JPS63250021A - Manufacture of magnetically anisotropic conducting material - Google Patents

Manufacture of magnetically anisotropic conducting material

Info

Publication number
JPS63250021A
JPS63250021A JP8528387A JP8528387A JPS63250021A JP S63250021 A JPS63250021 A JP S63250021A JP 8528387 A JP8528387 A JP 8528387A JP 8528387 A JP8528387 A JP 8528387A JP S63250021 A JPS63250021 A JP S63250021A
Authority
JP
Japan
Prior art keywords
conductive material
magnetically anisotropic
anisotropic conductive
magnetic
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8528387A
Other languages
Japanese (ja)
Other versions
JP2679043B2 (en
Inventor
遊座 文一
瀬谷 武司
貝沼 宏
首藤 寿幸
晃男 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP62085283A priority Critical patent/JP2679043B2/en
Publication of JPS63250021A publication Critical patent/JPS63250021A/en
Application granted granted Critical
Publication of JP2679043B2 publication Critical patent/JP2679043B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Induction Machinery (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁性線条体を導電材料で被覆した複合線を並列
配置し、これを積層一体化した磁気異方性導電材料の製
造方法に関し、特に複合線の並列方向が各層で交互に所
定の角度だけずれている磁気異方性導電材料の製造方法
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a magnetically anisotropic conductive material in which composite wires in which a magnetic filament is coated with a conductive material are arranged in parallel and are laminated and integrated. In particular, the present invention relates to a method of manufacturing a magnetically anisotropic conductive material in which the parallel directions of composite wires are alternately shifted by a predetermined angle in each layer.

〔従来の技術〕[Conventional technology]

磁気異方性導電材料として、例えば、特開昭57−46
657号公報に示されるものがある。
As a magnetically anisotropic conductive material, for example, JP-A-57-46
There is one shown in Publication No. 657.

第8図<4) 、 (I+)はその磁気異方性導電材料
を示し、誘導電動機の回転子に使用されている。
Figure 8<4), (I+) shows the magnetically anisotropic conductive material, which is used in the rotor of an induction motor.

即ち、回転軸1と同軸状に通電外被2と回転子鉄心3が
設けられており、通電外被2は、拡大部分Qで示すよう
に、半径方向に伸びる磁性材料4とその間を充填した導
電材料5より成る磁気異方性導電材料6で主要部を構成
されている。
That is, a current-carrying jacket 2 and a rotor core 3 are provided coaxially with the rotating shaft 1, and the current-carrying jacket 2 has a magnetic material 4 extending in the radial direction and a magnetic material 4 filled in between, as shown in the enlarged part Q. The main part is composed of a magnetically anisotropic conductive material 6 made of a conductive material 5.

以上の構成により、半径方向の透磁率μmが周方向の透
磁率μeより大きく(μ、〉μe)、かつ、軸方向の抵
抗率ρ8の小さい回転子が得られる。ここで、この誘導
電動機を駆動すると、半径方向においてばらつきの少な
い大きな透磁率μ、のために固定子との間で磁気変動の
少ない磁気的結合が得られ、振動騒音の少ない駆動を行
うことができ、かつ、回転子から巻線を省略したため、
小型化および軽量化を図ることができる。また、磁性材
料と導電材料の占積比率に応じて透磁率および抵抗率を
制御することができる。
With the above configuration, a rotor can be obtained in which the magnetic permeability μm in the radial direction is larger than the magnetic permeability μe in the circumferential direction (μ, >μe) and the resistivity ρ8 in the axial direction is small. When this induction motor is driven, magnetic coupling with the stator with little magnetic fluctuation is obtained due to the large magnetic permeability μ with little variation in the radial direction, making it possible to drive with little vibration and noise. And because the winding was omitted from the rotor,
It is possible to achieve reduction in size and weight. Furthermore, magnetic permeability and resistivity can be controlled depending on the space ratio of the magnetic material and the conductive material.

