JPS63248446A - Exhaust gas purifying catalyst - Google Patents

Exhaust gas purifying catalyst

Info

Publication number
JPS63248446A
JPS63248446A JP62083343A JP8334387A JPS63248446A JP S63248446 A JPS63248446 A JP S63248446A JP 62083343 A JP62083343 A JP 62083343A JP 8334387 A JP8334387 A JP 8334387A JP S63248446 A JPS63248446 A JP S63248446A
Authority
JP
Japan
Prior art keywords
alumina
catalyst
exhaust gas
silicon carbide
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62083343A
Other languages
Japanese (ja)
Inventor
Hiroshi Murakami
浩 村上
Masayuki Koishi
小石 正幸
Kazunori Ihara
井原 和則
Hiromi Oishi
大石 博美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP62083343A priority Critical patent/JPS63248446A/en
Publication of JPS63248446A publication Critical patent/JPS63248446A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To improve warming up characteristic of an exhaust gas purifying catalyst in a cold state by incorporating silicon carbide and/or titania having higher heat conductivity than alumina in a layer coated with the alumina contg. catalyst components into the alumina coated layer formed on the surface of a carrier. CONSTITUTION:An exhaust gas purifying catalyst is produced by forming an alumina-coated layer contg. catalyst components on the surface of carrier formed in a catalyst case, and incorporating silicon carbide and/or titania having higher heat conductivity than alumina contained in said alumina-coated layer. Concretely, the exhaust gas purifying catalyst is produced by depositing catalyst components such as Pt, Pd, etc. on the whole surface of a honeycomb carrier 2 formed in the catalyst case, and forming simultaneously an alumina-coated layer 3 contg. silicon carbide and/or titania having higher heat conductivity than the alumina.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、排気ガス浄化用触媒の改良に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to improvements in exhaust gas purification catalysts.

(従来技術とその問題点) 従来、排気ガス浄化用触媒としては、第4図(a)及び
第4図(b)に略画的に示すように、触媒ケース!内に
設けられたハニカム状担体2の表面ニ、触媒成分(白金
、パラジウム、ロジウム等)を含有するアルミナコート
層が形成された触媒Bが知らされている(実開昭59−
190925号参照)。
(Prior art and its problems) Conventionally, as a catalyst for purifying exhaust gas, as shown schematically in FIGS. 4(a) and 4(b), a catalyst case! Catalyst B is known in which an alumina coating layer containing catalyst components (platinum, palladium, rhodium, etc.) is formed on the surface of the honeycomb-shaped carrier 2 provided therein (Utility Model Application No. 59-1999).
(See No. 190925).

ところで上記のような触媒Bにおいて、エンジンの冷間
始動時には、排気ガス量がさほど多くなく、排気ガスは
流動抵抗の比較的小さい担体2の  −中心部分aを集
中的に通過するので、第4図(c)に実線で示すように
、中心部分aの温度が高くなりやすいため、中心部分a
の排気ガス浄化性能は早期に良好となるが、担体2のア
ルミナコート層の熱伝導性が高くないことから、外周部
分すの温度が触媒の活性温度までなかなか上昇せず、し
たがって、外周部分すの排気ガス浄化性能が低下するこ
とになり、触媒全体としての排気ガス浄化性能(ウオー
ムアツプ性能)が悪くなるという問題があった7 (発明の目的) 本発明は上記従来の問題を解決するためになされたもの
で、担体のアルミナコート層の含有成分を工夫すること
により、コールド時における触媒全体としてのウオーム
アツプ性能を向上させることを目的とするものである。
By the way, in the catalyst B as described above, when the engine is cold started, the amount of exhaust gas is not so large and the exhaust gas intensively passes through the -center part a of the carrier 2 where the flow resistance is relatively small. As shown by the solid line in Figure (c), since the temperature of the center part a tends to be high,
Although the exhaust gas purification performance of the catalyst improves quickly, since the thermal conductivity of the alumina coating layer of the carrier 2 is not high, the temperature of the outer circumferential portion does not easily rise to the activation temperature of the catalyst. There was a problem in that the exhaust gas purification performance of the catalyst deteriorated, and the exhaust gas purification performance (warm-up performance) of the catalyst as a whole deteriorated. The purpose is to improve the warm-up performance of the catalyst as a whole during cold conditions by modifying the components contained in the alumina coating layer of the carrier.

