JPS63249721A - Production of carbon fiber and apparatus for centrifugal spinning used therefor - Google Patents

Production of carbon fiber and apparatus for centrifugal spinning used therefor

Info

Publication number
JPS63249721A
JPS63249721A JP8129587A JP8129587A JPS63249721A JP S63249721 A JPS63249721 A JP S63249721A JP 8129587 A JP8129587 A JP 8129587A JP 8129587 A JP8129587 A JP 8129587A JP S63249721 A JPS63249721 A JP S63249721A
Authority
JP
Japan
Prior art keywords
pitch
nozzle
temperature
spinning
nozzle surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8129587A
Other languages
Japanese (ja)
Inventor
Susumu Nakai
進 中井
Mamoru Kamishita
神下 護
Minoru Yoshida
稔 吉田
Seiji Hanatani
誠二 花谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd, Kawasaki Steel Corp filed Critical Nitto Boseki Co Ltd
Priority to JP8129587A priority Critical patent/JPS63249721A/en
Publication of JPS63249721A publication Critical patent/JPS63249721A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To rapidly lower the surface temperature of discharged pitch and reduce shots, etc., by controlling the temperature near the nozzle surface to a low value. CONSTITUTION:Coal or petroleum pitch 3 is fed to a heated rotating spinning nozzle 5 and discharged from nozzle holes 7 to the outside air and form a drawn and fiberized pitch 8. Cooling air 12 is fed from cooling gas feeding nozzles 9 and 10 to keep the atmospheric temperature near the nozzle surface at a low value. the temperature of pitch discharged from the nozzle holes is kept at 200-400 deg.C and controlled so that the ratio (l/d) of the distance [l(m)] apart in the radial direction from the nozzle surface to the nozzle hole diameter [d(m)] may be within the range of 10-20 and the atmospheric temperature (t) may satisfy the relation expressed by the formula t<=Sp-K.(l/d).(T-Sp) [Sp is softening point ( deg.C) of the raw material pitch: T is the discharging temperature ( deg.C) of the pitch; K=0.013].

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、石炭系及び石油系ピッチを原料とする炭素繊
維の製造方法およびこの方法に使用する遠心紡糸装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing carbon fibers using coal-based and petroleum-based pitches as raw materials, and a centrifugal spinning apparatus used in this method.

(従来の技術) 石炭系あるいは石油系ピッチを原料として炭素繊維を製
造する際に用いる遠心紡糸技術についてはこれまで多く
の報告がなされている。従来の遠心紡糸技術は例えば特
願昭第60−246085号や特開間第57−1544
16号公報等に見られるように、いずれも紡糸ノズル表
面の加工や熱風の供給により紡糸時のノズル表面付近雰
囲気の温度低下を防止するかあるいは積極的に加温する
ことにより吐出ピッチの溶融状態での飛行区間を長くし
、延伸効果を上げてより細い繊維を得ようとするもので
あったり、繊維化しないピッチの固まり(ショット)の
発生を抑制しようとするものであった。
(Prior Art) Many reports have been made so far regarding centrifugal spinning technology used to produce carbon fibers using coal-based or petroleum-based pitch as a raw material. Conventional centrifugal spinning techniques are disclosed, for example, in Japanese Patent Application No. 60-246085 and Japanese Patent Application Publication No. 57-1544.
As seen in Publication No. 16, etc., both prevent the temperature drop in the atmosphere near the nozzle surface during spinning by processing the surface of the spinning nozzle or supplying hot air, or actively heat it to improve the molten state of the discharge pitch. The aim was to increase the stretching effect by increasing the length of flight in the process to obtain thinner fibers, and to suppress the occurrence of clumps (shot) of pitch that did not turn into fibers.

