JPH05938B2 - - Google Patents

Info

Publication number
JPH05938B2
JPH05938B2 JP15439685A JP15439685A JPH05938B2 JP H05938 B2 JPH05938 B2 JP H05938B2 JP 15439685 A JP15439685 A JP 15439685A JP 15439685 A JP15439685 A JP 15439685A JP H05938 B2 JPH05938 B2 JP H05938B2
Authority
JP
Japan
Prior art keywords
oxygen
steel wire
free copper
composite
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15439685A
Other languages
Japanese (ja)
Other versions
JPS6216043A (en
Inventor
Yoji Hozumi
Hiroshi Kainuma
Takeshi Seya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP15439685A priority Critical patent/JPS6216043A/en
Publication of JPS6216043A publication Critical patent/JPS6216043A/en
Publication of JPH05938B2 publication Critical patent/JPH05938B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Induction Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は磁気異方性材料の製造方法に関する。
特に同期電動機のダンパ、誘導電動機のロータ、
リニアモータのレールなどに適用することができ
る磁気異方性材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a magnetically anisotropic material.
Especially dampers of synchronous motors, rotors of induction motors,
The present invention relates to a method of manufacturing a magnetically anisotropic material that can be applied to rails of linear motors, etc.

[従来の技術] Cu、Al等の導電性材料とFe等の磁性材料を組
合わせた複合材からなる磁気異方性材料が、磁束
の流れやすさと誘導電流の流れやすさを兼ね備え
たものとして同期電動機のダンパ、誘導電動機の
ロータ、リニアモータのレールなどに適用するこ
とが検討されている。
[Conventional technology] A magnetically anisotropic material made of a composite material that combines conductive materials such as Cu and Al with magnetic materials such as Fe has been developed as a material that has both ease of magnetic flux flow and ease of induced current flow. Applications are being considered for dampers of synchronous motors, rotors of induction motors, rails of linear motors, etc.

そしてこの場合、磁性材料が導電性材料中に均
一に分布された状態でその占積率が40%以上であ
れば、磁気異方性材料としては、電流と磁力の両
方を任意にコントロールでき、効率が非常に良
く、例えば誘導電動機のロータとして適用する
と、小型低騒音化に優れた効果のあることが実験
的に確められている。
In this case, if the magnetic material is uniformly distributed in the conductive material and its space factor is 40% or more, it is a magnetically anisotropic material that can control both current and magnetic force arbitrarily. It has been experimentally confirmed that it has very high efficiency and, when applied as a rotor for an induction motor, has an excellent effect in reducing the size and noise.

しかしながら、磁性材料を導電性材料中に40%
以上の占積率をもつて均一に分布配置させること
は、製造技術的に非常に困難でありその対策とし
てこれまで鋼線束を密に配置して溶融されたCu
やAlで鋳込む方法が行われてきた。
However, 40% of magnetic materials are included in conductive materials.
It is extremely difficult in terms of manufacturing technology to uniformly distribute the space with a space factor higher than
Methods of casting with aluminum or aluminum have been used.

[発明が解決しようとする問題点] この方法によれば、鋼線束が非常に密であると
CuやAlの溶湯が鋼線束の奥に入らないで、空巣
ができやすく磁性材料である各鋼線が導電性材料
であるCuやAl中に均一に分布されず鋼線同志が
接触状態にあると、磁気異方性材料としての特性
が低下もしくは発揮されなくなる。これに対して
鋼線束を粗く配置してCu,Al等を鋳込んだ場合
は空巣はできないが、鋼線束の占積率は20〜30%
が限度となり、当然磁気異方性材料としての状態
も悪くなる。またこの様な鋳込み方法では鋼線表
面の酸化が非常に大きな問題になる。
[Problems to be solved by the invention] According to this method, if the steel wire bundle is very dense,
The molten Cu or Al does not penetrate deep into the steel wire bundle, causing voids to form.Each steel wire, which is a magnetic material, is not evenly distributed in the conductive material, Cu or Al, and the steel wires are in contact with each other. Then, the properties as a magnetically anisotropic material deteriorate or are no longer exhibited. On the other hand, if the steel wire bundle is arranged roughly and Cu, Al, etc. are cast, no voids will be formed, but the space factor of the steel wire bundle will be 20 to 30%.
is the limit, and naturally the condition as a magnetically anisotropic material deteriorates. Further, in such a casting method, oxidation of the surface of the steel wire becomes a very serious problem.