(発明の構成) このため本発明は、触媒ケース内に設けられる担体の表
面に、触媒成分を含有するアルミナコート層が形成され
、該アルミナコート層に、アルミナよりも熱伝導性が高
い炭化珪素またはチタニアの少なくとも1種が含有され
ていることを特徴とするものである。
(Structure of the Invention) Therefore, in the present invention, an alumina coat layer containing a catalyst component is formed on the surface of a carrier provided in a catalyst case, and the alumina coat layer is made of silicon carbide, which has higher thermal conductivity than alumina. Or, it is characterized by containing at least one type of titania.

上記炭化珪素またはチタニアは、アルミナコート層のア
ルミナに対して、60〜70重量%含有されていること
が好ましい。
It is preferable that the silicon carbide or titania is contained in an amount of 60 to 70% by weight based on the alumina of the alumina coat layer.

また、上記炭化珪素またはチタニアは、上記担体の外周
部分に含有されるようにしてもよい。
Further, the silicon carbide or titania may be contained in the outer peripheral portion of the carrier.

(発明の効果) 本発明によれば、担体のアルミナコート層に、熱伝導性
が高い炭化珪素またはチタニアの少なくとも1種が含有
されているから、担体の外周部分への熱伝導性が高まり
、外周部分の温度か短時間で高くなりやすいので排気ガ
ス浄化性能が良好となり、コールド時における触媒全体
としてのウオームアツプ性能が向上するようになる。
(Effects of the Invention) According to the present invention, since the alumina coat layer of the carrier contains at least one of silicon carbide and titania, which have high thermal conductivity, the thermal conductivity to the outer peripheral portion of the carrier increases, Since the temperature of the outer circumferential portion tends to rise in a short period of time, the exhaust gas purification performance is improved, and the warm-up performance of the catalyst as a whole during cold conditions is improved.

(実施例) 以下、本発明の実施例を添付図面について詳細に説明す
る。
(Embodiments) Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図に示すように、本発明に係る排気ガス浄化用触媒
Aは、触媒ケース内に設けられたハニカム状担体2の全
表面に、従来と同様な触媒成分(白金、パラジウム、ロ
ジウム等)が含有されると共に、アルミナよりも熱伝導
性が高い炭化珪素(SiC)またはチタニア(TiO,
)の少なくとも1種が含有されているアルミナコート層
3が形成されているものである。なお、アルミナコート
層3の厚みは30〜50μが適当である。
As shown in FIG. 1, the exhaust gas purifying catalyst A according to the present invention has the same catalyst components (platinum, palladium, rhodium, etc.) as conventional ones on the entire surface of the honeycomb-shaped carrier 2 provided in the catalyst case. Silicon carbide (SiC) or titania (TiO,
) is formed with an alumina coat layer 3 containing at least one of the following. Note that the appropriate thickness of the alumina coat layer 3 is 30 to 50 μm.

ここで、担体(コージライト)、アルミナ、炭化珪素、
チタニアの熱伝導率を比較すると、第1表のようになる
Here, the carrier (cordierite), alumina, silicon carbide,
Table 1 shows a comparison of the thermal conductivities of titania.

第1表 第1表からも明らかなように、炭化珪素またはチタニア
の熱伝導率はアルミナの約6倍であり、熱伝導性が高い
ことがわかる。
As is clear from Table 1, the thermal conductivity of silicon carbide or titania is about 6 times that of alumina, indicating that it has high thermal conductivity.

従って、炭化珪素(またはチタニア)を含有するアルミ
ナコート層3が形成された担体2であれば、エンジンの
始動(コールド時)直後に、高温の排気ガスが担体2の
中心部分aを通過することにより中心部分aの温度が高
くなると、熱伝導性が高められたアルミナコート層3を
介して外周部分すの温度も短時間で高くなる、換言する
と触媒A全体の温度分布が高温側で均一化するようにな
るのである(第4図(c)の鎖線参照)。
Therefore, if the carrier 2 is formed with an alumina coat layer 3 containing silicon carbide (or titania), high-temperature exhaust gas will pass through the center portion a of the carrier 2 immediately after starting the engine (when cold). When the temperature of the central portion a increases, the temperature of the outer peripheral portion also increases in a short time through the alumina coat layer 3 with increased thermal conductivity.In other words, the temperature distribution of the entire catalyst A becomes uniform on the high temperature side. (See the chain line in FIG. 4(c)).

次に実験データを説明する。Next, the experimental data will be explained.

まず、下記条件で触媒(テストピース)を製作した。First, a catalyst (test piece) was manufactured under the following conditions.