(従来の技術の問題点) しかし前述のごとくノズル表面雰囲気の温度を高くする
と、吐出直後のピッチ温度の低下が妨げられることによ
りピッチの粘度が上がらずピッチの剛性が高くならない
ためにノズル孔吐出口に形成されるピッチコーンの安定
性が悪くなる結果、糸切れが発生しやすくなり、それに
起因するショットが増加することになる。同時に低粘性
のピッチのノズル表面への付着や高温度ピッチから発生
する蒸気がノズル表面に付着変質する等のノズル表面汚
れが激しくなる。更にノズル表面汚れが原因となるショ
ットも増加する。
(Problems with the conventional technology) However, as mentioned above, when the temperature of the nozzle surface atmosphere is increased, the drop in the pitch temperature immediately after discharge is prevented, and the viscosity of the pitch does not increase and the rigidity of the pitch does not increase. As a result of the poor stability of the pitch cone formed at the exit, yarn breakage is more likely to occur, and the number of shots caused by this is increased. At the same time, nozzle surface contamination increases, such as the adhesion of low-viscosity pitch to the nozzle surface and vapor generated from high-temperature pitch adhesion to the nozzle surface. Furthermore, the number of shots caused by nozzle surface contamination also increases.

紡糸繊維中に含まれるショットは製品炭素繊維の強度低
下や見ばえの低下等の品質低下の原因となる。また、紡
糸時のノズル表面汚れはショット発生の原因となるだけ
でなく、連続紡糸時間の延長を妨げる最大要因である。
The shot contained in the spun fibers causes quality deterioration such as a decrease in strength and appearance of the carbon fiber product. In addition, nozzle surface contamination during spinning not only causes the occurrence of shots, but is also the biggest factor that hinders the extension of continuous spinning time.

そこで本発明の目的は、このショットの発生とノズル表
面汚れの低減を達成することのできる延伸紡糸技術を提
供することにある。
Therefore, an object of the present invention is to provide a draw-spinning technique that can reduce the occurrence of this shot and reduce the nozzle surface contamination.

(問題点を解決するための手段) 本発明では、前述のショット発生とノズル表面汚れの防
止を従来の延伸紡糸技術の常識とは逆に、ノズル表面付
近の雰囲気温度を低く保つことによって実現しようとす
るものである。
(Means for Solving the Problems) In the present invention, the above-mentioned shot generation and nozzle surface staining can be prevented by keeping the ambient temperature near the nozzle surface low, contrary to the common sense of conventional draw-spinning technology. That is.

吐出ピッ゛チの温度を低(し粘度を高くする方法を採用
すればピッチコーンの安定性が増し糸切れが減少しショ
ットの発生やノズル表面汚れも減少するが、紡糸温度(
吐出ピッチ温度)そのものを下げると延伸効率が下がり
細い繊維が得にくくなるので採用しづらい。しかし、実
際には吐出ピッチの表面層の温度が低下すればピッチコ
ーンの安定性上昇と低粘度ピッチや蒸気発生に起因する
ノズル表面汚れの防止とに効果があり、紡糸温度(吐出
ピッチ温度)が高ければ延伸効率はノズル雰囲気温度の
高低には殆ど影響されない。このことから本発明では上
述のごと〈従来極力高温に保とうとされていたノズル表
面付近の雰囲気温度を逆に低温に保ち、速やかに吐出ピ
ッチ表面の温度を低下することにより問題の解決を図ろ
うとするものである。
If a method of lowering the discharge pitch temperature (and increasing the viscosity) is adopted, pitch cone stability increases, yarn breakage decreases, shot occurrence and nozzle surface fouling are also reduced, but spinning temperature (
Lowering the discharge pitch temperature itself lowers the drawing efficiency and makes it difficult to obtain thin fibers, making it difficult to use. However, in reality, lowering the temperature of the surface layer of the discharge pitch is effective in increasing the stability of the pitch cone and preventing nozzle surface contamination caused by low viscosity pitch and steam generation. If is high, the stretching efficiency is hardly affected by the temperature of the nozzle atmosphere. For this reason, the present invention aims to solve the problem by keeping the ambient temperature near the nozzle surface, which was conventionally attempted to be kept as high as possible, at a low temperature and quickly lowering the temperature of the discharge pitch surface. It is something to do.

本発明は、ノズル表面付近温度を低温にコントロールす
ることにより吐出ピッチ表面温度を速やかに低下させシ
ョット等を低減しようとするものであるが、ノズル表面
の極近傍部分の温度は測定もコントロールも難しく、ま
たピッチが完全に延伸、繊維化された後の領域の温度を
測定しても効果がなく意味がない。更にまた、吐出され
るピッチ繊径によってもコントロールされるべき温度が
異なってくる。
The present invention aims to quickly lower the discharge pitch surface temperature and reduce shots by controlling the temperature near the nozzle surface to a low temperature, but the temperature in the very vicinity of the nozzle surface is difficult to measure and control. Furthermore, measuring the temperature in the region after the pitch has been completely stretched and made into fibers is ineffective and meaningless. Furthermore, the temperature to be controlled also varies depending on the diameter of the pitch fibers to be discharged.

