JPS632464B2 - - Google Patents

Info

Publication number
JPS632464B2
JPS632464B2 JP57012223A JP1222382A JPS632464B2 JP S632464 B2 JPS632464 B2 JP S632464B2 JP 57012223 A JP57012223 A JP 57012223A JP 1222382 A JP1222382 A JP 1222382A JP S632464 B2 JPS632464 B2 JP S632464B2
Authority
JP
Japan
Prior art keywords
moisture
silicate
humidity
polymer
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57012223A
Other languages
Japanese (ja)
Other versions
JPS58129240A (en
Inventor
Kunihiko Myao
Hidefusa Uchikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57012223A priority Critical patent/JPS58129240A/en
Publication of JPS58129240A publication Critical patent/JPS58129240A/en
Publication of JPS632464B2 publication Critical patent/JPS632464B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/121Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Non-Adjustable Resistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、雰囲気の湿度による感湿部の電気抵
抗値の変化を利用したけい酸エステル系感湿素子
の製作方法に関するものである。 従来から、このような機能を有する感湿素子の
感湿部としては、塩化リチウム、塩化カルシウム
等の電解質、セレン、ゲルマニウム等の半導体蒸
着膜、および酸化アルミニウム、酸化チタン、酸
化鉄等を用いた金属酸化物もしくは金属酸化物系
セラミツクが使用されてきた。 このうち電解質は、高湿度領域で吸湿性が顕著
であつて流動性となるため素子強度が低く、測定
湿度領域が低湿度側でかつ寿命も短いものであつ
た。半導体蒸着膜を用いたものは真空蒸着または
それと類似した方法を必要とするため、製作方法
が容易でなく、また、測定値が温度に大きく影響
されてしまうものであつた。一方、金属酸化物系
のものは、物理的、化学的に安定であり、素子強
度も高いが、測定湿度領域が50〜100%RHと比
較的狭いものがあり、また高温(800〜1200℃)
で焼結しなければならないものが多いため、製作
方法が容易でなかつた。このように従来のものは
それぞれ上記のような欠点があり、十分なものと
は言えなかつた。 本発明は、湿度検出感度が優れ、測定可能湿度
範囲が広いけい酸エステル系感湿素子の製作方法
を提供したものである。 以下、実施例にしたがい、本発明の詳細につい
て説明する。 実施例 1 エチルシリケートのイソプロピルアルコールへ
の溶解液を出発原料として用い、これに塩酸酸性
下で水を加えて加水分解した。反応は下記のよう
に進行すると考えられる。 すなわち、エチルシリケートの加水分解生成物
は、シロキサン結合(−O−Si−O−Si−)を有
する三次元網目状の重合物(シリケートポリマ
ー)とエチルアルコールである。ただし、生成し
たシリケートポリマーは、上記式中に示したよう
に、完全に三次元網目状構造を成すとは限らず、
直鎖状のポリマーであつたり、またその構造中に
反応中間体であるシラノール
The present invention relates to a method for manufacturing a silicate ester humidity sensing element that utilizes changes in the electrical resistance of a humidity sensing portion depending on the humidity of the atmosphere. Conventionally, the moisture-sensing part of a moisture-sensing element having such a function has been made using electrolytes such as lithium chloride or calcium chloride, semiconductor vapor deposited films such as selenium or germanium, and aluminum oxide, titanium oxide, iron oxide, etc. Metal oxides or metal oxide ceramics have been used. Among these, the electrolyte exhibits significant hygroscopicity and fluidity in the high humidity region, resulting in low element strength, measurement humidity in the low humidity region, and short life. Those using a semiconductor vapor deposited film require vacuum vapor deposition or a similar method, and are therefore not easy to manufacture, and the measured values are greatly affected by temperature. On the other hand, metal oxide-based materials are physically and chemically stable and have high element strength, but they have a relatively narrow measurement humidity range of 50 to 100% RH and high temperatures (800 to 1200℃). )
Many of the materials had to be sintered, so the manufacturing method was not easy. As described above, each of the conventional methods has the above-mentioned drawbacks and cannot be said to be satisfactory. The present invention provides a method for manufacturing a silicate ester moisture-sensitive element that has excellent humidity detection sensitivity and a wide measurable humidity range. Hereinafter, the details of the present invention will be explained according to Examples. Example 1 A solution of ethyl silicate in isopropyl alcohol was used as a starting material, and water was added to it under acidic conditions with hydrochloric acid to perform hydrolysis. The reaction is thought to proceed as follows. That is, the hydrolysis product of ethyl silicate is a three-dimensional network polymer (silicate polymer) having siloxane bonds (-O-Si-O-Si-) and ethyl alcohol. However, the produced silicate polymer does not necessarily form a completely three-dimensional network structure as shown in the above formula,
It is a linear polymer, and its structure contains silanol, which is a reaction intermediate.

