JPS63247388A - Semiconductor photocatalyst device - Google Patents

Semiconductor photocatalyst device

Info

Publication number
JPS63247388A
JPS63247388A JP62077411A JP7741187A JPS63247388A JP S63247388 A JPS63247388 A JP S63247388A JP 62077411 A JP62077411 A JP 62077411A JP 7741187 A JP7741187 A JP 7741187A JP S63247388 A JPS63247388 A JP S63247388A
Authority
JP
Japan
Prior art keywords
semiconductor
films
thickness
semiconductor photocatalyst
thin metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62077411A
Other languages
Japanese (ja)
Inventor
Tetsuo Ono
哲郎 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62077411A priority Critical patent/JPS63247388A/en
Publication of JPS63247388A publication Critical patent/JPS63247388A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To facilitate the control of the thickness and shape of the thin metallic films to and increase the efficiency of a semiconductor photocatalyst by entirely or partially forming thin metallic films on semiconductor regions arranged on an insulator substrate. CONSTITUTION:In a semiconductor photocatalyst device for electrolyzing water with rays of light and fine semiconductor particles, thin metallic films 9 are entirely or partially formed on regions of fine semiconductor particles 1 arranged on an insulator substrate 2. The metal of the films 9 is Pt, Au, Ag, Rh, Ru, Sn, Ni, Fe or the like and the films 9 are formed by vapor deposition or other method to <=about several hundred Angstrom thickness. The films 9 can be formed in an arbitrary shape by using a mask and the thickness of the films 9 can be controlled by changing vapor deposition time and temp. Thus, an efficient semiconductor photocatalyst can be obtd. with high reproducibility.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気分解装置に係り、特に光と半導体微粒子と
を用い水を分解する半導体光触媒装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electrolyzer, and more particularly to a semiconductor photocatalyst device that decomposes water using light and semiconductor fine particles.

〔従来の技術〕[Conventional technology]

光と半導体微粒子を用いて水を酸素と水素に分解する技
術は広く知られている。公知例としては。
The technology of decomposing water into oxygen and hydrogen using light and semiconductor particles is widely known. As a known example.

たとえば、ジャーナル オブ フィジカル ケミストリ
 第85巻(1981年)592頁から594頁まで(
The Journal of PhysicalCh
ea+1stryeVoQ、85(1981)p 59
2〜594)あるいは同雑誌の第89巻(1985年)
 1902頁から1905頁(Vow、85 (198
5)p1902から1905)などがある、以下、この
技術を説明する。第2図は半導体微粒子1とその中のエ
ネルギーバンドを模式的に示したものである。3は伝導
体、4は価電子帯、5はバンドギャップである。この粉
状の半導体を水中に分散し、光6を当てると、電子7と
正孔8の対が光励起される。電子と正孔は半導体と水の
界面まで拡散し。
For example, Journal of Physical Chemistry Volume 85 (1981) pp. 592-594 (
The Journal of Physical Ch.
ea+1strye VoQ, 85 (1981) p 59
2-594) or Volume 89 of the same magazine (1985)
pp. 1902-1905 (Vow, 85 (198
5) pages 1902 to 1905), etc. This technique will be explained below. FIG. 2 schematically shows the semiconductor fine particles 1 and the energy bands therein. 3 is a conductor, 4 is a valence band, and 5 is a band gap. When this powdered semiconductor is dispersed in water and exposed to light 6, pairs of electrons 7 and holes 8 are photoexcited. Electrons and holes diffuse to the interface between the semiconductor and water.

そこで、電子は水を還元し水素を、正孔は水を酸化して
酸素を作る。このようにして得られる水素はエネルギー
として使われる。また、半導体の分解を防ぐために半導
体表面に金属薄膜をつけることも知られている。この技
術は、水と光から無公害でエネルギーを得られるので、
大きな脚光を浴びている。
Electrons reduce water to produce hydrogen, and holes oxidize water to produce oxygen. The hydrogen obtained in this way is used as energy. It is also known to apply a thin metal film to the surface of a semiconductor to prevent it from decomposing. This technology allows energy to be obtained from water and light without any pollution.
is in the spotlight.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この技術において、半導体微粒子上に金属薄膜を設ける
と、その厚さにより光が半導体にとどく前に吸収され変
換効率が悪くなる。そこで、金属薄膜の厚さを制御した
り、半導体の一部分のみに膜をつけることが必要となる
。しかし、上記従来技術のように半導体の粉を用いてい
たのでは、これは困難である。
In this technique, when a metal thin film is provided on semiconductor particles, light is absorbed before reaching the semiconductor due to its thickness, resulting in poor conversion efficiency. Therefore, it is necessary to control the thickness of the metal thin film or to apply the film only to a portion of the semiconductor. However, this is difficult if semiconductor powder is used as in the prior art described above.