そこで本発明者等は、標準的なピッチを原料として各種
の条件で紡糸を行った結果、紡糸ノズル表面より半径方
向に離れた距離1! (m)とノズル孔径d (m)と
の比C1l/d)が10〜20の範囲内の雰囲気温度t
が次式: %式%)(1) (式中、K=0.013 、Spは原料ピッチの軟化点
(’C)、Tはピッチ吐出温度(C)である)で表され
る関係を満足する場合に、特にその範囲外の温度に影響
されずにショットやノズル表面の汚れの低減が図れるこ
とを見出し、本発明を完成するに至った。
Therefore, the present inventors conducted spinning using standard pitch as a raw material under various conditions, and found that the distance 1! (m) and the nozzle hole diameter d (m), the ambient temperature t is within the range of 10 to 20 (C1l/d)
is the following formula: % formula %) (1) (In the formula, K = 0.013, Sp is the softening point of the raw material pitch ('C), and T is the pitch discharge temperature (C)). It has been found that when the temperature is satisfied, stains on the shot and nozzle surfaces can be reduced without being particularly affected by temperatures outside the range, and the present invention has been completed.

すなわち、石炭系および石油系ピッチを原料とし、回転
する円盤状の紡糸ノズルを用いる遠心紡糸工程における
紡糸時のノズル孔吐出ピッチ温度が200〜400℃と
なる炭素繊維の製造方法において、 f/dが10〜20の範囲内の雰囲気温度tを次式:%
式%)(1) で表される関係を満足するように制御することを特徴と
する炭素繊維の製造方法に関するものである。
That is, in a method for producing carbon fiber using coal-based or petroleum-based pitch as a raw material and using a rotating disk-shaped spinning nozzle in a centrifugal spinning process in which the nozzle hole discharge pitch temperature during spinning is 200 to 400°C, f/d. The ambient temperature t within the range of 10 to 20 is expressed by the following formula: %
The present invention relates to a method for manufacturing carbon fiber characterized by controlling the relationship expressed by the formula (%) (1).

また本発明は、かかる方法を実現するために用いる遠心
紡糸装置において、前記(1)式の関係を満たすように
制御された冷却用ガスを吐出す雰囲気冷却装置の冷却用
ガス供給ノズルを紡糸ノズル孔面に対し上下一対に若し
くは上側又は下側のみに備えたことを特徴とする遠心紡
糸装置に関するものである。
In addition, the present invention provides a centrifugal spinning apparatus used for realizing such a method, in which a cooling gas supply nozzle of an atmosphere cooling apparatus that discharges a cooling gas controlled to satisfy the relationship of equation (1) is connected to a spinning nozzle. The present invention relates to a centrifugal spinning device characterized in that it is provided in a pair of upper and lower sides or only on the upper side or the lower side with respect to the hole surface.

実際には、前記ff/dの値が10と20になる位置で
の温度が前記(1)弐の関係を満足すればjl’/d 
=10〜20の範囲内で本発明に必要な条件が満たされ
ることが確認されている。
Actually, if the temperature at the position where the value of ff/d is 10 and 20 satisfies the relationship (1) 2 above, then jl'/d
It has been confirmed that the conditions necessary for the present invention are satisfied within the range of =10 to 20.

尚、通常の石炭および石油系ピッチと極端に異なる物性
の原料を用いる場合には、前記(1)式のKの値0.0
13を次式: %式%)(2) ここで、ω:1ノズル孔当りの処理量(k!/時)。
In addition, when using a raw material with physical properties extremely different from ordinary coal and petroleum-based pitch, the value of K in the above formula (1) is 0.0.
13 is expressed by the following formula: % formula %) (2) Here, ω: throughput per nozzle hole (k!/hour).

Cp :原料比熱(Kcal/kg″C)h:原料熱転
導度(Kcal/m ・時・”C)。
Cp: Raw material specific heat (Kcal/kg"C) h: Raw material thermal conductivity (Kcal/m.hr."C).