この磁気異方性導電材料の製造方法として、例えば、第
9図(イ)、(U)および第10図(イ)、(II)に
示すものが提案されている。第9図(イ)、(ff)は
、m線等の磁性材料11とその外周を被覆した銅、アル
ミ等の導電材料12によって構成された複合材料13を
示しており、第10図(イ)、(D)は、その複合材料
13を中心点0からの距離に応して拡大する複合材料1
3間の隙間に銅、アルミ等の導電材料の粉末14を充填
し、これらを加熱加圧することにより内径r、外径Rの
環状の磁気異方性導電材料が製造されることを示してい
る(実際には、第10図(イ)、(0)に示すものを多
層に配置することになるが、図示上省略した)。
As a method for producing this magnetically anisotropic conductive material, for example, the methods shown in FIGS. 9(A) and (U) and FIGS. 10(A) and (II) have been proposed. 9(a) and 9(ff) show a composite material 13 composed of a magnetic material 11 such as m-ray and a conductive material 12 such as copper or aluminum coated on its outer periphery. ), (D) is the composite material 1 that expands the composite material 13 according to the distance from the center point 0.
It is shown that a ring-shaped magnetically anisotropic conductive material with an inner diameter r and an outer diameter R is manufactured by filling the gap between the holes 3 with powder 14 of a conductive material such as copper or aluminum and heating and pressurizing the powder. (Actually, the components shown in FIGS. 10(a) and 10(0) will be arranged in multiple layers, but these are omitted for illustration purposes).

この磁気異方性導電材料の製造方法によれば、磁性材料
と導電材料より成る複合材料の間に導電材料を鋳込む製
造方法に比較すると、製造の容易さ、および磁性材料の
占積率の向上を図ることができる。
According to this manufacturing method of magnetically anisotropic conductive material, compared to a manufacturing method in which a conductive material is cast between a composite material consisting of a magnetic material and a conductive material, manufacturing is easier and the space factor of the magnetic material is lower. You can improve your performance.

以上述べた磁気異方性導電材料の他の用途として、例え
ば、誘導電導機のウエフアがある。第11図(イ) 、
 ([1)は、前述した回転子7の外周に位置する固定
子8と、そこに用いられているウエフア10を示し、固
定子8に挿入されているコイル9をくさび効果によって
固定している。このウエフア10は複合材料を並列配置
した構成を有するが、各層毎に並列配置の方向が交互に
ずれており、例えば、60°の角度を有して交差するよ
うになっている。第12図(() 、 (o)はそれを
示し、実線と点線で示す隣接層の磁性材料が60”ずれ
ている。誘導電導機にこのよう雇つェソヂを使用すると
、特性が向上することが−っている。
Other uses of the magnetically anisotropic conductive material described above include, for example, wafers for induction conductors. Figure 11 (a),
([1) shows the stator 8 located on the outer periphery of the rotor 7 described above and the wafer 10 used therein, and the coil 9 inserted into the stator 8 is fixed by a wedge effect. . This wafer 10 has a structure in which composite materials are arranged in parallel, but the directions of the parallel arrangement are alternately shifted for each layer, so that they intersect at an angle of 60°, for example. Figure 12 ((), (o) shows this, where the magnetic materials of the adjacent layers shown by solid lines and dotted lines are shifted by 60". If such a material is used in an induction conductor, the characteristics will be improved. There is.

〔発明が解決しよう□とする問題点〕[Problems that the invention aims to solve]

しかし、従来の磁性材料が交差した磁気異方性導電材料
によると、前述した所定の角度、例えば、60°だけず
れるように各層の磁性材料を交差配置することが離しく
、そ□のため、その角度のばらつきの分にけg導電翼機
の特性を低下させるという不都合がある。□〔問題点を
解決するための手段〕 本発明は上記にiみてなされたものであり、各層の磁性
材料の交門配置を高い精度で所定の角度に設定するため
、複合材料を各層に定められた所定の角度で並列配置し
、これを積層して所定の条件で一体化する磁気異方性導
電材料の製造方法を提供するものである。
However, according to the conventional magnetic anisotropic conductive material in which magnetic materials intersect, it is difficult to arrange the magnetic materials of each layer intersectingly so that they are shifted by the aforementioned predetermined angle, for example, 60 degrees. There is an inconvenience that the characteristics of the conductive wing aircraft are degraded by the angle variation. □ [Means for Solving the Problems] The present invention has been made in view of the above, and in order to set the cross-gate arrangement of the magnetic material in each layer at a predetermined angle with high precision, a composite material is defined in each layer. The present invention provides a method for manufacturing a magnetically anisotropic conductive material, in which magnetically anisotropic conductive materials are arranged in parallel at a predetermined angle, and then stacked and integrated under predetermined conditions.

即ち、本発明の磁気異方性導電材料の製造方法は、 線状の磁性体を導電材料で被覆した複合体を所定本数だ
け並列に配置して単位層を形成し、かつ、この単位層を
積層して各層毎に所定の角度だけ交互に変えた積層体を
形成する段階と、 前記積層体を所定の条件下で一体化した構造体を形成す
る段階と、 前記構造体を加工して所定の形状を有する加工物を製造
する段階を含む。
That is, the method for producing a magnetically anisotropic conductive material of the present invention includes arranging a predetermined number of composites in which a linear magnetic body is coated with a conductive material in parallel to form a unit layer, and a step of laminating the layers to form a laminate in which each layer is alternately changed by a predetermined angle; a step of forming a structure by integrating the laminate under predetermined conditions; and processing the structure to obtain a predetermined angle. manufacturing a workpiece having a shape of .

ここで、所定の条件とは、詳細は後述するとして、例え
ば、静水圧加圧等の冷間による加圧に基づく一体化、熱
間による加圧に基づく一体化、あるいは導電材料の溶湯
を用いた鋳込みに基づく一体化等を採用することができ
る。また、前記加工物の用途としては、誘導電翼機のウ
エフア、同期電動機のウエフア、これらの電ff1J[
のロータ、リニアモータのレール等に適用できるが、そ
れらに限定するものではない。更に、磁性材料の占積率
は用途にも依存するが、35%以上であることが望まし
い。
Here, the predetermined conditions include, for example, integration based on cold pressurization such as hydrostatic pressure, integration based on hot pressurization, or use of molten conductive material. It is possible to adopt integration based on molded casting. In addition, the applications of the workpiece include wafers for induction wing machines, wafers for synchronous motors, and electric ff1J[
The present invention can be applied to rotors, rails of linear motors, etc., but is not limited thereto. Further, the space factor of the magnetic material is preferably 35% or more, although it depends on the application.

以下、本発明の磁気異方性導電材料の製造方法を詳細に
説明する。
Hereinafter, the method for manufacturing the magnetically anisotropic conductive material of the present invention will be explained in detail.

〔実 施 例〕〔Example〕

まず、第1図(<) 、 (TI)に示すように、磁性
材料11の周上に導電性材料12を被覆している複合線
として無酸素銅被鋼の平角線13を使用する。無酸素銅
被鋼の平角線13は鋼線の断面寸法が1.4mmX1.
4 關、無酸素銅の被覆厚さが0.1++m、長さが8
01の定尺のものである。
First, as shown in FIG. 1 (<), (TI), a rectangular wire 13 made of oxygen-free copper is used as a composite wire in which a conductive material 12 is coated on the circumference of a magnetic material 11. The cross-sectional dimensions of the oxygen-free copper-coated rectangular wire 13 are 1.4 mm x 1.4 mm.
4. Oxygen-free copper coating thickness is 0.1++m, length is 8
01 standard size.

