいという事象を利用できるので、速
やかにナトリウムを除去できる。
Furthermore, by combining vacuum suction, the sodium evaporation rate under vacuum is 100 times higher than that under 1 atm.
Since the phenomenon that is ~1000 times larger can be utilized, sodium can be quickly removed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は夫々本発明の高速炉炉心構成要素の
ナトリウム除去法を実施する手段を示す図、第4図及び
第5図は夫々従来の高速炉炉心構成要素のナトリウム除
去法を実施する手 段を示す図である。
1 to 3 are diagrams showing means for implementing the sodium removal method for fast reactor core components of the present invention, respectively, and FIGS. 4 and 5 are diagrams showing the means for implementing the sodium removal method for fast reactor core components, respectively, according to the present invention. It is a diagram showing the means for implementation.

Claims (1)

【特許請求の範囲】 1)収納容器内に炉心構成要素を収納した後、高温不活
性ガスにより炉心構成要素を加熱し、構造材表面に付着
している金属ナトリウムを蒸発させ、そのナトリウム蒸
気を同伴した不活性ガスを冷伝熱面を有するナトリウム
分離器に導入し、ナトリウムを凝縮分離することを特徴
とする高速炉炉心構成要素のナトリウム除去法。 2)高温不活性ガスがヒータにより加熱されたものであ
ることを特徴とする特許請求の範囲1)項記載の高速炉
炉心構成要素のナトリウム除去法。 3)高温不活性ガスが炉心構成要素の残留崩壊熱により
加熱されたものであることを特徴とする特許請求の範囲
1)項記載の高速炉炉心構成要素のナトリウム除去法。
[Claims] 1) After storing the core components in a storage container, the core components are heated with high-temperature inert gas to evaporate metallic sodium adhering to the surface of the structural material, and the sodium vapor is released. A method for removing sodium from fast reactor core components, characterized by introducing entrained inert gas into a sodium separator having a cold heat transfer surface and condensing and separating sodium. 2) The method for removing sodium from a fast reactor core component according to claim 1), wherein the high-temperature inert gas is heated by a heater. 3) The method for removing sodium from a fast reactor core component according to claim 1), wherein the high-temperature inert gas is heated by residual decay heat of the core component.
JP62085284A 1987-04-07 1987-04-07 Sodium removal treatment facility for fast reactor core components Expired - Fee Related JP2564132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62085284A JP2564132B2 (en) 1987-04-07 1987-04-07 Sodium removal treatment facility for fast reactor core components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62085284A JP2564132B2 (en) 1987-04-07 1987-04-07 Sodium removal treatment facility for fast reactor core components

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11206896A Division JPH09178895A (en) 1996-04-09 1996-04-09 Sodium removing equipment for fast reactor core constituting element

Publications (2)

Publication Number Publication Date
JPS63250598A true JPS63250598A (en) 1988-10-18
JP2564132B2 JP2564132B2 (en) 1996-12-18

Family

ID=13854272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62085284A Expired - Fee Related JP2564132B2 (en) 1987-04-07 1987-04-07 Sodium removal treatment facility for fast reactor core components

Country Status (1)

Country Link
JP (1) JP2564132B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189600A (en) * 1988-01-23 1989-07-28 Power Reactor & Nuclear Fuel Dev Corp High temperature gas blow washing of spent fuel
US20110222642A1 (en) * 2008-11-19 2011-09-15 Guy-Marie Gautier Sfr nuclear reactor of the integrated type with improved compactness and convection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546122A (en) * 1978-09-29 1980-03-31 Tokyo Shibaura Electric Co Cleaning device for sodium equipment
JPS5786800A (en) * 1980-11-20 1982-05-29 Tokyo Shibaura Electric Co Cleaning device for decontaminated sodium instruments

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546122A (en) * 1978-09-29 1980-03-31 Tokyo Shibaura Electric Co Cleaning device for sodium equipment
JPS5786800A (en) * 1980-11-20 1982-05-29 Tokyo Shibaura Electric Co Cleaning device for decontaminated sodium instruments

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189600A (en) * 1988-01-23 1989-07-28 Power Reactor & Nuclear Fuel Dev Corp High temperature gas blow washing of spent fuel
US20110222642A1 (en) * 2008-11-19 2011-09-15 Guy-Marie Gautier Sfr nuclear reactor of the integrated type with improved compactness and convection

Also Published As

Publication number Publication date
JP2564132B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
US20100170397A1 (en) Removal of carbon dioxide from flue gas with ammonia comprising medium
JPS5820000B2 (en) Extraction, collection and storage method of radioactive iodine contained in irradiated nuclear fuel
JPS6319839B2 (en)
US4189309A (en) Desulfurization of flue gas
CA1333324C (en) Method and apparatus for tritium contaminated solid organic waste treatment
JPS63250598A (en) Method of removing sodium of fast-reactor core component
US2129299A (en) Recovery of solvents from gases
JPH03193265A (en) Method and device for vapor reflow type soldering
JPS6227697A (en) Method and device for processing waste liquor containing radioactive substance
JP2601941B2 (en) Recovery method and recovery equipment for lower alcohol
US1834016A (en) Process for separating acidic gases
JPH09178895A (en) Sodium removing equipment for fast reactor core constituting element
JPS58224129A (en) Zinc-containing gas cleaning process
JPS62129795A (en) Method of washing spent fuel in fast breeder reactor
JPH05501703A (en) Method and apparatus for producing dinitrogen pentoxide
US3607003A (en) Method of removing acetone and acidic gases from gaseous mixtures
JPH07228545A (en) Dehydrating method of alcohol
JPS61161102A (en) Cooling precipitation method
US1851852A (en) Treatment of chloride solutions
US4532114A (en) Purification of geothermal steam containing boron, arsenic or mercury
JPS58153503A (en) Recovering method of solvent
USRE21631E (en) Process for removing and recover
JP3848612B2 (en) Method for separating alkaline compound and heavy water from heavy water containing tritium and alkaline compound
JPH02144144A (en) Method for regenerating ion-exchange resin
US4470961A (en) Utilization of impure steam and recovery of deuterium therefrom

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees