JPH02144144A - Method for regenerating ion-exchange resin - Google Patents

Method for regenerating ion-exchange resin

Info

Publication number
JPH02144144A
JPH02144144A JP29827188A JP29827188A JPH02144144A JP H02144144 A JPH02144144 A JP H02144144A JP 29827188 A JP29827188 A JP 29827188A JP 29827188 A JP29827188 A JP 29827188A JP H02144144 A JPH02144144 A JP H02144144A
Authority
JP
Japan
Prior art keywords
exchange resin
regeneration
gas
ion exchange
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29827188A
Other languages
Japanese (ja)
Other versions
JP2625993B2 (en
Inventor
Fumio Yusa
遊佐 文雄
Tomio Kawashima
川島 富男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP29827188A priority Critical patent/JP2625993B2/en
Publication of JPH02144144A publication Critical patent/JPH02144144A/en
Application granted granted Critical
Publication of JP2625993B2 publication Critical patent/JP2625993B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To regenerate an ion-exchange resin with high dehydration efficiency and continuous operation and without corroding a device by bringing a regenerating circulating gas into contact with the resin at 50-70 deg.C, and then recirculating the gas with a simple measures in the regeneration of the resin used in the dehydration of water-contg. 1,1,1-trichloroethane, etc. CONSTITUTION:An ion-exchange resin 2 is packed in an adsorption tower 1. Water-contg. 1,1,1-trichloroethane (expressed by A hereunder) or trichloroethylene (expressed by B hereunder) is introduced from an inlet pipe 3, dehydrated by the resin 2, and then discharged. A regenerating circulating gas is supplied from a supply pipe 5 to regenerate the resin. When the resin is used for the dehydration of the A, the gas is heated to 50-70 deg.C by a heater 7. When the resin is used for the dehydration of the B, the gas is heated to 70-90 deg.C, and introduced into the adsorption tower 1 to vaporize the water, A, and B adsorbed in the resin. The vapor-contg. gas is introduced into a cooler 10 from a pipeline 9 and cooled to 0-12 deg.C. Consequently, the A, etc., are condensed, and the condensate is separated and recovered in a condensation tank 13. The regenerating gas is recirculated through a pipeline 14, and used to regenerate the resin.

Description

【発明の詳細な説明】 イ)発明の目的 〔産業上の利用分野〕 本発明は、1,1.1−トリクロロエタンまたはトリク
ロロエチレンをイオン交換樹脂で脱水処理した後の、イ
オン交換樹脂の再生方法に関するものである。
Detailed Description of the Invention A) Purpose of the Invention [Field of Industrial Application] The present invention relates to a method for regenerating an ion exchange resin after dehydrating 1,1,1-trichloroethane or trichloroethylene with an ion exchange resin. It is something.

〔従来の技術〕[Conventional technology]

1.1.l−トリクロロエタンまたはトリクロロエチレ
ンは製造工程中、あるいは使用時に水分を吸収し、水分
を含有したl、1.1−トリクロロエタンまたはトリク
ロロエチレンは、熱により化学反応を起こして塩酸を生
成し、装置や容器等に用いられている金属を腐食したり
、また製品の品質にも影響を及ぼす。
1.1. l-Trichloroethane or trichlorethylene absorbs moisture during the manufacturing process or during use, and the l,1,1-trichloroethane or trichloroethylene that contains moisture causes a chemical reaction with heat to produce hydrochloric acid, which may cause damage to equipment, containers, etc. It corrodes the metals used and also affects the quality of the product.

水分を含有した1、1.1−トリクロロエタンまたはト
リクロロエチレンの脱水方法としては種々の方法がある
が、作業環境上あるいは省エネルギー面より、イオン交
換樹脂による吸着脱水法が用いられることが多い。
Although there are various methods for dehydrating 1,1,1-trichloroethane or trichloroethylene containing water, an adsorption dehydration method using an ion exchange resin is often used from the viewpoint of working environment or energy saving.

イオン交換樹脂による吸着脱水法における水分吸着後の
イオン交換樹脂の再生方法としては、例えば特公昭46
−28522号公報、45−1173号公報記載の方法
があるが、1. 1. 1−トリクロロエタンまたはト
リクロロエチレンの脱水の場合、効率を高める為にそれ
らの分解温度以」:でイオン交換樹脂の乾燥再生が行な
われるため、水分と共に吸着された付着残留している1
、1゜1− )リクロロエタンまたはトリクロロエチレ
ンが吸着水分と反応し塩酸を生じ、装置等の腐食の原因
となり、従って高価な素材の装置を用いる必要がある。
As a method for regenerating an ion exchange resin after water adsorption in an adsorption dehydration method using an ion exchange resin, for example,
There are methods described in JP-28522 and JP-45-1173, but 1. 1. In the case of dehydration of 1-trichloroethane or trichloroethylene, the ion exchange resin is dried and regenerated at temperatures below their decomposition temperature in order to increase efficiency.
, 1°1-) Lichloroethane or trichloroethylene reacts with adsorbed moisture to produce hydrochloric acid, which causes corrosion of equipment, etc., and therefore requires the use of equipment made of expensive materials.

またイオン交換樹脂を再生した後の再生用循環ガスから
、水分および1,1.1−トリクロロエタンまたはトリ
クロロエチレンを離脱させるため、ガスの冷却処理が行
われるが、冷却後のガス中に残存する1、1.1−トリ
クロロエタンまたはトリクロロエチレンのa度は高く、
これを大気中に放出すれば環境面で問題となり、またこ
れをwi環使用する連続方式の場合には、循環ガスを更
に除湿をするための除湿吸着器を装備する必要があり、
再生システムが複雑で費用が嵩む等、未だ工業的に満足
する方法は見出されていない。
In addition, in order to remove moisture and 1,1.1-trichloroethane or trichloroethylene from the regeneration circulating gas after regenerating the ion exchange resin, a gas cooling process is performed. 1.1-Trichloroethane or trichloroethylene has a high a degree,
If this is released into the atmosphere, it will be an environmental problem, and in the case of a continuous system that uses a wi-ring, it is necessary to equip a dehumidifying adsorption device to further dehumidify the circulating gas.
No industrially satisfactory method has yet been found, as the regeneration system is complicated and expensive.

〔発明が解決しようとする課題〕 本発明者らは、水分を含有した1、l、1−トリクロロ
エタンまたはトリクロロエチレンをイオン交換樹脂で脱
水した後、イオン交換樹脂を再生するにあたり、1,1
.1−トリクロロエタンまたはトリクロロエチレンと水
分との反応を抑制して塩酸の生成を防ぎ、装置、容器等
の金属の腐食を防止し、しかも再生後の循環ガスは簡単
な処置で再生にVIi環利月利用ことが出来、環境上の
問題もないイオン交換樹脂の再生方法につき鋭意研究し
た結果、本発明を完成した。
[Problem to be Solved by the Invention] The present inventors dehydrated 1,1,1-trichloroethane or trichloroethylene containing water using an ion exchange resin, and then regenerated the ion exchange resin by using 1,1
.. It suppresses the reaction between 1-trichloroethane or trichloroethylene and water to prevent the formation of hydrochloric acid, and prevents corrosion of metals such as equipment and containers. Moreover, the circulating gas after regeneration can be used for regeneration with simple treatment. As a result of intensive research into a method for regenerating ion exchange resins that can be used without causing any environmental problems, the present invention was completed.

口)発明の構成 〔!!!!題を解決する為の手段〕 本発明は、水分を含有したi、l、l−1リクロロエタ
ンまたはトリクロロエチレンの脱水に使用されたイオン
交換樹脂を、再生用循環ガスにより再生するに際し、1
,1.1−1−リクロロエタンの脱水に使用されたイオ
ン交換樹脂を再生する場合は50℃〜70°Cの再生用
循環ガスを、またトリクロロエチレンの脱水に使用され
たイオン交換樹脂を再生する場合は70℃〜90 ℃の
再生用循環ガスを、それぞれイオン交換樹脂と接触させ
、次いで再生用循環ガスを0℃〜12゛Cに冷却して凝
縮液を分離した後、再生用循環ガスを再度循環しイオン
交換樹脂と接触させることを特徴とするイオン交換樹脂
の再生方法である。
口) Structure of the invention [! ! ! ! Means for Solving the Problem] The present invention provides a method for regenerating an ion exchange resin used for dehydrating i, l, l-1 dichloroethane or trichloroethylene containing water using a regeneration circulating gas.
, 1. When regenerating the ion exchange resin used in the dehydration of 1-1-lichloroethane, use the recycling gas at 50°C to 70°C, and regenerate the ion exchange resin used in the dehydration of trichlorethylene. In this case, the regeneration circulating gas at 70°C to 90°C is brought into contact with the ion exchange resin, and then the regenerating circulating gas is cooled to 0°C to 12°C to separate the condensate, and then the regenerating circulating gas is brought into contact with the ion exchange resin. This is a method for regenerating an ion exchange resin, which is characterized by circulating the resin again and bringing it into contact with the ion exchange resin.

本発明方法は吸着脱水に使用される各種のイオン交換樹
脂、例えば強酸性陽イオン交換樹脂等の再生に適用する
ことが出来る。
The method of the present invention can be applied to regenerating various ion exchange resins used for adsorption dehydration, such as strongly acidic cation exchange resins.

再生用循環ガスとしては、一般に用いられている窒素等
の不活性ガスや空気が挙げられるが、安全性の面から窒
素等の不活性ガスが好ましい。
Examples of the circulating gas for regeneration include commonly used inert gases such as nitrogen and air, and from the viewpoint of safety, inert gases such as nitrogen are preferred.

イオン交換樹脂の再生の際の再生用循環ガスの温度は、
イオン交換樹脂がl、l、1−トリクロロエタンの脱水
に使用された場合は、50℃〜70°C5好ましくは5
8℃〜65°Cである。70°Cを超えると塩酸が発生
して装置の腐食が起こり、50°C未満では脱水が充分
に行われない。また、イオン交換樹脂がトリクロロエチ
レンの脱水に使用された場合の再生用循環ガスの温度は
、70℃〜90°C1好ましくは75℃〜85°Cであ
る。90°Cを超えると塩酸が発生し装置の腐食を起こ
し、また70°C未満では脱水機能が充分でない。
The temperature of the regeneration circulating gas when regenerating the ion exchange resin is
When the ion exchange resin is used for dehydration of 1,1,1-trichloroethane, the temperature is 50°C to 70°C, preferably 5
The temperature is 8°C to 65°C. If the temperature exceeds 70°C, hydrochloric acid will be generated and corrosion of the equipment will occur, and if the temperature is below 50°C, sufficient dehydration will not occur. Further, when the ion exchange resin is used for dehydrating trichlorethylene, the temperature of the recycling gas for regeneration is 70°C to 90°C, preferably 75°C to 85°C. If the temperature exceeds 90°C, hydrochloric acid will be generated and the equipment will corrode, and if the temperature is below 70°C, the dehydration function will not be sufficient.

本発明においては、イオン交tAtH脂と接触後の再生
用循環ガスを0℃〜12℃、好ましくは3℃〜5℃に冷
却し、ガス中の水分および1.1.1トリクロロエタン
またはトリクロロエチレンを凝縮させ、凝m液の分離を
通常の気液分離操作により行った後、再生用循環ガスを
循環使用する。
In the present invention, the regeneration circulating gas after contact with the ion-exchanged tAtH fat is cooled to 0°C to 12°C, preferably 3°C to 5°C, and moisture in the gas and 1.1.1 trichloroethane or trichloroethylene are condensed. After separating the condensed liquid by a normal gas-liquid separation operation, the recycling gas for regeneration is recycled.