この無酸素銅被鋼の平角線13に洗浄による前処理を施
す。次に、第2図に示すように、無酸素銅被鋼の平角線
13を1角が60°の平行四辺形の溝つき内型ケース1
9に入れ、層毎に交差させて密に配置し、142段の段
数まで積み重ねる。次に、第3図に示すように、無酸素
銅被鋼の平角線13を積層した内型ケース19を内型2
0の手込四辺形の空間20Aに入れ、更に加熱装置21
のヒータ21Aにより900〜950℃に加熱し、10
〜60分間保持する(第4図(イ))。
This oxygen-free copper-covered rectangular wire 13 is pretreated by cleaning. Next, as shown in FIG.
9, intersect each layer and arrange them densely, stacking them up to 142 layers. Next, as shown in FIG.
0 into the elaborate quadrilateral space 20A, and then the heating device 21
Heated to 900-950°C with heater 21A of 10
Hold for ~60 minutes (Figure 4 (a)).

この後、直ちに油圧プレスによる押棒25で700〜1
000kg / c−で加圧し、5〜60分間保持する
(第4図(■))。ここで、23は外型、24はくさび
である。これによって、内型ケース19内の無酸素銅被
鋼の平角線13は隣接する無酸素銅同志の冶金学的接合
により一体化し、無酸素銅被鋼の平角線13の積層ブロ
ック22を得ることができる(第5図)。なお、この実
施例において、加熱による無酸素銅被鋼の平角線13の
酸化を防止するため、内型ケース19内の雰囲気を還元
性、又は不活性状態にしても良く、さらに、無酸素銅被
鋼の平角線13の間隙に前記導電性材料の粉末を充填し
ても良い。これによって、無酸素銅被鋼の平角線13同
志の接続をより確実かつ容易なものにすることができる
。また、内型ケース19の材質をステンレス鋼(SUS
304)にすることにより無酸素銅被鋼の平角線13の
積層ブロック22を内型ケース19から容易に剥離して
取り出すことができる。次に、無酸素銅被鋼の平角線1
3の積層ブロック22を電気機器のウエフア寸法に合わ
せて断面加工を行ってウエフア10を得る(第6図)。
After this, immediately press the push rod 25 using the hydraulic press to 700 to 1
000 kg/c- and held for 5 to 60 minutes (Figure 4 (■)). Here, 23 is an outer mold, and 24 is a wedge. As a result, the oxygen-free copper-sheathed rectangular wires 13 in the inner mold case 19 are integrated by metallurgical bonding of adjacent oxygen-free copper comrades, and a laminated block 22 of the oxygen-free copper-sheathed rectangular wires 13 is obtained. (Figure 5). In this embodiment, in order to prevent the oxidation of the rectangular wire 13 covered with oxygen-free copper due to heating, the atmosphere inside the inner mold case 19 may be made into a reducing or inert state. The gap between the rectangular wires 13 to be steel may be filled with powder of the conductive material. This makes it possible to connect the oxygen-free copper sheathed rectangular wires 13 to each other more reliably and easily. In addition, the material of the inner case 19 is stainless steel (SUS).
304), the laminated block 22 of the rectangular wire 13 made of oxygen-free copper can be easily peeled off and taken out from the inner mold case 19. Next, the oxygen-free copper-coated flat wire 1
A wafer 10 is obtained by processing the cross section of the laminated block 22 of No. 3 according to the wafer dimensions of the electrical equipment (FIG. 6).

このとき、1ブロツクのウエフア10の長さ寸法が不足
する場合は数ブロックのウエフア10を銀ろう等で接続
し、長尺のウエフア26を得ることができる(第7図)
。本実施例においては、複合線として無酸素銅被鋼の平
角線13を使用したが、アルミ波調の平角線を使用した
場合もほぼ同しように実施することができる。
At this time, if the length of one block of wafers 10 is insufficient, a long wafer 26 can be obtained by connecting several blocks of wafers 10 with silver solder or the like (FIG. 7).
. In this embodiment, the oxygen-free copper-clad rectangular wire 13 was used as the composite wire, but the same method can be applied to the case where an aluminum wave-tone rectangular wire is used.

