JPS63250527A - Fine flow rate measuring method - Google Patents
Fine flow rate measuring methodInfo
- Publication number
- JPS63250527A JPS63250527A JP62085999A JP8599987A JPS63250527A JP S63250527 A JPS63250527 A JP S63250527A JP 62085999 A JP62085999 A JP 62085999A JP 8599987 A JP8599987 A JP 8599987A JP S63250527 A JPS63250527 A JP S63250527A
- Authority
- JP
- Japan
- Prior art keywords
- phototransistor
- liquid
- air bubble
- flow rate
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title description 10
- 239000007788 liquid Substances 0.000 claims abstract description 19
- 238000000691 measurement method Methods 0.000 claims description 4
- 239000007791 liquid phase Substances 0.000 abstract description 6
- 239000012530 fluid Substances 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 239000012808 vapor phase Substances 0.000 abstract description 2
- 230000001788 irregular Effects 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 4
- 230000005484 gravity Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は液体の微少流量(流速も含む)を、粘度、比重
などに関係なく高精度で測定し得る方法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method capable of measuring minute flow rates (including flow velocity) of liquids with high precision, regardless of viscosity, specific gravity, etc.
〈従来の技術〉
液体の微少流量を測定する方法として、フローメータ一
方式、液滴カウント方式等が知られている。<Prior Art> As a method for measuring minute flow rates of liquid, a flow meter type, a droplet counting type, and the like are known.
く解決しようとする問題点〉
フローメータ一方式においては、測定可能な最少流量が
0.05〜0.1 m 41 / m i n程度であ
り、測定範囲は1種のものでは1桁程度と狭く、読み取
り誤差が生じやすく、さらには、液体の粘度、比重等の
変化で誤差が生じ易い。Problems to be Solved> With one type of flow meter, the minimum measurable flow rate is about 0.05 to 0.1 m41/min, and the measurement range is about one digit with one type of flow meter. It is narrow and prone to reading errors, and furthermore, errors are likely to occur due to changes in the viscosity, specific gravity, etc. of the liquid.
液滴、カウント方式においては、測定可能な範囲の上限
が低(、出力がディジタル信号のため、超微少流量液域
での精密測定には長いサンプリング時間が必要であり、
液体の粘度、比重等で誤差が生じ、また振動に影響され
易い。In the droplet counting method, the upper limit of the measurable range is low (because the output is a digital signal, a long sampling time is required for precision measurement in the ultra-fine flow rate range,
Errors occur due to liquid viscosity, specific gravity, etc., and are easily affected by vibration.
また、任意時間液をサンプリングする方法では精度、労
力の点で劣り、長時間の平均値のデータしか得られない
。Furthermore, the method of sampling the liquid for an arbitrary period of time is inferior in terms of accuracy and labor, and can only obtain data on average values over a long period of time.
く問題点を解決するための技術的手段〉本発明の目的は
、上記各方式における不具合を解消して、微少流量を高
精度で測定できる方法を提供することにある。Technical Means for Solving the Problems> An object of the present invention is to provide a method that eliminates the problems in the above-mentioned methods and can measure minute flow rates with high precision.
本発明に係る微少流量測定方法は、断面積一定の流路の
起点と終点のそれぞれにフォトセンサーを設け、被測定
液が上記起点を通過する直前に、当該被測定液に気泡を
混入し、該気泡が上記起点並びに終点を通過するときに
パルスを発生させ、これらパルスより流量を計測するこ
とを特徴とする方法である。The method for measuring a minute flow rate according to the present invention includes providing a photo sensor at each of the starting point and the ending point of a flow path having a constant cross-sectional area, and mixing air bubbles into the liquid to be measured immediately before the liquid to be measured passes through the starting point. This method is characterized by generating pulses when the bubble passes through the starting point and ending point, and measuring the flow rate based on these pulses.
〈実施例〉 以下、図面により本発明を説明する。<Example> The present invention will be explained below with reference to the drawings.
第1図において、lは流路断面積が一定Φ流路である。In FIG. 1, l is a flow path having a constant cross-sectional area Φ.
Sは起点、Eは終点であり、各位置には流路を挟んで発
光ダイオード(LED)7<9>とフォトトランジスタ
8<10>を設けである。S is a starting point and E is an ending point, and a light emitting diode (LED) 7<9> and a phototransistor 8<10> are provided at each position with a flow path in between.