冷却温度が0°C未満では凝縮液中の水分の凍結による
配管の閉塞等の問題が生じ、また装置上経済的に不利と
なり、12°Cを超えると循環する再生用循環ガスの水
分濃度が高すぎ、該循環ガスを用いて連続再生処理を行
う場合、効率的な再生を望めず、また該wi環ガスを系
外に廃棄する場合は環境上の問題が生じる。
If the cooling temperature is less than 0°C, problems such as piping blockage due to freezing of water in the condensate will occur, and it will be economically disadvantageous for the equipment, and if it exceeds 12°C, the water concentration in the circulating regeneration gas will decrease. If the recycling gas is too high and continuous regeneration treatment is performed using the circulating gas, efficient regeneration cannot be expected, and if the circulating gas is disposed of outside the system, environmental problems will occur.

再生用循環ガスを冷却する際、急冷すると局所的に過冷
却され、冷却器へ氷が付着する場合があり、これを避け
るために予備冷却を行うことは、より効率的な方法であ
る。
When cooling the regenerating circulating gas, rapid cooling may result in local supercooling and ice may adhere to the cooler.To avoid this, a more efficient method is to pre-cool the gas.

本発明は上記の如く、1,1,1−トリクロロエタンお
よびトリクロロエチレンのイオン交換樹脂による脱水に
おいて、イオン交換樹脂の再生を連続的に有利に行い得
るものであり、例えば従来の方法では、脱水後の再生用
循環ガスの冷却が充分でないため、連続方式で行う場合
は除湿吸着装置を必要とし、複雑な再生システムで行わ
ざる得なかったが、再生後の循環ガスを0℃〜12℃に
冷却することにより、除湿吸着装置を全く必要とせず、
凝縮液分離後の再生用循環ガスは相対湿度が例えば0.
7〜0.8%程度であり、そのまま加温して再生に用い
ても、再生後のイオン交換樹脂は長時間にわたって高い
脱水能力を維持しており、非常に経済的であり、また環
境上の問題もない。
As described above, the present invention enables continuous and advantageous regeneration of the ion exchange resin in the dehydration of 1,1,1-trichloroethane and trichloroethylene using an ion exchange resin. Since the circulating gas for regeneration is not sufficiently cooled, a dehumidification and adsorption device is required when using a continuous method, and a complicated regeneration system has no choice but to cool the circulating gas after regeneration to 0°C to 12°C. This eliminates the need for a dehumidifying adsorption device at all.
After the condensate has been separated, the regenerating recirculating gas has a relative humidity of, for example, 0.
It is approximately 7 to 0.8%, and even if it is heated and regenerated as it is, the regenerated ion exchange resin maintains a high dehydration ability for a long time, making it very economical and environmentally friendly. No problem.

また本発明によれば装置の材質について懸念する必要が
なく、例えばオーステナイト系のステンレス鋼等を用い
れば十分であるが、安定性が比較的低い1,1.1−ト
リクロロエタンの脱水に使用されたイオン交換樹脂を再
生する場合には、吸着塔、凝縮タンクに耐酸処理を施し
たり、冷却器に耐酸材を用いることが好ましい。
Furthermore, according to the present invention, there is no need to worry about the material of the equipment; for example, it is sufficient to use austenitic stainless steel, etc.; When regenerating the ion exchange resin, it is preferable to subject the adsorption tower and the condensation tank to acid-resistant treatment, and to use an acid-resistant material in the cooler.

以下、第1図に基づいて本発明を更に詳細に説明する。Hereinafter, the present invention will be explained in more detail based on FIG.

第1図は本発明方法の一実施態様を示すフローシートで
ある。1は吸着塔で、その中に強酸性陽イオン交換樹脂
2が充填されており、脱水操作においては、1,1.1
−トリクロロエタンまたはトリクロロエチレンを導入管
3より吸着塔1に導入し、イオン交換樹脂2により脱水
した後、出口管4より糸外に取り出す。
FIG. 1 is a flow sheet showing one embodiment of the method of the present invention. 1 is an adsorption tower filled with a strongly acidic cation exchange resin 2;
- Trichloroethane or trichloroethylene is introduced into the adsorption tower 1 through the inlet pipe 3, dehydrated with the ion exchange resin 2, and then taken out from the thread through the outlet pipe 4.