本発明の目的は、前記した従来技術の欠点を解
消し、磁性材料である各鋼線が導電性材料中に均
一に分布した状態で、磁性材料の占積率を容易に
向上させ且調節出来る磁気異方性材料の製造方法
を提供することにある。
An object of the present invention is to eliminate the drawbacks of the prior art described above, and to easily improve and adjust the space factor of the magnetic material in a state where each steel wire, which is a magnetic material, is uniformly distributed in the conductive material. An object of the present invention is to provide a method for manufacturing a magnetically anisotropic material.

[問題点を解決するための手段] すなわち、本発明の要旨は、従来の鋼線を用い
る代りに、鋼線等磁性材料の周上に無酸素銅から
なる導電性材料を被覆した複合線を用いたことに
ある。
[Means for Solving the Problems] In other words, the gist of the present invention is to use a composite wire in which a conductive material made of oxygen-free copper is coated on the circumference of a magnetic material such as a steel wire, instead of using a conventional steel wire. It has been used.

すなわち、本発明は磁性材料の周上に無酸素銅
からなる導電材料を被覆した複合線の多数本を一
定方向そろえて密に配置し、隣接する導電性材料
銅を接着一体化することを特徴とする磁気異方性
材料の製造方法である。
That is, the present invention is characterized in that a large number of composite wires coated with a conductive material made of oxygen-free copper are arranged closely in a certain direction on the circumference of a magnetic material, and adjacent conductive material copper is bonded and integrated. This is a method for manufacturing a magnetically anisotropic material.

[作用] 本発明は鋼線等磁性材料の周上に無酸素銅を被
覆した複合線を用い、該複合線の多数本を一定方
向にそろえて密着配置し、鋳込法、半田又はろう
付法、加熱圧接法等により隣接する導電性材料同
志を冶金学的に接着一体化するので、鋼線直径と
無酸素銅被覆厚さとの比によつて鋼線占積率を容
易正確に調節出来且鋼線占積率を40%以上にする
ことが出来る。又被覆に無酸素銅を用いたことが
タフピツチ銅と比較して非常に接着しやすいこ
と、又無酸素銅はろう付性、半田付性が非常によ
いこと等により複合材を密に多数配置しても分布
状態を良好に保つてその一体化が確実に行えるの
である。
[Function] The present invention uses a composite wire in which oxygen-free copper is coated on the circumference of a magnetic material such as a steel wire, and a large number of the composite wires are aligned in a certain direction and closely arranged, and then cast, soldered, or brazed. Adjacent conductive materials are metallurgically bonded and integrated using heat welding or heat welding methods, so the steel wire space factor can be easily and accurately adjusted by adjusting the ratio of the steel wire diameter to the oxygen-free copper coating thickness. Moreover, the steel wire space factor can be increased to 40% or more. In addition, the use of oxygen-free copper for the coating makes it much easier to bond than tough pitch copper, and oxygen-free copper has excellent brazing and soldering properties, making it possible to arrange a large number of composite materials closely together. However, the distribution state can be kept good and the integration can be carried out reliably.

[実施例] 次に、添付図面により本発明の磁気異方性材料
製造方法の一実施例を説明する。
[Example] Next, an example of the method for manufacturing a magnetically anisotropic material of the present invention will be described with reference to the accompanying drawings.