以上、説明した磁気異方性導電材料の製造方法における
製造条件は次の通りである。
The manufacturing conditions for the method for manufacturing the magnetically anisotropic conductive material described above are as follows.

(1)加熱温度  900〜950℃ 900°C未満では無酸素銅被鋼の平角線13が密着不
良を起す。950℃を超えると無酸素銅被鋼の平角線1
3の酸化が進行して密着不良を起す。同時に、加圧の際
、銅の流出が発生する。
(1) Heating temperature: 900 to 950°C If it is less than 900°C, the flat wire 13 of the oxygen-free copper sheathing will cause poor adhesion. When the temperature exceeds 950℃, the oxygen-free copper-coated rectangular wire 1
Oxidation of No. 3 progresses and causes poor adhesion. At the same time, upon pressurization, copper outflow occurs.

(2)加熱保持時間  10〜60分間10分未満では
無酸素銅被鋼の平角線13が密着不良を起す。60分を
超えると酸化が進行し、密着不良を起す。
(2) Heating time: 10 to 60 minutes If it is less than 10 minutes, the flat wire 13 of the oxygen-free copper sheathing will cause poor adhesion. If the time exceeds 60 minutes, oxidation will progress and poor adhesion will occur.

(3)加圧力  700〜1000 kg / cJ7
00 kg / cf未満では無酸素銅被鋼の平角線1
3が密着不良を起す。1000 kg / CIlを超
えると無酸素銅被鋼の平角線13の銅の被覆厚さが不揃
いとなる。
(3) Pressure force 700-1000 kg/cJ7
Below 00 kg/cf, oxygen-free copper coated rectangular wire 1
3 causes poor adhesion. If it exceeds 1000 kg/CIl, the copper coating thickness of the rectangular wire 13 coated with oxygen-free copper becomes uneven.

(4)加圧保持時間 5〜60分間 5分未満では無酸素&F4被鋼波調角線13が密着不良
を起す。60分を超えても密着度合の変化がない。
(4) Pressure holding time: 5 to 60 minutes If it is less than 5 minutes, the oxygen-free & F4 steel covered harmonic wire 13 will cause poor adhesion. There is no change in the degree of adhesion even after 60 minutes.

尚、以上述べた実施例とは別に、 +11  導電性材料の中に強化繊維を入れる事によっ
て高強度、高弾性率、耐熱性、軽量等の特性を持った磁
気異方性導電材料を得ることができる。
In addition to the above-mentioned embodiments, +11 A magnetically anisotropic conductive material having characteristics such as high strength, high modulus of elasticity, heat resistance, and light weight can be obtained by incorporating reinforcing fibers into the conductive material. Can be done.

(2)平角線の被覆導電材料と同種金属の溶湯を用意し
、多本数の平角線の間隙に溶融導電材料をしみ込ませて
鋳込むことtこより磁気異方性導電材料を製造すること
ができる。この場合、溶湯を加圧したり、振動させたり
、遠心力を与えて鋳造すると、隣接する平角線同志の間
に鋳巣を生しることなく緊密に一体化したものができる
(2) A magnetically anisotropic conductive material can be produced by preparing a molten metal of the same type of metal as the conductive material covering the rectangular wires, and casting the molten conductive material into the gaps between the many rectangular wires. . In this case, if the molten metal is cast by pressurizing, vibrating, or applying centrifugal force, a product can be formed that is tightly integrated without forming cavities between adjacent rectangular wires.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、本発明の磁気異方性導電材料の製造
方法によれば、複合材料を各層に定められた所定の角度
で並列配置し、これを積層して所定の条件で一体化する
ため、各層の磁性材料の交差配置を高い精度で所定の角
度に設定することができる。
As explained above, according to the method for manufacturing a magnetically anisotropic conductive material of the present invention, the composite materials are arranged in parallel at a predetermined angle in each layer, and are laminated and integrated under predetermined conditions. , the intersecting arrangement of the magnetic materials in each layer can be set at a predetermined angle with high precision.