再生操作においては、再生用循環ガスは再生用循環ガス
供給管5より系内に供給され、ブロワ−6により循環さ
れるが、まずヒーター7により所定の温度に加熱され、
熱風となり吸着塔1中に導かれる。再生用循環ガスの温
度は温度計8にて測定する。
In the regeneration operation, the regeneration circulation gas is supplied into the system from the regeneration circulation gas supply pipe 5 and circulated by the blower 6, but is first heated to a predetermined temperature by the heater 7.
It becomes hot air and is guided into the adsorption tower 1. The temperature of the circulating gas for regeneration is measured with a thermometer 8.

吸着塔1に導入された再生用W1環ガスは、イオン交換
樹脂に吸着されている水分および1.1゜1−) +J
 クロロエタンまたはトリクロロエチレンを気化させて
含み、配管9を経由して冷却器10に導かれ予備冷却さ
れ、ここで一部の水分および1.1.i)リクロロエタ
ンまたはトリクロロエチレンが凝縮液として凝縮タンク
13中に回収される。一方再生用wi環ガスはつづいて
冷却器11に導かれて0℃〜12℃に冷却され、水分お
よびI、I、i−トリクロロエタンまたはトリクロロエ
チレンが充分に凝縮され、凝縮液として凝縮タンク13
において分離回収され、再生用循環ガスは配管14を経
由してブロワ−6により再度イオン交換樹脂の再生にV
i1m使用される。なお、冷却された再生用循環ガスの
温度は温度計12で測定する。
The W1 ring gas for regeneration introduced into the adsorption tower 1 contains moisture adsorbed on the ion exchange resin and 1.1°1-) +J
It contains vaporized chloroethane or trichlorethylene, is led to a cooler 10 via piping 9, and is precooled, where it contains some moisture and 1.1. i) Lichloroethane or trichlorethylene is recovered as condensate in the condensation tank 13. On the other hand, the recycling gas is then led to the cooler 11 and cooled to 0°C to 12°C, and water and I, I, i-trichloroethane or trichloroethylene are sufficiently condensed, and the condensed liquid is transferred to the condensation tank 13.
The circulating gas for regeneration is separated and recovered at
i1m is used. Note that the temperature of the cooled regeneration circulating gas is measured with a thermometer 12.

再生終了後は、吸着塔に通ずる再生用循環ガス用配管の
内、吸着塔の入口および出口部分を閉鎖し、吸着塔を脱
水に再使用し、次段階の再生においては前記閉鎖部分を
開放し、同様の再生操作を行えばよい、そうする事によ
り、再生用循環ガスを系外に出さずに脱水と再生を繰り
返す事が出来、再生用循環ガスの演費を防止することが
でき、また再生用wg環ガスを系外に放出する場合の1
.1゜1−トリクロロエタンまたはトリクロロエチレン
のta失それらの回収操作および環境上の問題も解消さ
れる。
After the regeneration is completed, the inlet and outlet portions of the regeneration gas piping leading to the adsorption tower are closed, the adsorption tower is reused for dehydration, and the closed portions are opened for the next stage of regeneration. , the same regeneration operation can be performed. By doing so, dehydration and regeneration can be repeated without letting the regeneration circulating gas out of the system, and the cost of regeneration circulating gas can be prevented. 1 when releasing the regeneration wg ring gas to the outside of the system
.. The loss of 1.1-trichloroethane or trichloroethylene, their recovery operation and environmental problems are also eliminated.

〔実施例および比較例〕[Examples and comparative examples]

以下実施例、比較例に基づき、本発明をさらに詳細に説
明する。
The present invention will be explained in more detail below based on Examples and Comparative Examples.