本発明の目的は、金属薄膜の厚さ、形の制御が容易な技
術を提供することにある。
An object of the present invention is to provide a technique that allows easy control of the thickness and shape of a metal thin film.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、半導体光触媒装置を絶縁物基板上にマスク
等を用いて、互いに孤立した半導体領域のパターンを作
る構造にしたうえで、その上にさらに金属膜をマスクを
用いて蒸着等により作成することで達成される。
The above purpose is to construct a semiconductor photocatalytic device using a mask or the like on an insulating substrate to form a pattern of mutually isolated semiconductor regions, and then to create a metal film thereon by vapor deposition or the like using a mask. This is achieved by

〔作用〕[Effect]

絶縁物基板上に半導体パターンを作ることにより、半導
体装置、大きさ、形が容易に制御できる。従って、次に
金属膜をつけるときに同様にマスク等を用いれば、金属
膜を任意の形、面積でつけることができる。また厚さの
制御を、たとえば金属を蒸着する時間、温度を変えるこ
とで可能になる。
By creating a semiconductor pattern on an insulating substrate, the size and shape of the semiconductor device can be easily controlled. Therefore, if a mask or the like is used similarly when applying a metal film next time, the metal film can be applied in any desired shape and area. Furthermore, the thickness can be controlled by, for example, changing the time and temperature at which the metal is deposited.

〔実施例〕〔Example〕

以下1本発明の実施例を図により説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は、絶縁物基板2の上に、半導体微粒子1とその
上に金属薄膜9を設けた、半導体光触媒装置である。(
a)はその上面図、(b)は断面図である。半導体の種
類は、Sic、GaAs。
FIG. 1 shows a semiconductor photocatalytic device in which semiconductor fine particles 1 and a metal thin film 9 are provided on an insulating substrate 2. (
(a) is a top view thereof, and (b) is a cross-sectional view. The types of semiconductors are Sic and GaAs.

CdS、Cd’s、Tiez、MoS2.Fe20s+
I n20+s、WOa、CdOなとである。厚さ大き
さは通常、数μm以下が良い。絶縁物基板2の材質は、
ガラス、セラミック等で、これらの絶縁物基板2を何枚
も重ねて使用できるように、透光性の物質が良い。金属
薄膜9は、P tHA u y A g pRh、Ru
、sn、Ni、Feなどで、厚さは数百Å以下が良い、
半導体、金属膜の製作はマスクを用いて基板上に蒸着あ
るいは化学反応やプラズマを利用して形成する。この装
置の機能、および動作原理は、従来の半導体の粉を用い
たものと同じである。しかし、半導体の粉では、その寸
法、形状などの制御が困難で従って、再現性良く同じも
のができない。一方、本発明によれば1寸法、形状は任
意に制御でき、かつ、同性能のものがいくつでもできる
CdS, Cd's, Tiez, MoS2. Fe20s+
In20+s, WOa, and CdO. The thickness is usually several micrometers or less. The material of the insulating substrate 2 is
A translucent material such as glass or ceramic is preferable so that many of these insulating substrates 2 can be stacked and used. The metal thin film 9 is made of P tHA u y A g pRh, Ru
, sn, Ni, Fe, etc., and the thickness should preferably be several hundred Å or less.
Semiconductor and metal films are manufactured by vapor deposition on a substrate using a mask, or by using chemical reactions or plasma. The function and operating principle of this device is the same as that using conventional semiconductor powder. However, with semiconductor powder, it is difficult to control its dimensions, shape, etc., and therefore it is not possible to produce the same product with good reproducibility. On the other hand, according to the present invention, one dimension and shape can be controlled arbitrarily, and any number of products with the same performance can be produced.