Aは起点Sの手前に設けた気泡発生器であり、ソレノイ
ド6、ベローズ5(またはシリンダ)、逆止弁3.4等
から構成しである。2は気泡発生器の手前に設けた空気
逃し弁である。11並びに12は起点の後方に設けたL
ED並びにフォトトランジスタであり、気泡が通過する
と信号を発生し、ソレノイド6を作動させて、被測定液
に気泡を混入する。A is a bubble generator provided in front of the starting point S, and is composed of a solenoid 6, a bellows 5 (or cylinder), a check valve 3.4, and the like. 2 is an air release valve provided in front of the bubble generator. 11 and 12 are L located behind the starting point
It is an ED and a phototransistor, and when a bubble passes, it generates a signal, activates the solenoid 6, and mixes the bubble into the liquid to be measured.
上記において、Lは一方向に流れる被測定液であり、こ
の液中に不確定的に含有されている気泡を気泡逃し弁2
で除き、気泡発生器Aにより流路内に1パルスの気泡を
混入する。被測定液の流動に伴い気泡が起点Sを通過す
るとき、気泡がLED7並びにフォトトランジスタ8を
横切り、気体/液体の屈折率の違い、光透過率の違い、
あるいは気/液相部分での光の乱反射によりフォトトラ
ンジスタ8の出力に変化が生じる。同様に、気泡が終点
Eを通過するときにもフォトトランジスタlOの出力に
変化が生じる。従って、フォトトランジスタ8の出力変
化時点とフォトトランジスタ10の出力変化時点の時間
差と流路断面積より流量を計測できる。In the above, L is the liquid to be measured that flows in one direction, and the air bubbles contained in this liquid are removed by the bubble relief valve 2.
The bubble generator A mixes one pulse of bubbles into the flow path. When the bubble passes through the starting point S as the liquid to be measured flows, the bubble crosses the LED 7 and the phototransistor 8, and the difference in refractive index between gas and liquid, the difference in light transmittance,
Alternatively, the output of the phototransistor 8 changes due to diffuse reflection of light in the gas/liquid phase portion. Similarly, when the bubble passes through the end point E, a change occurs in the output of the phototransistor IO. Therefore, the flow rate can be measured from the time difference between the time when the output of the phototransistor 8 and the time when the output of the phototransistor 10 changes and the cross-sectional area of the flow path.
すなわち、時間差をΔt、流路断面積をS、起点と終点
間の距離をlとすれば、流量QをΔ t
で算定できる。That is, if the time difference is Δt, the flow path cross-sectional area is S, and the distance between the starting point and the ending point is l, the flow rate Q can be calculated as Δ t .
この場合、電子回路的にはそれぞれのフォトトンジスタ
の出力レベル遷移時の微分出力において、正または負の
パルスでのみ計測を開始または終了させること、開始地
点のフォトトランジスタ8によるパルスで計測を開始し
た後はいかなる信号が発生しようともフォトトランジス
タ10による停止パルスを与えない限り計測回路に影響
を与えないようにすれば、気泡の液/気相部分、または
気/液相部分いずれでも計測可能であり、気相、液相の
フォトトランジスタ出力が逆転するような場合C例えば
、透明液の場合は水レンズ効果により液相の方が出力筋
、不遇明では逆)でも測定可能である。In this case, in terms of the electronic circuit, measurement must be started or ended only with a positive or negative pulse in the differential output at the time of output level transition of each phototransistor, and measurement must be started with a pulse from the phototransistor 8 at the starting point. After that, no matter what signal is generated, as long as it does not affect the measurement circuit unless a stop pulse is applied by the phototransistor 10, it is possible to measure either the liquid/vapor phase portion or the gas/liquid phase portion of the bubble. However, measurement is possible even in cases where the phototransistor outputs in the gas phase and liquid phase are reversed (for example, in the case of a transparent liquid, the output of the liquid phase is higher due to the water lens effect, and vice versa in the case of a transparent liquid).
上記において、流路断面積Sは通常0.10”〜100
n”とすることが好ましく、気泡の長さは1菖■〜1
00 m■ とすることが好ましい。In the above, the flow path cross-sectional area S is usually 0.10" to 100"
It is preferable that the length of the bubble is 1 iris to 1
It is preferable to set it to 00 m■.
第2図は本発明を実施するための測定装置を示し、第3
図は第2図の所定箇所での信号を示している。FIG. 2 shows a measuring device for carrying out the present invention, and FIG.
The diagram shows signals at predetermined locations in FIG.