加えて、磁性材料の占積率の制御および向上が容易であ
り、また、特性の優れた磁気異方性導電材料を得ること
ができる。
In addition, the space factor of the magnetic material can be easily controlled and improved, and a magnetically anisotropic conductive material with excellent properties can be obtained.

言うまでもなく、複合材料の長さに応じた任意の長さの
磁気異方性導電材料の製造が可能であり、また、品質の
安定した磁気異方性導電材料の使用によって誘導電動機
の電気機器等の特性を向上させることができる。
Needless to say, it is possible to manufacture magnetically anisotropic conductive materials of any length depending on the length of the composite material, and by using magnetically anisotropic conductive materials of stable quality, electrical equipment such as induction motors, etc. can improve the characteristics of

【図面の簡単な説明】[Brief explanation of drawings]

第1図C4)、 (0)より第7図は本発明の実施例を
示し、第1図(イL(IT)は複合材料を示す説明図、
第2図は複合材料を積層する内型ケースを示す説明図、
第3図は内型ケースを収納する内型を示す説明図、第4
図(イ) 、 (u)は加熱装置および加圧装置を示す
説明図、第5図は積層構造体を示す説明図、第6図はウ
エフアを示す説明図、第7図は銀ろうによって接続され
たウエフアを示す説明図。第8図(イ)、(ロ)は誘導
電動機の回転子および磁気異方性導電材料を示す説明図
、第9図(()、 (El)および第10図(() 、
 (o)は従来の磁気異方性導電材料の製造方法を示す
説明図。第11図(イ)、(Il+)は誘導電動機およ
びそれに使用されるウェソヂを示す説明図。第12図(
()、(I+)はウエフアを示す説明図。 符号の説明 1 −−−−−−−−−−=−回転子の回転軸2−−−
−−−−−−−’−−−−−通電外被3−−−−−−−
−−−−−一回転子鉄心4 −−−−−−−−−一一−
−−−−磁性材料5 −−−−−−−−−一・−導電材
料6−・−−−−−−・−−−−−一−・−磁気異方性
導電材料7−・−−−−一−−−−−−−−・−回転子
8−−−−−−−−−−−一固定子 10−−−−−−−−−−−−−−−ウエフア11−−
−−−−−−−−−一磁性材料12−−−〜−−・−−
−−−−一−−導電材料I3−・−・−−一−−−−−
−−−−複合材料14−〜−−−−−−−−−−−−−
−−導電性粉末19−−−−−一一−−−−−−−−・
−内型ケース20−−−−−−−−−−−−−内型  
   □21−−−−−−−−−−−−−−−−加熱装
置22−−・−−−−−−−−−−−一一−−積層構造
体23−・−−−−−一−−−−−−−・−外型24−
−−−−−一・−・・−−−−−−・くさび25−=−
−−−−−−−・−・−・・押棒特許・出願人  日立
電線株式会社 代理人    弁理士  平田忠雄 13−−−−−−−−−−−−複合材料19−・−−−
−−−−−−−−−一−・内型ケース20、、−−−−
−、、−、、−内型 21、−−−−−−−−−−一−−−−−−加熱装置2
2 ””’−”−・・−−−−−−−一積層構造体23
−−−−−−−−−−−−−−−−〜−外型24− ・
−−−−−−一−−−−・−くさび25−−−−−−−
−−−−−−−一押棒第4図 Cイ2 ◇ 第5図 10−・−・−−−−−−−−−−一−ウニ・ノヂ26
、、−−−一−−−−−−・−−−−−一−ウニ、2ヂ
第6図 第7図 ■ ・・・−−−−一一一−−−−−−−・−回転子の
回転軸2−・−−一−−・・・・・−−一−−通電外被
3−.−.−・−一−−−−・−−−−一回転子鉄心4
−−−・−−−−−−−・・・−磁性″材料第8図 Cイ】 眞 (Il:l) 11−−−−−−−−−−−−−−−磁性材料12−−
−−−−−−−−−−mm電材IF113−−−−−−
−−−−−−−−複合材料14−一−−−−−−−−−
−−−−琢電性扮末第9図 Cイ)             C口J第10図
Figure 1 C4), Figure 7 from (0) shows an embodiment of the present invention, Figure 1 (IT) is an explanatory diagram showing a composite material,