μ:雰囲気ガス粘度(kg/m・秒) ρ:原料密度(kg/m3)。μ: Atmospheric gas viscosity (kg/m・sec) ρ: Raw material density (kg/m3).

■:ノズル表面流速(m/時) で求められる値に置き換えればよい。■: Nozzle surface flow velocity (m/hour) Just replace it with the value found in .

上記の条件を満足させるためには、従来の遠心紡糸装置
において通常紡糸ノズル表面付近雰囲気温度を保つため
に設置されている熱風供給装置等は取りはずさなければ
ならない。それでも紡糸ノズル表面の輻射熱や吐出ピッ
チによる熱のためにノズル表面付近の雰囲気温度はかな
り高いのが普通である。従って一般的には紡糸ノズル近
傍にノズル表面付近の雰囲気温度低下に効果のある冷却
ガス等の供給ノズルを設置し、紡糸時は常時冷却用ガス
をノズル表面付近に供給することが必要となる。雰囲気
冷却装置の冷却用ガス供給ノズルは紡糸ノズル孔面に対
し上下一対でも、上側のみでも、あるいはまた下側のみ
でも、前記(1)式で示される条件に設定できるもので
あればかまわない。
In order to satisfy the above conditions, it is necessary to remove the hot air supply device, etc., which are normally installed in conventional centrifugal spinning apparatuses to maintain the ambient temperature near the surface of the spinning nozzle. Even so, the ambient temperature near the nozzle surface is usually quite high due to radiant heat on the surface of the spinning nozzle and heat due to the discharge pitch. Therefore, it is generally necessary to install a nozzle for supplying cooling gas or the like effective in lowering the ambient temperature near the nozzle surface near the spinning nozzle, and to constantly supply the cooling gas near the nozzle surface during spinning. The cooling gas supply nozzles of the atmosphere cooling device may be set in pairs on the upper and lower sides of the spinning nozzle hole surface, only on the upper side, or only on the lower side, as long as they can be set to the conditions shown by the above formula (1).

また、供給する冷却用ガスの温度と量についても前記(
1)式で示される条件に設定できる範囲であれば、特に
その数値の組合せについては特定されるものではない。
In addition, regarding the temperature and amount of the cooling gas to be supplied (
1) The combination of numerical values is not particularly specified as long as it is within the range that can be set to the conditions shown by the formula.

但し、紡糸装置が設置されている周囲また室内等の雰囲
気を極めて低い状態に保つことによって紡糸ノズル表面
付近の温度を前記(1)式で示される条件に設定できる
よう工夫できる場合にあっては、前記冷却用ガス供給ノ
ズルを省略することができる。
However, if it is possible to set the temperature near the surface of the spinning nozzle to the condition shown in equation (1) above by keeping the atmosphere around or in the room where the spinning device is installed extremely low, , the cooling gas supply nozzle can be omitted.

(作用) 第1図に本発明の遠心紡糸装置の一好適例を示す。加熱
溶融されたピッチ3を定量ギヤポンプ1により原料供給
管2を介して、ヒーター4で加熱された回転する紡糸ノ
ズル5に供給する。このようにして供給されたピッチは
ノズルの遠心力とノズル5の内側の液厚6によって発生
する圧力によってノズル孔7から外気中に吐出され、延
伸、繊維8化される。この時、紡糸ノズル5の上下に設
けられた冷却用ガス供給ノズル9.10から、雰囲気冷
却装置13で常温または低温に制御されたエアー12を
供給し、ノズル表面付近の雰囲気温度を低く保つ。
(Function) FIG. 1 shows a preferred example of the centrifugal spinning apparatus of the present invention. The heated and melted pitch 3 is supplied by a metering gear pump 1 through a raw material supply pipe 2 to a rotating spinning nozzle 5 heated by a heater 4 . The thus supplied pitch is discharged into the outside air from the nozzle hole 7 by the centrifugal force of the nozzle and the pressure generated by the liquid thickness 6 inside the nozzle 5, and is drawn and turned into fibers 8. At this time, air 12 controlled to room temperature or low temperature is supplied by the atmosphere cooling device 13 from the cooling gas supply nozzles 9 and 10 provided above and below the spinning nozzle 5 to keep the ambient temperature near the nozzle surface low.