実施例1〜3、比較例1〜4 第1図と同様な装置を用い、イオン交換樹脂再生を行っ
た。主装置である吸着塔lは、イオン交換樹脂(ダイヤ
イオン5K1t3:三菱化成工業■製)71が充填され
た内容積15Nの吸着塔である。320PP鍋の水分を
含有した1、1..1−トリクロロエタンの脱水を90
 I!/hrの流速で、35時間供給し脱水を行った後
、イオン交換樹脂の再生を開始した。脱水により吸着し
た水分は約200g/j!(イオン交換樹脂基準)であ
った、なお脱水および再生装置は5US304製である
Examples 1 to 3, Comparative Examples 1 to 4 Ion exchange resin was regenerated using an apparatus similar to that shown in FIG. The adsorption tower 1, which is the main device, has an internal volume of 15N and is filled with 71 ion exchange resins (Diaion 5K1t3, manufactured by Mitsubishi Chemical Corporation). 320PP pot containing moisture 1, 1. .. Dehydration of 1-trichloroethane to 90%
I! After dehydration was performed at a flow rate of /hr for 35 hours, regeneration of the ion exchange resin was started. The amount of water absorbed through dehydration is approximately 200g/j! (based on ion exchange resin), and the dehydration and regeneration equipment was manufactured by 5US304.

窒累1 i Nm’/hrを再生用循環ガス供給管5よ
り供給し、ブロワ−6により循環し、ヒーター7 (加
熱源ニスチーム、形式:エロフィン型)で加熱して吸着
塔1に供給した。加熱された再生用循環ガスの温度は温
度計8で測定し、加熱温度は第1表の通りとした。
Nitrogen accumulation 1 i Nm'/hr was supplied from a regeneration circulation gas supply pipe 5, circulated by a blower 6, heated by a heater 7 (heating source Nisteam, type: Erofin type), and supplied to the adsorption tower 1. The temperature of the heated circulating gas for regeneration was measured with a thermometer 8, and the heating temperature was as shown in Table 1.

水分および1,1.1−トリクロロエタンを含有した吸
着塔1からの再生用循環ガスを、配管9を経由して冷却
器10(冷媒:塩化カルシウム水溶液、形式:垂直型多
管式、温度−20℃)に導き、予備冷却し、ここで一部
の水分および1,1゜1−トリクロロエタンを凝縮分離
させ、凝縮液は凝縮タンク13に回収した。
The circulating gas for regeneration from the adsorption tower 1 containing moisture and 1,1,1-trichloroethane is passed through a pipe 9 to a cooler 10 (refrigerant: calcium chloride aqueous solution, type: vertical multi-tube type, temperature -20 ℃) and pre-cooled, at which time some of the water and 1,1°1-trichloroethane were condensed and separated, and the condensate was collected in the condensation tank 13.

再生用循環ガスは冷却器11(冷媒:塩化カルシウム水
溶液、形式:垂直型多管式、温度−20”C)に導き、
温度計12で温度を測定しつつ冷却し、水分および1,
1.l−1−リクロロエタンを凝縮させ、凝縮液は凝縮
タンク13に回収した。
The circulating gas for regeneration is led to a cooler 11 (refrigerant: calcium chloride aqueous solution, type: vertical multi-tube type, temperature -20"C),
It is cooled while measuring the temperature with a thermometer 12, and moisture and 1,
1. 1-1-lichloroethane was condensed, and the condensate was collected in a condensation tank 13.

なお、冷却温度は第1表の通りとした。Note that the cooling temperature was as shown in Table 1.

一方再生用循環ガスは配管14を経てプロワ−6により
ヒーター7に循環し、再度イオン交換樹脂の再生に使用
した。
On the other hand, the circulating gas for regeneration was circulated through the pipe 14 to the heater 7 by the blower 6 and used again to regenerate the ion exchange resin.

上記のようにして連続7時間再生を行った後の、装置の
状態またはaWIタンク中の水のPHを第1表に示す。
Table 1 shows the condition of the apparatus or the pH of the water in the aWI tank after 7 hours of continuous regeneration as described above.

また再生が終った後のイオン交換樹脂の脱水能力を調べ
るために、320 ppmの水分を含有した1、l、1
−トリクロロエタンの脱水を流速9゜1/hrで行い、
脱水後の1.1.1−トリクロロエタン中の水分量の経
時変化を測定した。その結果を第2表に示す。
In addition, in order to investigate the dehydration ability of the ion exchange resin after the regeneration, 1, 1, 1 containing 320 ppm water was used.
- Dehydration of trichloroethane at a flow rate of 9° 1/hr,
Changes in water content in 1.1.1-trichloroethane after dehydration over time were measured. The results are shown in Table 2.