Figure 2 is an explanatory diagram showing the inner mold case in which composite materials are laminated;
Figure 3 is an explanatory diagram showing the inner mold that houses the inner mold case;
Figures (a) and (u) are explanatory diagrams showing the heating device and pressurizing device, Figure 5 is an explanatory diagram showing the laminated structure, Figure 6 is an explanatory diagram showing the wafer, and Figure 7 is an explanatory diagram showing the connection using silver solder. FIG. Figures 8 (a) and (b) are explanatory diagrams showing the rotor of the induction motor and the magnetically anisotropic conductive material, Figures 9 ((), (El) and Figure 10 ((),
(o) is an explanatory diagram showing a conventional method for manufacturing a magnetically anisotropic conductive material. FIGS. 11(A) and 11(Il+) are explanatory diagrams showing an induction motor and a wedge used therein. Figure 12 (
(), (I+) are explanatory diagrams showing wafers. Explanation of symbols 1 −−−−−−−−−=−Rotor rotation axis 2−−−
−−−−−−−'−−−−−Electrifying outer cover 3−−−−−−
−−−−−One rotor core 4 −−−−−−−−−11−
----Magnetic material 5 -------------1.-Conductive material 6---------------1--Magnetic anisotropic conductive material 7-- ---One----------Rotor 8--Stator 10-- −
−−−−−−−−−Magnetic material 12−−−−−−・−−
----1--Conductive material I3-・----1-----
−−−Composite material 14−−−−−−−−−−−−−
---Conductive powder 19-----11-----
-Inner mold case 20-----Inner mold
□21---------Heating device 22---・------------11---Laminated structure 23---・------ -Outer mold 24-
−−−−−1・−・・−−−−−−・Wedge 25−=−
----
−−−−−−−−−1−・Inner case 20,,−−−
-,,-,,-inner mold 21, ---------1--Heating device 2
2 ``”'-''--・-----One-layer structure 23
−−−−−−−−−−−−−−−−−−Outer mold 24− ・
−−−−−−1−−−−・−Wedge 25−−−−−−
----------One push rod Figure 4 C-2 ◇ Figure 5 10--・-------------1-Uni sea urchin noji 26
,, ----1--------・---Uni, 2nd Figure 6, Figure 7■ ・・・----1-1---------- Rotor rotating shaft 2---1--1--Electrifying jacket 3-. −. −・−1−−−−・−−−−One rotor core 4
---・-----------Magnetic material Fig. 8C A] Shin (Il:l) 11---------------Magnetic material 12- −
----------mm Electric material IF113------
----------Composite material 14-1------
-----Electrical appearance Figure 9 C A) C mouth J Figure 10

Claims (2)