触媒サイズ: 直径46X長さ76 (mm)焼成条件
: 空気中で!000℃×24時間加熱 触媒成分: 白金/ロジウム= 7 / 3 3 、 
OgIQアルミナコート層: 担体に対して21重量%
(従来触媒B: アルミナ(γ−ACzOa)(本発明
触媒A: 炭化珪素/アルミナ=70/30 この触媒A、Bをそれぞれ下記の条件下のエンジンの排
気系に設置した。
Catalyst size: Diameter 46 x length 76 (mm) Firing conditions: In air! Heated at 000°C for 24 hours Catalyst component: Platinum/Rhodium = 7/33,
OgIQ alumina coat layer: 21% by weight based on carrier
(Conventional catalyst B: alumina (γ-ACzOa) (present invention catalyst A: silicon carbide/alumina = 70/30) These catalysts A and B were each installed in the exhaust system of an engine under the following conditions.

SV(排気ガスの空間速度):23700h−’A/F
 (空燃比):  14.7 その結果を第2図のグラフ(触媒のウオームアツプ性能
)に示す。なお、鎖線は触媒人口温度である。
SV (exhaust gas space velocity): 23700h-'A/F
(Air-fuel ratio): 14.7 The results are shown in the graph of Figure 2 (warm-up performance of catalyst). Note that the chain line is the catalyst population temperature.

このグラフからも明らかなように、白丸を連らねた実線
で示す従来触媒Bでは、担体2のアルミナコート層の熱
伝導性が高くないことから、外周部分すの温度が短時間
で高くなりにくい結果、外周部分すの排気ガス浄化性能
が低下するので、エンジンの始動(コールド時)から約
180秒間のHC浄化率は悪いが、黒丸を連らねた実線
で示す本発明触媒Aでは、担体2のアルミナコート層3
の熱伝導性が高められていることから外周部分すの温度
が短時間で高くなりやすい結果、外周部分すの排気ガス
浄化性能も良好となるので、エンジンの始動(コールド
時)から約180秒間は、従来触媒Bに比べてHC浄化
率、つまりウオームアツプ性能が向上していることがわ
かる。
As is clear from this graph, in the conventional catalyst B shown by the solid line with white circles, the thermal conductivity of the alumina coating layer of the carrier 2 is not high, so the temperature of the outer peripheral portion increases in a short period of time. As a result, the exhaust gas purification performance of the outer peripheral portion decreases, so the HC purification rate for about 180 seconds after engine startup (when cold) is poor. Alumina coat layer 3 of carrier 2
As the thermal conductivity of the engine is increased, the temperature of the outer circumferential area easily rises in a short period of time, and as a result, the exhaust gas purification performance of the outer circumferential area is also good, so that the temperature of the outer circumferential area increases for about 180 seconds after the engine is started (when cold). It can be seen that the HC purification rate, that is, the warm-up performance, is improved compared to the conventional catalyst B.

上記実験では、本発明触媒Aのアルミナコート層3に炭
化珪素のみを含有したものであったが、チタニア、ある
いは炭化珪素とチタニアの混合物を含有した場合でも同
様の結果が得られた。 また、上記実験では、炭化珪素
は、アルミナコート層のアルミナに対して70重量%含
有したものであったが、60〜70重量%の範囲で含有
されていることが好ましい。
In the above experiment, the alumina coat layer 3 of Catalyst A of the present invention contained only silicon carbide, but similar results were obtained even when titania or a mixture of silicon carbide and titania was contained. Further, in the above experiment, silicon carbide was contained in an amount of 70% by weight based on the alumina of the alumina coat layer, but it is preferably contained in a range of 60 to 70% by weight.

なぜなら、第3図のグラフ(触媒のウオームアツプ性能
)に示すように、炭化珪素が70重量%以上であると、
アルミナに介在物が多く入ることになり、アルミナのポ
ーラスが潰れて表面積が減少し、触媒活性そのものの効
果が落ちることになる。
This is because, as shown in the graph in Figure 3 (warm-up performance of catalyst), if silicon carbide is 70% by weight or more,
Many inclusions will enter the alumina, the pores of the alumina will be crushed, the surface area will decrease, and the effectiveness of the catalytic activity itself will be reduced.

逆に炭化珪素が60重量%以下であると、熱伝導性能を
損うので、外周部分すの温度上昇が望めないからである
On the other hand, if the silicon carbide content is 60% by weight or less, the heat conduction performance will be impaired, and it will not be possible to increase the temperature of the outer peripheral portion.

さらに、上記実験では、担体2のアルミナコート層3の
全体に炭化珪素を含有させたしのであったが、担体2の
外周部分すのアルミナコート層にのみ炭化珪素を含有さ
せてもよい。
Further, in the above experiment, silicon carbide was contained in the entire alumina coat layer 3 of the carrier 2, but silicon carbide may be contained only in the alumina coat layer on the outer periphery of the carrier 2.