第3図は別の実施例である。金属薄膜9は半導体微粒子
1の全面につけず、一部に設けたものである。金属部の
形状はこの形に必らないがこの構造では、半導体微粒子
1に直接光が当たるので効率が良くなる。
FIG. 3 shows another embodiment. The metal thin film 9 is not applied to the entire surface of the semiconductor fine particles 1, but is provided to a part of the semiconductor particles 1. Although the shape of the metal part does not necessarily have to be this shape, with this structure, the semiconductor fine particles 1 are directly irradiated with light, so efficiency is improved.

第4図は、以上の実施例を用いた全体の装置構成を示す
ものである。透明窓10とタンク11からなる容器に水
あるいはそれにN a CQ等の電解質を加えた溶液1
2が入っている。1,2.9から成る半導体光触媒装置
は溶液中に沈められる。
FIG. 4 shows the overall device configuration using the above embodiment. A solution 1 in which water or an electrolyte such as Na CQ is added to a container consisting of a transparent window 10 and a tank 11
2 is included. A semiconductor photocatalytic device consisting of 1, 2, and 9 is submerged in the solution.

光6が照射されると前述の原理により、水は酸素と水素
に分解される。この装置ではさらに酸素と水素を分離す
るために、水素分離膜13と真空ポンプ14が設けられ
ている。水素分離膜13はポリイミド、ボスエステル等
から成る水素だけを透過するもので、真空ポンプ14に
より水素発生側の反対側を減圧することによりパイプ1
5から水素がとり出せる。また本装置において、水素分
離膜の代わりに、水素吸蔵合金を置いて水素を貯えるよ
うにしてもよい、水素吸蔵合金の例としては、ミツシュ
メタルN1AQ (セリウム族希土類元素混合物、ニッ
ケル、アルミニウム合金)がある。
When the light 6 is irradiated, water is decomposed into oxygen and hydrogen according to the above-mentioned principle. This device is further provided with a hydrogen separation membrane 13 and a vacuum pump 14 to separate oxygen and hydrogen. The hydrogen separation membrane 13 is made of polyimide, boss ester, etc. and allows only hydrogen to pass therethrough.The hydrogen separation membrane 13 is made of polyimide, boss ester, etc. and allows only hydrogen to pass therethrough.
Hydrogen can be extracted from 5. In addition, in this device, a hydrogen storage alloy may be placed in place of the hydrogen separation membrane to store hydrogen. Examples of hydrogen storage alloys include Mitsushmetal N1AQ (cerium group rare earth element mixture, nickel, aluminum alloy). be.

この水素分離膜あるいは水素吸蔵合金を用いる手法は光
触媒として従来の半導体粉を用いる場合でも、もちろん
有効である。また本装置で分解する溶液は水には限らず
アルコール等を分解できる。
Of course, this method of using a hydrogen separation membrane or a hydrogen storage alloy is also effective when using conventional semiconductor powder as a photocatalyst. Furthermore, the solution decomposed by this device is not limited to water, but can also decompose alcohol, etc.

また、同様な半導体光触媒は、ガラス、セラミック、あ
るいはポリエチレン等高分子膜上に、半導体粉と金属の
ペーストを印刷することでも作れる。
A similar semiconductor photocatalyst can also be made by printing a paste of semiconductor powder and metal onto a polymer film such as glass, ceramic, or polyethylene.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、効率のよい半導体光触媒が再現性良く
実現できる。
According to the present invention, an efficient semiconductor photocatalyst can be realized with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第3図は本発明の実施例になる触媒の上面図と
断面図、第2図は原理説明図、第4図は本発明の実施例
になる水分解装置の全体構成を示す横断面図である。 1・・・半導体微粒子、2・・・絶縁物基板、3・・・
伝導帯、4・・・価電子帯、5・・・バンドギャップ、
6・・・光、7・・・電子、8・・・正孔、9・・・金
属薄膜、1o・・・透明窓。 11・・・タンク、12・・・溶液、13・・・水素分
離膜、14・・・真空ポンプ、15・・・パイプ。 T1図 <a> $2図
Figures 1 and 3 are a top view and a sectional view of a catalyst that is an embodiment of the present invention, Figure 2 is a diagram explaining the principle, and Figure 4 is an overall configuration of a water splitting apparatus that is an embodiment of the present invention. FIG. 1... Semiconductor fine particles, 2... Insulator substrate, 3...
Conduction band, 4... Valence band, 5... Band gap,
6...Light, 7...Electron, 8...Hole, 9...Metal thin film, 1o...Transparent window. 11...Tank, 12...Solution, 13...Hydrogen separation membrane, 14...Vacuum pump, 15...Pipe. T1 figure <a> $2 figure