第2図において、■は前記した起点における負パルス発
生器、■は終点における負パルス発生器、■は気泡発生
器のソレノイド作動用の負パルス発生器であり、フォト
トランジスタのレベル遷移時に極性が反転するコンパレ
ータと、極性反転時の負性パルスのみ取り出す微分回路
とダイオードより成り、出力は図3の■■■のようにな
る。これら3つのパルスが流量測定、気泡のくり返し注
入のタイミングを規制する。■並びに■はフリツプフロ
ツプであり、出力反転後、次のセンサ信号が来るまで前
のセンサ信号は受信せず、気泡が連なって発生した場合
でも誤差の無い計測区間通過時間と適度な気泡発生を行
う、■は増巾器であり、フリツプフロツプ■のオフセン
トと積分回路定数■と希望する測定範囲で規定される適
切なゲインを調整し、積分回路■に入る。積分回路■の
コンデンサは図3に示したタイミングでアナログスイッ
チ■により放電し、次の測定サイクルに備える。In Figure 2, ■ is the negative pulse generator at the starting point, ■ is the negative pulse generator at the end point, and ■ is the negative pulse generator for operating the solenoid of the bubble generator, and the polarity changes when the level of the phototransistor changes. It consists of a comparator that inverts, a differentiation circuit that takes out only the negative pulse when the polarity is inverted, and a diode, and the output is as shown in Figure 3. These three pulses regulate the timing of flow measurement and repeated injection of bubbles. ■ and ■ are flip-flops, which do not receive the previous sensor signal until the next sensor signal arrives after the output is reversed, and ensure error-free measurement interval passage time and appropriate bubble generation even when bubbles occur in succession. , ■ is an amplifier, which adjusts the appropriate gain defined by the offset of the flip-flop ■, the integrating circuit constant ■, and the desired measurement range, and enters the integrating circuit ■. The capacitor of the integrating circuit (2) is discharged by the analog switch (2) at the timing shown in FIG. 3 in preparation for the next measurement cycle.
アナログスイッチ■は積分(計時)終了直後に導通し、
サンプルホールド[相]に積分値を入力し、この入力値
を、次の新しい積分値が入るまでホールドする。ホール
ド値を次段の割算項中器■に与えると、時間に逆比例、
気泡速度(液体速度)に比例、すなわち流量に比例した
情報を得ることが出来、直流増巾器@により任意のスケ
ーリングを行ない、アナログ出力を得ることが出来る。The analog switch ■ becomes conductive immediately after the integration (timekeeping) is completed,
Input the integral value into sample hold [phase] and hold this input value until the next new integral value is input. When the hold value is given to the next stage division term intermediate unit ■, it is inversely proportional to time,
Information proportional to the bubble velocity (liquid velocity), that is, proportional to the flow rate, can be obtained, and analog output can be obtained by performing arbitrary scaling using a DC amplifier @.
これを適当な電流計またはA/Dコンバータ、セグメン
ト表示器によって流量計とすることができる。アナログ
出力は記録計への出力、A/Dコンバータを介してマイ
コンへの入力等可能で流体系の自動制御等にも有効とな
る。This can be made into a flow meter by means of a suitable ammeter or A/D converter and segment display. Analog output can be output to a recorder, input to a microcomputer via an A/D converter, etc., and is also effective for automatic control of fluid systems.
なお、第2図において、■並びに■は遅延パルス発生器
であり、それぞれ第3図の◎、■で示すパルスを発生し
て、アナログスイッチ■■を作動させる。第2図におい
て、■はソレノイド駆動用トランジスタであり、第3図
の■で示すパルスを発生し、既述した気泡発生器のソレ
ノイドを作動させ、流路に気泡を注入する。In FIG. 2, ``■'' and ``■'' are delayed pulse generators, which generate pulses indicated by ◎ and ``■'' in FIG. 3, respectively, to operate the analog switch ``■''. In FIG. 2, ``■'' is a solenoid driving transistor, which generates a pulse shown by ``■'' in FIG. 3, operates the solenoid of the bubble generator described above, and injects bubbles into the flow path.
〈発明の効果〉
本発明に係る微少流量測定方法は上述した通りの方法で
あり、被測定流体内に気泡を注入し、この気泡が流路の
起点と終点とをil遇すると、光電気変換方式によりパ
ルスを発生させ、このパルスの時間差を電子回路にで逆
数変換し、流量に比例したアナログ出力を得ている。而
して、気泡が被測定流体と一体に流動すること、並びに
電気信号処理の高精度性から、流量を高精度で測定でき
る。<Effects of the Invention> The minute flow rate measurement method according to the present invention is as described above, and when air bubbles are injected into the fluid to be measured and the air bubbles collide with the starting point and end point of the flow path, photoelectric conversion occurs. A pulse is generated using this method, and the time difference between these pulses is reciprocally converted by an electronic circuit to obtain an analog output proportional to the flow rate. The flow rate can be measured with high accuracy because the bubbles flow together with the fluid to be measured and because the electric signal processing is highly accurate.