次に、本発明触媒Aの製造方法を説明する。Next, a method for producing catalyst A of the present invention will be explained.

(1)炭化珪素(SiC)もしくはチタニア(TiOz
)にアルミナ(γ−A(bOJおよびベーマイト(γ−
A1220s・3H1)を70/30〜60/40の比
率で、総重量が200gとなるように混合する。
(1) Silicon carbide (SiC) or titania (TiOz
) to alumina (γ-A (bOJ) and boehmite (γ-
A1220s/3H1) are mixed in a ratio of 70/30 to 60/40 so that the total weight is 200 g.

(2)このアルミナフィラーに240ccの水、■。(2) Add 240 cc of water to this alumina filler.

6ccの硝酸(HN O、)を加えて、ラボスターラー
で5〜6時間の撹拌を行う。
Add 6 cc of nitric acid (HNO, ) and stir in a lab stirrer for 5-6 hours.

(3)このアルミナスラリー液に、コージライト製担体
2を浸漬し、引き上げたのち、余分のスラリー液をエア
ブロ−で除去する。
(3) After immersing the cordierite carrier 2 in this alumina slurry and pulling it up, the excess slurry is removed by air blowing.

(4)その後、130℃で1時間乾燥し、さらに550
℃で15時間の焼成を行なう。
(4) Then, dry at 130°C for 1 hour, and then dry at 550°C.
Calcination is carried out at ℃ for 15 hours.

(5)次に、この担体2を180ccの水に18gの硝
酸セリウム[Ce(NO3)3−6H,O]を溶解した
水溶液に浸漬したのち、乾燥・焼成を行なう。
(5) Next, this carrier 2 is immersed in an aqueous solution of 18 g of cerium nitrate [Ce(NO3)3-6H,O] dissolved in 180 cc of water, and then dried and fired.

(6)最後に、この担体2を、所定の塩化白金ならびに
塩化ロジウム水溶液に浸漬したのち、150℃で30分
乾燥し、550℃で1.5時間の焼成を行なって触媒A
を得た。
(6) Finally, this carrier 2 was immersed in a predetermined aqueous solution of platinum chloride and rhodium chloride, dried at 150°C for 30 minutes, and calcined at 550°C for 1.5 hours.
I got it.

(7)焼成後のアルミナコート層のアルミナ量は、担体
重量に対して21重量%、酸化セリウム(CeO7)は
アルミナコート層のアルミナに対して6重量%、Pt担
持量:2.Ig/4 、Rh担持量:0.9g/Qであ
る。
(7) The amount of alumina in the alumina coat layer after firing is 21% by weight based on the carrier weight, cerium oxide (CeO7) is 6% by weight based on the alumina in the alumina coat layer, and the amount of Pt supported: 2. Ig/4, Rh supported amount: 0.9 g/Q.

従来触媒Bの製造方法は本発明触媒Aの製造方法(IO
2)に代えて、下記方法を採用した。なお、(3)〜(
7)は全く同じである。アルミナ(γ−AQ*0a)1
00g、ベートマイト(A(2tOs・3Hz)100
gに240ccの水、1.6ccの硝酸(HN O3)
を加えて、ホモミキサーで5時間混合撹拌を行う。
The conventional method for producing catalyst B is the method for producing catalyst A of the present invention (IO
In place of 2), the following method was adopted. In addition, (3) ~ (
7) are exactly the same. Alumina (γ-AQ*0a) 1
00g, batemite (A (2tOs・3Hz) 100
g, 240cc of water, 1.6cc of nitric acid (HN O3)
and mix with a homomixer for 5 hours.

第3図に示した炭化珪素とアルミナの含有比の異なる触
媒(テストピース)の製造方法は、本発明触媒Aの製造
方法(1)において、比率を変えた。
The method for producing catalysts (test pieces) with different content ratios of silicon carbide and alumina shown in FIG. 3 is the method for producing catalyst A of the present invention (1) with different ratios.