【特許請求の範囲】[Claims] (1)予め定めた第1の方向の透磁率と前記第1の方向
と異なる第2の方向の透磁率が相違する磁気異方性導電
材料の製造方法において、線状の磁性体を導電材料で被
覆した複合体を所定本数だけ並列に配置して単位層を形
成し、かつ、この単位層を積層して各層毎に所定の角度
だけ交互に変えた積層体を形成する段階と、 前記積層体を所定の条件下で一体化した構造体を形成す
る段階と、 前記構造体を加工して所定の形状を有する加工物を製造
する段階を含むことを特徴とする磁気異方性導電材料の
製造方法。
(1) In a method for manufacturing a magnetically anisotropic conductive material in which magnetic permeability in a predetermined first direction and magnetic permeability in a second direction different from the first direction are different, a linear magnetic body is used as a conductive material. forming a unit layer by arranging a predetermined number of composites coated in parallel in parallel, and laminating the unit layers to form a laminate in which each layer is alternately changed by a predetermined angle; 1. A method of manufacturing a magnetically anisotropic conductive material, comprising: forming a structure in which two bodies are integrated under predetermined conditions; and processing the structure to produce a workpiece having a predetermined shape. Production method.
(2)前記積層体を形成する段階が、線状の磁性体を導
電材料で被覆した平角線を前記所定の角度を有する平行
四辺形の空間に配置積層して前記積層体を形成する特許
請求の範囲第1項記載の磁気異方性導電材料の製造方法
(2) A patent claim in which the step of forming the laminate includes forming the laminate by arranging and laminating rectangular wires made of linear magnetic bodies coated with a conductive material in the parallelogram space having the predetermined angle. A method for producing a magnetically anisotropic conductive material according to item 1.
JP62085283A 1987-04-07 1987-04-07 Method for manufacturing magnetically anisotropic conductive member Expired - Lifetime JP2679043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62085283A JP2679043B2 (en) 1987-04-07 1987-04-07 Method for manufacturing magnetically anisotropic conductive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62085283A JP2679043B2 (en) 1987-04-07 1987-04-07 Method for manufacturing magnetically anisotropic conductive member

Publications (2)

Publication Number Publication Date
JPS63250021A true JPS63250021A (en) 1988-10-17
JP2679043B2 JP2679043B2 (en) 1997-11-19

Family

ID=13854243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62085283A Expired - Lifetime JP2679043B2 (en) 1987-04-07 1987-04-07 Method for manufacturing magnetically anisotropic conductive member

Country Status (1)

Country Link
JP (1) JP2679043B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196509A (en) * 1985-02-27 1986-08-30 Hitachi Ltd Manufacture of electromagnetic member
JPS6223345A (en) * 1985-07-22 1987-01-31 Hitachi Cable Ltd Manufacture of magnetic anisotropic materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196509A (en) * 1985-02-27 1986-08-30 Hitachi Ltd Manufacture of electromagnetic member
JPS6223345A (en) * 1985-07-22 1987-01-31 Hitachi Cable Ltd Manufacture of magnetic anisotropic materials

Also Published As

Publication number Publication date
JP2679043B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
KR102395755B1 (en) Method for manufacturing material layer and material layer structure for dynamoelectric rotating machine
US7346974B2 (en) Method for producing a conductor bar of transposed stranded conductors
JP2002542749A (en) Armature for electric devices
US4603474A (en) Collector for an electric machine and method for its production
US4038741A (en) Method of making electrical coils for dynamo-electric machines having band-formed insulation material
US8186038B2 (en) Method for building a component of an electrical rotating machine
KR100897651B1 (en) High temperature superconducting racetrack coil
WO2005081989A2 (en) Armature with unitary coil and commutator
US20030019096A1 (en) Magnetic devices comprising magnetic meta-materials
JPS63250021A (en) Manufacture of magnetically anisotropic conducting material
EP0064846A2 (en) Method of making motor stator
JPH1097919A (en) Superconducting coil
JPS6351604A (en) Manufacture of magnetically anisotropic conductive material
JPS6253161A (en) Manufacture of magnetic anisotropic material
JPH05316699A (en) Manufacture of cage shaped rotor
JPS59185148A (en) Insulating method of electric machine coil
JPH01298923A (en) Manufacture of magnetic anisotropic conductive material
GB1501371A (en) Electromagnetic device and method of manufacturing same
JPS6368320A (en) Method of cutting laminated material
JPH04308446A (en) Rotor conductor for rotary electric machine
JPH05938B2 (en)
JPS6159051B2 (en)
JPS63140504A (en) Manufacture of magnetically anisotropic conductive material
JPH033638A (en) Manufacture of rotor for rotating electric machine
JPS63254612A (en) Manufacture of magnetically anisotropic conducting material