【式】を含 有していたりすることも考えられる。これらの状
態は、加水分解時の添加水量による加水分解率の
違いなどによつて変化し、生成したシリケートポ
リマーの造膜性が著しく異なつてくる。 しかしながら、発明者らは原料のエチレシリケ
ートの量と加える水の量を種々の配合比で検討し
た結果、造膜性が良好でしかもすれた感湿機能を
もつシリケートポリマー膜の製作方法を見い出し
たことに基ずき、本発明を提案するものである。 まず、エチルシリケート100g、イソプロピル
アルコール50gを3つ口フラスコに入れ、撹拌し
てこれらを均一に混合する。次に0.1規定の塩酸
12.5c.c.を滴下ロートに秤り取り、上記エチルアル
コールとイソプロピルアルコールの混合溶液中に
撹拌しながら常温で30〜40分かけて除々に滴下
し、エチルシリケートを加水分解した。この時エ
チルシリケートの加水分解率は73%である。なお
ここでいう加水分解率とは〔(加えた水のモル
数)/(エチルシリケートのモル数)×2〕×100
で定義する。 このようにして作つたシリケートポリマーをセ
ラミツク基板上に約30μmの厚さに塗布して第1
図のような感湿素子を作製した。第1図におい
て、1はアルミナ製絶縁基板、2はくし形状の銀
電極、3はシリケートポリマーによる感湿部、4
は導線である。 次に、このものを常温で30〜60分乾燥した後
400℃の電気炉中で1時間焼成して最終的な感湿
素子とした。 本発明による工程を経て作製した第1図のよう
な感湿素子を、相対湿度を0から100%まで変化
させた空気中にさらし、その時の感湿部の電気抵
抗値変化を測定した。この結果を第2図に示す。
図から明らかなように、本発明の感湿素子は相対
湿度0〜100%の全領域にわたつて、湿度変化に
よる電気抵抗値の変化が大であり、良好な特性を
有していることがわかる。また、この素子を用い
て、湿度測定をくり返し行なつた結果、いかなる
相対湿度においても変化量は2〜3%以内であ
り、きわめて安定な素子であつて、応答速度につ
いても、相対湿度0%の状態から100%までの変
化に対して数秒であり、実用上十分に速いもので
あることが判明した。また、エチルシリケートポ
リマーのセラミツク基板への密着性も良好で、造
膜性能にもすぐれていることが分つた。 実施例 2 出発原料としてエチルシリケートを用い、エチ
ルシリケート100g、イソプロピルアルコール20
gをフラスコ中で均一に撹拌し、これに塩酸酸性
下で12c.c.の水を滴下ロートを用いて30分間でゆつ
くり滴下しエチルシリケートを加水分解した。こ
の場合、エチルシリケートの加水分解率は69%で
ある。次に、この生成したエチルシリケートポリ
マーを実施例1と同様に耐熱ガラス板上に流し塗
りし約15μmの厚さの膜に調整し、第1図のよう
な感湿素子を作製し、常温で40分乾燥した後、
300℃で2時間焼成して最終的な感湿素子とした。
当該感湿素子を用いて実施例1と同様にその感湿
特性を測定した結果を第3図に示す。第3図から
も明らかなように本発明の感湿素子は全相対湿度
領域にわたつて良好な感湿特性を示すものであ
り、ガラス基板との密着性にもすぐれていること
が判明した。 実施例 3 出発原料として四塩化けい素を用い、グリニヤ
ール試薬を用いてメチルシリケートとし、このメ
チルシリケート100gとイソプロピルアルコール
40gを均一に混合し、硫酸酸性下で水12c.c.を徐々
に滴下しメチルシリケートを加水分解し、加水分
解率69%のシリケートポリマーを得た。この生成
したシリケートポリマーを実施例1、2、と同様
に絶縁基板上に40μmの厚さに塗布し、常温で40
分乾燥した後、500℃で1時間焼成して第1図に
示す感湿素子を作製した。当該素子の感湿特性を
測定した結果、第3図と同様な特性を有している
ことが明らかになつた。また、当該エチルシリケ
ートポリマーも前述実施例の場合と同様絶縁基板
上への密着性が良好で、感湿塗膜強度も非常にす
ぐれていることが判明した。 ところで発明者らは、実施例で用いた以外の各
種のけい酸エステルを用い実施例1、2と同様な
工程を経て作製した重合体(シリケートポリマ
ー)を感湿部とする感湿素子の感湿特性を測定し
たところ、いずれも第2図および第3図のように
良好な特性を示した。この理由は、残留している
かもしくは化学吸着によつて感湿部表面に形成さ
れているシラノール
It is also possible that it contains [Formula]. These conditions change depending on the rate of hydrolysis depending on the amount of water added during hydrolysis, and the film-forming properties of the produced silicate polymer differ significantly. However, the inventors investigated the amount of ethylene silicate as a raw material and the amount of water added at various mixing ratios, and as a result, they discovered a method for producing a silicate polymer film that has good film-forming properties and has a moisture-sensitive function. Based on this, the present invention is proposed. First, 100 g of ethyl silicate and 50 g of isopropyl alcohol are placed in a three-necked flask and stirred to mix them uniformly. Next, 0.1N hydrochloric acid