なお(2)〜(7)は全く同じである。Note that (2) to (7) are exactly the same.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る担体とアルミナコート層の正面拡
大断面図、第2図は触媒のウオームアツプ性能を示すグ
ラフ、第3図は炭化珪素とアルミナの含有比とウオーム
アツプ性能との関係を示すグラフ、第4図(a)は従来
の触媒の側面断面図、第4図(b)は第4図(a)の正
面断面図、第4図(c)は担体の温度分布を示すグラフ
である。 I・・・触媒ケース、2・・・担体 3・・・アルミナコート層、A・・・触媒。 第1図 箪2図 噴量(砂) 第3図
Fig. 1 is an enlarged front sectional view of the carrier and alumina coat layer according to the present invention, Fig. 2 is a graph showing the warm-up performance of the catalyst, and Fig. 3 is the relationship between the content ratio of silicon carbide and alumina and the warm-up performance. FIG. 4(a) is a side sectional view of a conventional catalyst, FIG. 4(b) is a front sectional view of FIG. 4(a), and FIG. 4(c) shows the temperature distribution of the carrier. It is a graph. I...Catalyst case, 2...Carrier 3...Alumina coat layer, A...Catalyst. Figure 1 Kano Figure 2 Ejection volume (sand) Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)触媒ケース内に設けられる担体の表面に、触媒成
分を含有するアルミナコート層が形成され、該アルミナ
コート層に、アルミナよりも熱伝導性が高い炭化珪素ま
たはチタニアの少なくとも1種が含有されていることを
特徴とする排気ガス浄化用触媒。
(1) An alumina coat layer containing catalyst components is formed on the surface of the carrier provided in the catalyst case, and the alumina coat layer contains at least one of silicon carbide or titania, which has higher thermal conductivity than alumina. An exhaust gas purifying catalyst characterized by:
(2)上記炭化珪素またはチタニアは、アルミナコート
層のアルミナに対して、60〜70重量%含有されてい
ることを特徴とする特許請求の範囲第(1)項記載の排
気ガス浄化用触媒。
(2) The exhaust gas purifying catalyst according to claim (1), wherein the silicon carbide or titania is contained in an amount of 60 to 70% by weight based on the alumina of the alumina coat layer.
(3)上記炭化珪素またはチタニアは、上記担体の外周
部分に含有されていることを特徴とする特許請求の範囲
第(1)項記載の排気ガス浄化用触媒。
(3) The exhaust gas purifying catalyst according to claim (1), wherein the silicon carbide or titania is contained in the outer peripheral portion of the carrier.
JP62083343A 1987-04-04 1987-04-04 Exhaust gas purifying catalyst Pending JPS63248446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62083343A JPS63248446A (en) 1987-04-04 1987-04-04 Exhaust gas purifying catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62083343A JPS63248446A (en) 1987-04-04 1987-04-04 Exhaust gas purifying catalyst

Publications (1)

Publication Number Publication Date
JPS63248446A true JPS63248446A (en) 1988-10-14

Family

ID=13799792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62083343A Pending JPS63248446A (en) 1987-04-04 1987-04-04 Exhaust gas purifying catalyst

Country Status (1)

Country Link
JP (1) JPS63248446A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621457A (en) * 1985-06-26 1987-01-07 Toyota Motor Corp Preparation of catalyst for purifying exhaust gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621457A (en) * 1985-06-26 1987-01-07 Toyota Motor Corp Preparation of catalyst for purifying exhaust gas

Similar Documents

Publication Publication Date Title
JP3956437B2 (en) Exhaust gas purification catalyst
JP2962768B2 (en) Monolithic or honeycomb catalyst
JP5270075B2 (en) Exhaust gas purification catalyst
JP3235640B2 (en) Internal combustion engine exhaust gas purification catalyst
JP4935219B2 (en) Exhaust gas purification catalyst
JPH0338250A (en) Exhaust gas purification catalyst
JPH04224220A (en) Honeycomb heater and catalytic converter
JP4350250B2 (en) Exhaust gas purification catalyst
JPH10328566A (en) Catalyst for purifying waste gas
JPWO2018199250A1 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPS60190236A (en) Preparation of catalyst having high temperature heat resistance
JPS6384635A (en) Catalyst for purifying exhaust gas
JPS6271536A (en) Catalyst for cleaning up exhaust gas of engine
JPS62282641A (en) Production of catalyst for purifying exhaust gas
JP4459346B2 (en) Exhaust gas purification catalyst
JPS63258648A (en) Catalyst for purifying exhaust gas
JP2001252565A (en) Exhaust gas cleaning catalyst
JPS63248446A (en) Exhaust gas purifying catalyst
JPS6178438A (en) Monolithic catalyst for purifying exhaust gas
JPS6271543A (en) Catalyst for cleaning up exhaust gas of engine
JPH10216514A (en) Catalyst for exhaust gas purification
JPS6031828A (en) Catalyst for purifying exhaust gas and its preparation
JPS6320036A (en) Production of catalyst for purifying exhaust gas
JPS60238152A (en) Monolithic catalyst for purifying exhaust gas
JP2533516B2 (en) Exhaust gas purification catalyst and method for producing the same