実施例4〜6、比較例5〜8 240ρp園の水分を含有したトリクロロエチレンの脱
水を流速120j!/hrで35時間行い〔吸着した水
分量は約200g//!(イオン交換樹脂基準)〕、加
熱温度と冷却温度を第2表の通りとした以外は、実施例
1〜3、比較例1〜4と同様にトリクロロエチレンの脱
水およびイオン交換樹脂の再生を行った。
Examples 4 to 6, Comparative Examples 5 to 8 Trichlorethylene containing 240p water was dehydrated at a flow rate of 120j! /hr for 35 hours [The amount of water absorbed is about 200g//! (ion exchange resin standard)], trichlorethylene was dehydrated and the ion exchange resin was regenerated in the same manner as in Examples 1 to 3 and Comparative Examples 1 to 4, except that the heating temperature and cooling temperature were as shown in Table 2. .

連続7時間再生後の、装置の状態または凝縮タンクの水
のPHを第3表に示す。
Table 3 shows the condition of the device or the pH of the water in the condensing tank after 7 hours of continuous regeneration.

また再生が終わった後のイオン交換樹脂の脱水能力を調
べる為に、240ppmの水分を含有したトリクロロエ
チレンの脱水を流速1201 /hrテ行い、脱水後の
トリクロロエチレン中の水分量の経時変化を測定した。
In addition, in order to examine the dehydration ability of the ion exchange resin after regeneration, trichlorethylene containing 240 ppm of water was dehydrated at a flow rate of 1201/hr, and the change in water content in trichlorethylene after dehydration was measured over time.

その結果を第4表に示す。The results are shown in Table 4.

ハ)発明の効果 本発明によれば2水分を含有した1、1.1−トリクロ
ロエタンまたはトリクロロエチレンの脱水後のイオン交
換樹脂の再生において、l、1゜1−トリクロロエタン
またはトリクロロエチレンの分解による塩酸の発生を防
止し、装置等を腐食することなく再生を行うことを可能
とし、またイオン交換樹脂と接触させた後の再生用循環
ガスを簡単な処置により再循環させることにより、再生
の連続操業を可能とし、さらに脱水と再生との連続操業
が可能であり、しかも再生後のイオン交換樹脂は長時間
にわたって高い脱水能力を有するものであり、工業的に
も経済的にも、また環境的見地からも見ても非常に優れ
た方法である。
c) Effects of the invention According to the present invention, in the regeneration of an ion exchange resin after dehydration of 1,1.1-trichloroethane or trichloroethylene containing 2 water, hydrochloric acid is generated by decomposition of 1,1.1-trichloroethane or trichloroethylene. This makes it possible to perform regeneration without corroding equipment, etc., and allows continuous regeneration operation by recirculating the regeneration gas after contact with the ion exchange resin with a simple procedure. Furthermore, continuous operation of dehydration and regeneration is possible, and the regenerated ion exchange resin has a high dehydration ability over a long period of time. This is a very good method to look at.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明によるイオン交換樹脂の再生方法にお
ける一実施態様のフローシートである。 l、吸着塔 2、イオン交換樹脂 5、再生用循環ガス供給管 ヒーター および12.温度計 および11.  冷却器 凝縮タンク
FIG. 1 is a flow sheet of one embodiment of the method for regenerating ion exchange resin according to the present invention. l, adsorption tower 2, ion exchange resin 5, regeneration circulating gas supply pipe heater, and 12. Thermometer and 11. cooler condensing tank

Claims (1)