これにより、吐出されたピッチ3の表面層の温度は急激
に低下し、その表面粘度が高くなることによってピッチ
コーン11およびそれに続く部分12の剛性が大きくな
り、高速の相対雰囲気速度に対する抵抗力が増して形状
安定性の向上が図られ、ピッチコーン11の破壊等によ
る糸切れ現像が減少し、それに起因するショット発生が
少なくなる。
As a result, the temperature of the surface layer of the discharged pitch 3 decreases rapidly, and its surface viscosity increases, which increases the rigidity of the pitch cone 11 and the portion 12 following it, and increases the resistance against high relative atmospheric velocity. Furthermore, the shape stability is improved, the occurrence of thread breakage due to breakage of the pitch cone 11, etc. is reduced, and the occurrence of shots caused by this is reduced.

更に高温で吐出されたピッチ11の表面が速やかに温度
低下を起こすため、蒸気の発生が押さえられ、またノズ
ル表面への付着性が低下することによりノズル表面の汚
れが減少することになる。
Furthermore, since the temperature of the surface of the pitch 11 discharged at high temperature rapidly lowers, the generation of steam is suppressed, and the adhesion to the nozzle surface is reduced, resulting in less contamination on the nozzle surface.

(実施例) 次に本発明を実施例および比較例に基づき説明する。(Example) Next, the present invention will be explained based on Examples and Comparative Examples.

112、 六11〜3 ノズル孔径0.5 mmおよび周速27m/secで回
転する紡糸ノズルを用いて、軟化点S、 =230″C
の原料ピッチを吐出温度T=310℃の条件で紡糸を行
った。得られた結果を以下の第1表に示す。尚、第1表
中、比較例1.2は従来の発想に基づく紡糸条件の範囲
といえる。また、ノズル表面汚染量とは1時間連続紡糸
を行った時点で、第2図に示すノズル表面のノズル孔上
下±5mm(=幅10mm)の範囲内(斜線部)14に
積層したピッチ等付着物の重量を対象面積で除した値で
ある。
112, 611-3 Using a spinning nozzle with a nozzle hole diameter of 0.5 mm and rotating at a circumferential speed of 27 m/sec, the softening point S, = 230''C
The raw material pitch was spun at a discharge temperature T=310°C. The results obtained are shown in Table 1 below. In Table 1, Comparative Examples 1.2 can be said to be within the range of spinning conditions based on conventional ideas. In addition, the amount of contamination on the nozzle surface refers to the amount of contamination on the nozzle surface after one hour of continuous spinning, as shown in Figure 2. It is the value obtained by dividing the weight of the kimono by the area covered.

・    13  4 、     六   4〜6ノ
ズル孔径0.3価および周速36m/secで回転する
紡糸ノズルを用いて、軟化点5P=280℃の原料ピッ
チを吐出温度T=350℃の条件で紡糸を行った。得ら
れた結果を以下の第2表に示す。尚、第2表中、比較例
4,5は従来の発想に基づく紡糸条件の範囲といえる。
・13 4, 6 Using a spinning nozzle with a nozzle hole diameter of 0.3 and rotating at a circumferential speed of 36 m/sec, raw material pitch with a softening point of 5P = 280 °C was spun at a discharge temperature of T = 350 °C. went. The results obtained are shown in Table 2 below. In Table 2, Comparative Examples 4 and 5 can be said to be within the range of spinning conditions based on conventional ideas.

また、ノズル表面汚染量は実施例1と同様にして求めた
Further, the amount of nozzle surface contamination was determined in the same manner as in Example 1.