第1図は本発明に係る微少流量測定方法を示す説明図、
第2図は本発明において使用する微少流量測定装置を示
す説明図、第3図は第2図の所定箇所での信号波形を示
す説明図である。
図において、1は流路、Sは起点、Eは終点、7,9は
発光ダイオード、8.10はフォトトランジスタ、Aは
気泡発生器である。
γII!J
■[有]@■■■■■■00
手続主甫正書 (自発)
昭和62年 5 J、1290
1、事件の表示
昭和62年特許願第085999号
2、発明の名称
微少流量測定方法
3、補正をする者
事件との関係 特許出願人
住所 大阪府茨木市下穂積1丁目1番2号6、補正の内
容
+11 別紙の通り、第3図を補正しまず。FIG. 1 is an explanatory diagram showing a minute flow rate measurement method according to the present invention,
FIG. 2 is an explanatory diagram showing a minute flow rate measuring device used in the present invention, and FIG. 3 is an explanatory diagram showing signal waveforms at predetermined locations in FIG. In the figure, 1 is a flow path, S is a starting point, E is an end point, 7 and 9 are light emitting diodes, 8.10 is a phototransistor, and A is a bubble generator. γII! J ■ [Yes] @■■■■■■00 Procedural master's letter (spontaneous) 1988 5 J, 1290 1. Indication of the case 1985 Patent Application No. 085999 2. Name of the invention Micro flow rate measurement method 3. Relationship with the case of the person making the amendment Patent Applicant Address: 1-1-2-6, Shimohozumi, Ibaraki City, Osaka Prefecture Contents of amendment +11 As shown in the attached sheet, Figure 3 has been amended first.
Claims (1)
サーを設け、被測定液が上記起点を通過する直前に当該
被測定液に気泡を注入し、該気泡を混入し、該気泡が上
記起点並びに終点を通過するときにパルスを発生させ、
これらパルスより流量を計測することを特徴とする微少
流量測定方法。A photo sensor is provided at each of the starting point and the ending point of a flow path with a constant cross-sectional area, and just before the liquid to be measured passes through the starting point, air bubbles are injected into the liquid to be measured, the air bubbles are mixed, and the air bubbles reach the starting point. and generate a pulse when passing the end point,
A minute flow rate measurement method characterized by measuring flow rate using these pulses.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62085999A JPS63250527A (en) | 1987-04-08 | 1987-04-08 | Fine flow rate measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62085999A JPS63250527A (en) | 1987-04-08 | 1987-04-08 | Fine flow rate measuring method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63250527A true JPS63250527A (en) | 1988-10-18 |
Family
ID=13874345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62085999A Pending JPS63250527A (en) | 1987-04-08 | 1987-04-08 | Fine flow rate measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63250527A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101174821B1 (en) | 2010-04-02 | 2012-08-20 | 한국식품연구원 | Flow sensor of using refractive index and measuring method of flow rate |
-
1987
- 1987-04-08 JP JP62085999A patent/JPS63250527A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101174821B1 (en) | 2010-04-02 | 2012-08-20 | 한국식품연구원 | Flow sensor of using refractive index and measuring method of flow rate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5567618A (en) | Liquid meter of electronic integrating type | |
CN204188240U (en) | A kind of pulse timing counting assembly for fluid flow calibrating | |
US3815414A (en) | Method of increasing the measuring resolution of a flow measuring instrument where the flow is divided into sections of well defined volume | |
US4912962A (en) | Method of detection of oscillation period for oscillatory densimeter | |
JPS63250527A (en) | Fine flow rate measuring method | |
GB1405783A (en) | Method of and apparatus for determining the concentration of a substance in a solution | |
DE59410272D1 (en) | Method and device for testing liquid volume meters | |
CN2128750Y (en) | Detecting meter for model 600 quartz clock | |
CN106841779B (en) | Phase difference accurate measurement system and method based on frequency division mode | |
SU555342A1 (en) | Device for measuring rotational speed | |
SU1702250A1 (en) | Viscometer | |
SU1226352A1 (en) | Integrating meter of modulation depth | |
RU2205371C2 (en) | Thermostable electronic fuel flow meter | |
RU13256U1 (en) | ACCOUNT DEVICE FOR RESOURCES METERING DEVICES | |
SU811151A1 (en) | Speed meter | |
KR930023700A (en) | Detection signal input circuit of laser range finder | |
JPS63302320A (en) | Thermosensitive type flow rate measuring apparatus | |
SU773552A1 (en) | Intensity meter | |
SU425149A1 (en) | ||
SU761934A1 (en) | Phase shift digital meter | |
JPS612036A (en) | Side slip tester | |
SU1057876A1 (en) | Phase meter | |
JPH0532735Y2 (en) | ||
SU1597566A1 (en) | Counting and dosing device | |
SU1451550A1 (en) | Liquid volume meter |