【特許請求の範囲】[Claims] 1、水分を含有した1,1,1−トリクロロエタンまた
はトリクロロエチレンの脱水に使用されたイオン交換樹
脂を、再生用循環ガスにより再生するに際し、1,1,
1−トリクロロエタンの脱水に使用されたイオン交換樹
脂を再生する場合は50℃〜70℃の再生用循環ガスを
、またトリクロロエチレンの脱水に使用されたイオン交
換樹脂を再生する場合は70℃〜90℃の再生用循環ガ
スを、それぞれイオン交換樹脂と接触させ、次いで再生
用循環ガスを0℃〜12℃に冷却して凝縮液を分離した
後、再生用循環ガスを再度循環し、イオン交換樹脂と接
触させることを特徴とするイオン交換樹脂の再生方法。
1. When regenerating an ion exchange resin used for dehydrating 1,1,1-trichloroethane or trichloroethylene containing water using a regeneration circulating gas, 1,1,
When regenerating the ion exchange resin used for dehydrating 1-trichloroethane, use a regeneration circulating gas at 50°C to 70°C, and when regenerating the ion exchange resin used for dehydrating trichlorethylene, use 70°C to 90°C. The regeneration circulating gas is brought into contact with the ion exchange resin, and then the regeneration circulating gas is cooled to 0°C to 12°C to separate the condensate, and then the regeneration circulating gas is circulated again and the ion exchange resin and A method for regenerating an ion exchange resin, which comprises bringing it into contact.
JP29827188A 1988-11-28 1988-11-28 Regeneration method of ion exchange resin Expired - Lifetime JP2625993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29827188A JP2625993B2 (en) 1988-11-28 1988-11-28 Regeneration method of ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29827188A JP2625993B2 (en) 1988-11-28 1988-11-28 Regeneration method of ion exchange resin

Publications (2)

Publication Number Publication Date
JPH02144144A true JPH02144144A (en) 1990-06-01
JP2625993B2 JP2625993B2 (en) 1997-07-02

Family

ID=17857478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29827188A Expired - Lifetime JP2625993B2 (en) 1988-11-28 1988-11-28 Regeneration method of ion exchange resin

Country Status (1)

Country Link
JP (1) JP2625993B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539490U (en) * 1991-11-01 1993-05-28 共立工業株式会社 Dehydrating cassette for dry cleaning solvent
JP2009291676A (en) * 2008-06-03 2009-12-17 Toyobo Co Ltd Solvent refining apparatus
CN115155249A (en) * 2022-09-05 2022-10-11 济南德洋低温科技有限公司 Method and device for recovering special gas adsorbed by molecular sieve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0539490U (en) * 1991-11-01 1993-05-28 共立工業株式会社 Dehydrating cassette for dry cleaning solvent
JP2009291676A (en) * 2008-06-03 2009-12-17 Toyobo Co Ltd Solvent refining apparatus
CN115155249A (en) * 2022-09-05 2022-10-11 济南德洋低温科技有限公司 Method and device for recovering special gas adsorbed by molecular sieve

Also Published As

Publication number Publication date
JP2625993B2 (en) 1997-07-02

Similar Documents

Publication Publication Date Title
US3729902A (en) Carbon dioxide sorbent for confined breathing atmospheres
JPS62502671A (en) Method and apparatus for purifying gases
JP6310907B2 (en) Recovering and recovering pollutants from exhaust gas
US6461413B1 (en) Method for dehydrating a wet gas using a liquid dessicant, with advanced regeneration of said dessicant
US5759236A (en) Energy-saving process for the separation of organic compounds from gases
KR20190126184A (en) Regenerative recovery of sulfur dioxide from effluent gases
JPH0233645B2 (en)
US3205638A (en) Method and apparatus for dehydration of gases
JPH02144144A (en) Method for regenerating ion-exchange resin
US3708955A (en) Method for drying gases
US2693247A (en) Method of cooling and dehumidifying compressed gases
DK170853B1 (en) Process for regeneration of zeolites.
JPH09506362A (en) Method and apparatus for purifying vinyl chloride
JP2625996B2 (en) Regeneration method of ion exchange resin
US3254474A (en) Recovery of halogen
JPH0448903A (en) Method for drying article
US2134482A (en) Process of recovering so from waste gases
JPS6182825A (en) Solvent recovery apparatus
JPH0824818B2 (en) Exhaust gas purification method
JPS5820224A (en) Removal of mercury in gas
JP3010463B2 (en) How to remove water from alcohol
JPS62110748A (en) Regenerating method for zeolite
JPS5836625B2 (en) Regeneration method of inorganic adsorbent
US4880446A (en) Process for heating up moist gases containing hydrogen halides
JPH0111700Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 12