(発明の効果) 前記第1表および第2表で確認される通り、紡糸ノズル
表面付近雰囲気温度が本発明で規定する値に達すると、
繊維中に含まれるショット量やノズル表面汚染量が激減
することが分かる。ショットfflの減少はそのまま製
品品質の向上に結びつき、また表面汚染量の減少は紡糸
装置の連続運転可能時間の延長に結びつく。通常、ノズ
ル表面汚染量が10 mm gを超えると繊維品質が低
下するので、従来の方式の比較例1,2.4および5で
の紡糸では連続操業時間は極めて短いが、実施例1〜4
ではこの値が10 mm gに達するのにかなり長い時
間が必要となることから連続操業時間の延長に対して大
きな効果のあることが分かる。
(Effects of the Invention) As confirmed in Tables 1 and 2 above, when the ambient temperature near the surface of the spinning nozzle reaches the value specified in the present invention,
It can be seen that the amount of shot contained in the fibers and the amount of nozzle surface contamination are drastically reduced. A reduction in shot ffl directly leads to an improvement in product quality, and a reduction in the amount of surface contamination leads to an extension of the continuous operation time of the spinning device. Usually, when the amount of nozzle surface contamination exceeds 10 mm g, the fiber quality deteriorates, so in the conventional spinning method in Comparative Examples 1, 2.4, and 5, the continuous operation time was extremely short, but in Examples 1 to 4, the continuous operation time was extremely short.
Since it takes quite a long time to reach this value of 10 mm g, it can be seen that it has a great effect on extending the continuous operation time.

更に各実施例および比較例の平均繊維径の比較から、ノ
ズル表面雰囲気の温度を低く保っても延伸の効果はさほ
ど低下するものでないことも確認された。
Furthermore, from a comparison of the average fiber diameters of each Example and Comparative Example, it was confirmed that even if the temperature of the nozzle surface atmosphere was kept low, the effect of stretching was not significantly reduced.

以上説明してきたように、本発明は炭素繊維製造の際に
おけるショットの発生とノズル表面汚れの低減に十分効
果を奏するものである。
As explained above, the present invention is sufficiently effective in reducing the occurrence of shots and nozzle surface contamination during carbon fiber production.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、冷却エアー供給ノズルを装備して運転中の本
発明の一例遠心紡糸装置の概要を示す断面図、および 第2図は、ノズル表面汚れの程度を示す指標としてのノ
ズル表面汚染量測定対象範囲を示す前記遠心紡糸装置本
体の側面図である。 l・・・定量ギヤポンプ   2・・・原料供給管3・
・・供給原料ピッチ 4・・・ノズル加熱用ヒーター 5・・・遠心紡糸ノズル 6・・・液厚み       7・・・ノズル孔8・・
・繊維(化ピッチ) 9・・・冷却用ガス供給ノズル(上) 10・・・冷却用ガス供給ノズル(下)11・・・ピッ
チコーン    12・・・冷却用ガス13・・・雰囲
気冷却装置
FIG. 1 is a cross-sectional view showing an overview of a centrifugal spinning apparatus as an example of the present invention in operation and equipped with a cooling air supply nozzle, and FIG. 2 is a nozzle surface contamination amount as an indicator of the degree of nozzle surface contamination. FIG. 2 is a side view of the centrifugal spinning apparatus main body showing a measurement target range. l... Metering gear pump 2... Raw material supply pipe 3.
...Feed material pitch 4...Nozzle heating heater 5...Centrifugal spinning nozzle 6...Liquid thickness 7...Nozzle hole 8...
- Fiber (chemical pitch) 9... Cooling gas supply nozzle (top) 10... Cooling gas supply nozzle (bottom) 11... Pitch cone 12... Cooling gas 13... Atmosphere cooling device

Claims (1)