Claims (1)

【特許請求の範囲】[Claims] 1、溶液とその中に入る絶縁物基板上に設けられた互い
に孤立した半導体領域から成る半導体光触媒装置におい
て、半導体領域の全面あるいは一部に金属薄膜を設けた
ことを特徴とする半導体光触媒装置。
1. A semiconductor photocatalytic device comprising a solution and semiconductor regions isolated from each other provided on an insulating substrate contained therein, characterized in that a metal thin film is provided on the entire surface or a part of the semiconductor region.
JP62077411A 1987-04-01 1987-04-01 Semiconductor photocatalyst device Pending JPS63247388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62077411A JPS63247388A (en) 1987-04-01 1987-04-01 Semiconductor photocatalyst device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62077411A JPS63247388A (en) 1987-04-01 1987-04-01 Semiconductor photocatalyst device

Publications (1)

Publication Number Publication Date
JPS63247388A true JPS63247388A (en) 1988-10-14

Family

ID=13633186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62077411A Pending JPS63247388A (en) 1987-04-01 1987-04-01 Semiconductor photocatalyst device

Country Status (1)

Country Link
JP (1) JPS63247388A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8414758B2 (en) 2011-03-09 2013-04-09 Panasonic Corporation Method for reducing carbon dioxide
JP2015196869A (en) * 2014-03-31 2015-11-09 イムラ・ジャパン株式会社 electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8414758B2 (en) 2011-03-09 2013-04-09 Panasonic Corporation Method for reducing carbon dioxide
JP2015196869A (en) * 2014-03-31 2015-11-09 イムラ・ジャパン株式会社 electrode

Similar Documents

Publication Publication Date Title
Li et al. Engineering substrate interaction to improve hydrogen evolution catalysis of monolayer MoS2 films beyond Pt
Lee et al. Modification of (Zn1+ x Ge)(N2O x) solid solution as a visible light driven photocatalyst for overall water splitting
Wang et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%
WO2013133338A1 (en) Electrode for photohydrolysis, and method for manufacturing same
US20130248349A1 (en) Photocatalytic water splitting
JPH0387010A (en) Electric double layer capacitor
JP6190339B2 (en) Photocatalytic device
WO2014169258A1 (en) Photocatalytic metamaterial based on plasmonic near perfect optical absorbers
JP5172685B2 (en) ELECTROLYTIC FUEL CELL ELECTRODE AND FUEL CELL MANUFACTURING METHOD CONTAINING AT LEAST ONE STEP
US20050037916A1 (en) Imprinting nanoscale patterns for catalysis and fuel cells
JP2011131170A (en) Electrode for photolytic water decomposition reaction using photocatalyst
CA2098606C (en) Efficiency enhancement for solid-electrolyte fuel cell
Liu et al. Band structure engineering toward low-onset-potential photoelectrochemical hydrogen production
US3630690A (en) Hydrogen-pumping apparatus of laminated construction
JPS63247388A (en) Semiconductor photocatalyst device
JP6270884B2 (en) Method for producing electrode for photohydrolysis reaction
JP2017101288A (en) Semiconductor photoelectrode
JPS59112841A (en) Catalyst for photochemical reaction
CN100541700C (en) Use the electric field emission with audion and the manufacture method thereof of anode oxidation process manufacturing
JP6497590B2 (en) Method of decomposing water, water splitting device and anode electrode for oxygen generation
Hattori et al. All electrochemical fabrication of a bilayer membrane composed of nanotubular photocatalyst and palladium toward high-purity hydrogen production
WO2021245923A1 (en) Semiconductor device
JPS5844748B2 (en) How to split water
JPS6142333A (en) Titanium compound having optical catalytic activity
JP2001213608A (en) Chemical converter