まず、無酸素銅を被覆した複合線として、第2
図に示される様に直径0.55mmの鋼線(磁性材料)
1のその周上に無酸素銅被覆2をもつた外径0.60
mmの複合線3を使用する。この複合線3を長さ80
mmに切断し、洗浄による表面処理を行う。この
後、第1図に示す如き加熱・圧接装置4の中に第
3図に示す如く長さ80mmに切断した複合線3の多
数本を一定方向に揃えて整列配置させながら
12000本入れて、ステム5によりその上を覆い、
該装置内の雰囲気を真空又は還元性雰囲気に保ち
加熱・圧接装置4内蔵の電気ヒーター6にて加熱
する。複合体3の温度が900℃に上昇したら油圧
シリンダー7を35Kg/cm2程度の圧力で作動加圧し
それによつて複合線3の多数本を一体化させる。
なお、この時の加圧を70Kg/cm2まで上昇できれば
更によく密着し結合させることができる。なお、
この時の加圧を70Kg/cm2まで上昇できれば更によ
く密着し結合させることができる。
First, as a composite wire coated with oxygen-free copper, the second
Steel wire (magnetic material) with a diameter of 0.55 mm as shown in the figure
1 with oxygen-free copper coating 2 on its circumference, outer diameter 0.60
Use compound line 3 of mm. This compound line 3 has a length of 80
Cut into mm pieces and perform surface treatment by cleaning. After this, a large number of composite wires 3 cut into lengths of 80 mm as shown in FIG. 3 are arranged in a fixed direction in a heating/pressure welding device 4 as shown in FIG.
Insert 12,000 pieces, cover it with stem 5,
The atmosphere inside the apparatus is kept in a vacuum or reducing atmosphere and heated by an electric heater 6 built into the heating/pressure welding device 4. When the temperature of the composite wire 3 rises to 900° C., the hydraulic cylinder 7 is operated and pressurized with a pressure of about 35 kg/cm 2 , thereby integrating a large number of composite wires 3.
Note that if the pressure at this time can be increased to 70 kg/cm 2 , even better adhesion and bonding can be achieved. In addition,
If the pressure at this time can be increased to 70 kg/cm 2 , even better adhesion and bonding can be achieved.

加熱・圧接後、加熱・圧接装置4から取り出し
て所定の形状に加工し仕上げて磁気異方性体とし
て使用する。この場合鋼線占積率を調節する方法
として、鋼線直径と無酸素銅被覆厚さの比を任意
に変更することにより、一体化後の鋼線占積率を
容易に変える事ができる。
After heating and pressure welding, it is taken out from the heating and pressure welding device 4, processed and finished into a predetermined shape, and used as a magnetic anisotropic body. In this case, as a method of adjusting the steel wire space factor, the steel wire space factor after integration can be easily changed by arbitrarily changing the ratio between the steel wire diameter and the oxygen-free copper coating thickness.

又、一体化させる際、用途によつては、無酸素
銅被鋼線の間に“ろう”、“半田”等を介在させる
ことによつて一体化を強固にすることも出来る。
(無酸素銅のろう付性、半田付性のよい点を利用
する。) [発明の効果] 本発明によれば複合線の使用により導電性材料
中の磁性材料の占積率を正確に調節出来ると共に
該占積率を40%以上に容易に向上させることが出
来る。又、複合線の被覆材料として無酸素銅を使
用することにより被覆材料同志の接着が確実かつ
容易になり、磁気異方性材料として、これまでに
ない特性的に優れた全く新しいものを得ることが
できる。又、製造上製品品質の安定と向上、生産
効率の大幅な向上が得られ、コストの低減も効果
がある。
Furthermore, when integrating, depending on the application, it is possible to strengthen the integration by interposing "wax", "solder", etc. between the oxygen-free copper-covered wires.
(The good brazing and soldering properties of oxygen-free copper are utilized.) [Effects of the Invention] According to the present invention, the space factor of the magnetic material in the conductive material can be accurately adjusted by using a composite wire. At the same time, the space factor can be easily increased to 40% or more. In addition, by using oxygen-free copper as the coating material for the composite wire, the coating materials can be bonded together reliably and easily, and a completely new magnetic anisotropic material with unprecedented properties can be obtained. I can do it. In addition, it is possible to stabilize and improve product quality in manufacturing, significantly improve production efficiency, and reduce costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例としての加熱・圧接
法に於ける製造装置の断面図、第2図は無酸素銅
被鋼線の断面図、第3図は無酸素銅被鋼線束の配
列図である。 1:鋼線(磁性材料)、2:無酸素銅被膜、
3:複合体、4:加熱・圧接装置、5:ステム、
6:電気ヒーター、7:油圧シリンダー。
Fig. 1 is a cross-sectional view of a manufacturing equipment in the heating/pressure welding method as an embodiment of the present invention, Fig. 2 is a cross-sectional view of an oxygen-free copper-covered wire, and Fig. 3 is a cross-sectional view of a bundle of oxygen-free copper-covered wires. FIG. 1: Steel wire (magnetic material), 2: Oxygen-free copper coating,
3: Composite, 4: Heating/pressure welding device, 5: Stem,
6: Electric heater, 7: Hydraulic cylinder.