【特許請求の範囲】 1、石炭系および石油系ピッチを原料とし、回転する円
盤状の紡糸ノズルを用いる遠心紡糸工程における紡糸時
のノズル孔吐出ピッチ温度が200〜400℃となる炭
素繊維の製造方法において、紡糸ノズル表面より半径方
向に離れた距離l(m)とノズル孔径d(m)との比(
l/d)が10〜20の範囲内の雰囲気温度tを次式: t≦S_p−K・(l/d)・(T−S_p)(1)(
式中、K=0.013、S_pは原料ピッチの軟化点(
℃)、Tはピッチ吐出温度(℃)である)で表される関
係を満足するように制御することを特徴とする炭素繊維
の製造方法。 2、回転する円盤状の紡糸ノズルを備えた遠心紡糸装置
において、紡糸ノズル表面より半径方向に離れた距離l
(m)とノズル孔径d(m)との比(l/d)が10〜
20の範囲内の雰囲気温度tが次式: t≦S_p−K・(l/d)・(T−S_p)(1)(
式中、K=0.013、S_pは原料ピッチの軟化点(
℃)、Tはピッチ吐出温度(℃)である)で表される関
係を満足するように制御された冷却用ガスを吐出す雰囲
気冷却装置の冷却用ガス供給ノズルを紡糸ノズル孔面に
対し上下一対に若しくは上側または下側のみに備えたこ
とを特徴とする遠心紡糸装置。
[Scope of Claims] 1. Production of carbon fiber using coal-based or petroleum-based pitch as a raw material and having a nozzle hole discharge pitch temperature of 200 to 400°C during spinning in a centrifugal spinning process using a rotating disc-shaped spinning nozzle. In the method, the ratio of the distance l (m) radially away from the spinning nozzle surface and the nozzle hole diameter d (m)
The atmospheric temperature t in the range of l/d) from 10 to 20 is expressed by the following formula: t≦S_p-K・(l/d)・(T-S_p) (1)(
In the formula, K=0.013, S_p is the softening point of the raw material pitch (
A method for producing carbon fibers, characterized in that the method is controlled to satisfy the relationship expressed by: (°C) and T is a pitch discharge temperature (°C). 2. In a centrifugal spinning device equipped with a rotating disc-shaped spinning nozzle, the distance l in the radial direction from the spinning nozzle surface
(m) and the nozzle hole diameter d (m) (l/d) is 10~
The ambient temperature t within the range of
In the formula, K=0.013, S_p is the softening point of the raw material pitch (
The cooling gas supply nozzle of the atmosphere cooling device, which discharges cooling gas controlled to satisfy the relationship expressed by A centrifugal spinning device characterized in that it is provided in a pair or only on the upper side or the lower side.
JP8129587A 1987-04-03 1987-04-03 Production of carbon fiber and apparatus for centrifugal spinning used therefor Pending JPS63249721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8129587A JPS63249721A (en) 1987-04-03 1987-04-03 Production of carbon fiber and apparatus for centrifugal spinning used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8129587A JPS63249721A (en) 1987-04-03 1987-04-03 Production of carbon fiber and apparatus for centrifugal spinning used therefor

Publications (1)

Publication Number Publication Date
JPS63249721A true JPS63249721A (en) 1988-10-17

Family

ID=13742394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8129587A Pending JPS63249721A (en) 1987-04-03 1987-04-03 Production of carbon fiber and apparatus for centrifugal spinning used therefor

Country Status (1)

Country Link
JP (1) JPS63249721A (en)

Similar Documents

Publication Publication Date Title
US3905790A (en) Method and apparatus for manufacturing glass fibers
US4033742A (en) Method for producing glass fibers
RU2409525C1 (en) Method of producing optical fibres and device to this end
US3347648A (en) Spinning glass filaments
FI75556C (en) Apparatus for producing mineral fibers from a thermoplastic material.
CA2207573C (en) Method and apparatus for producing mineral wool
US4917715A (en) Method for producing rotary textile fibers
US3762896A (en) Method and apparatus for producing fibers and environmental control therefore
JPS62171941A (en) Apparatus for production of inorganic short fiber
JPS63249721A (en) Production of carbon fiber and apparatus for centrifugal spinning used therefor
JPS6246643B2 (en)
JP2007224483A (en) Apparatus for producing carbon fiber bundle and method for producing the same
CN102691135B (en) Preparation method of asphalt base carbon staple fiber
US4525190A (en) Apparatus for producing glass fibers with centrifugal force
US3649233A (en) Method of and apparatus for the production of glass or other fibers from thermoplastic materials
US3294510A (en) Apparatus for and process of annealing glass as it is being drawn upwardly
KR20090099061A (en) Fiberizing spinner including a radiation shield for the manufacture of high quality fibers
CN110402307B (en) Method for producing acrylic fiber bundle and method for producing carbon fiber bundle
KR940006375B1 (en) Process for the preparation of pitch-type hollow carbon fiber by spinning of melt pitch and apparatus thereof
JP4935654B2 (en) Manufacturing method of glass sheet with wire mesh
JP2009155770A (en) Manufacturing method for polyester fiber
JPS5910890B2 (en) Method for manufacturing thermoplastic resin film
JPH0551808A (en) Dry-spinning method
JPH04327218A (en) Melt-spinning apparatus for molten pitch
JPS59223246A (en) Method and device for forming fiber of glass by using hollow cylindrical rotating body