Claims (1)

【特許請求の範囲】[Claims] 1 磁性材料の周上に無酸素銅からなる導電性材
料を被覆した複合線の多数本を、一定方向にそろ
えて密に配置し、隣接する導電性材料同志を接着
一体化することを特徴とする磁気異方性材料の製
造方法。
1. A large number of composite wires coated with a conductive material made of oxygen-free copper are arranged closely in a certain direction on the circumference of a magnetic material, and adjacent conductive materials are bonded and integrated. A method for manufacturing a magnetically anisotropic material.
JP15439685A 1985-07-12 1985-07-12 Manufacture of magnetic isotropic material Granted JPS6216043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15439685A JPS6216043A (en) 1985-07-12 1985-07-12 Manufacture of magnetic isotropic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15439685A JPS6216043A (en) 1985-07-12 1985-07-12 Manufacture of magnetic isotropic material

Publications (2)

Publication Number Publication Date
JPS6216043A JPS6216043A (en) 1987-01-24
JPH05938B2 true JPH05938B2 (en) 1993-01-07

Family

ID=15583226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15439685A Granted JPS6216043A (en) 1985-07-12 1985-07-12 Manufacture of magnetic isotropic material

Country Status (1)

Country Link
JP (1) JPS6216043A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0280124A1 (en) * 1987-02-12 1988-08-31 Omron Tateisi Electronics Co. Doze detector

Also Published As

Publication number Publication date
JPS6216043A (en) 1987-01-24

Similar Documents

Publication Publication Date Title
US6088906A (en) Method of manufacturing squirrel cage rotors
CN105703569B (en) The preparation method of Amorphous Metal Motor stator core
US6877210B2 (en) Electrofriction method of manufacturing squirrel cage rotors
CN105099101B (en) Rotor and forming method thereof
US20130069476A1 (en) Rotor Design for an Electric Motor
US20200083783A1 (en) Electric machine cooling features
JPS6020754A (en) Slip ring for electric device and method of producing same
JPH05938B2 (en)
CN108880136B (en) A kind of process for processing automobile stator or rotor with silicon steel sheet
US5616978A (en) Electroconductive article, having portions with variable resistance and a rotor produced therefrom
JP3947918B2 (en) Metal sintered body and method for producing the same
JPS63124314A (en) Manufacture of electric contact
US1528581A (en) Composite metal article and its method of manufacture
KR102032651B1 (en) Hollow metal part of rotating electric machine stator, rotating electric machine, manufacturing method of hollow metal part
JP7299141B2 (en) Composite board and its manufacturing method, and circuit board and its manufacturing method
WO2009067226A2 (en) Passive inductor for improved control in localized heating of thin bodies
CN111585371A (en) Direct current motor commutating pole winding, direct current motor and winding method
US20230260686A1 (en) Bulk dual phase soft magnetic components having three-dimensional magnetic flux and manufacturing methods
JPS6246278B2 (en)
CN211063432U (en) Direct current motor commutating pole winding and direct current motor
JPH0322842A (en) Structure and fixing method of resin can for canned motor
JPS6223345A (en) Manufacture of magnetic anisotropic materials
JPH1021976A (en) Superconductor and connection method thereof
JPS6218951A (en) Production of magnetic anisotropy substance
JPS6216045A (en) Manufacture of magnetic anisotropic material