12.5 cc was weighed into a dropping funnel and gradually added dropwise to the above mixed solution of ethyl alcohol and isopropyl alcohol over 30 to 40 minutes at room temperature with stirring to hydrolyze the ethyl silicate. At this time, the hydrolysis rate of ethyl silicate was 73%. The hydrolysis rate referred to here is [(number of moles of water added)/(number of moles of ethyl silicate) x 2] x 100
Defined by The silicate polymer prepared in this way was applied to a thickness of about 30 μm on a ceramic substrate.
A moisture-sensitive element as shown in the figure was fabricated. In Fig. 1, 1 is an alumina insulating substrate, 2 is a comb-shaped silver electrode, 3 is a moisture sensitive part made of silicate polymer, and 4 is a comb-shaped silver electrode.
is a conductor. Then, after drying this thing at room temperature for 30-60 minutes
The final moisture-sensitive element was prepared by firing in an electric furnace at 400°C for 1 hour. A humidity sensing element as shown in FIG. 1 produced through the process according to the present invention was exposed to air whose relative humidity was varied from 0 to 100%, and the change in electrical resistance of the humidity sensing portion at that time was measured. The results are shown in FIG.
As is clear from the figure, the humidity sensing element of the present invention shows a large change in electrical resistance due to changes in humidity over the entire range of relative humidity from 0 to 100%, indicating that it has good characteristics. Recognize. In addition, as a result of repeated humidity measurements using this element, the amount of change is within 2 to 3% at any relative humidity, and it is an extremely stable element. It took several seconds for the change from 100% to 100%, which was found to be fast enough for practical use. It was also found that the ethylsilicate polymer had good adhesion to the ceramic substrate and had excellent film forming performance. Example 2 Using ethyl silicate as a starting material, 100 g of ethyl silicate, 20 g of isopropyl alcohol
g was uniformly stirred in a flask, and 12 c.c. of water was slowly added dropwise thereto over 30 minutes using a dropping funnel under acidic conditions with hydrochloric acid to hydrolyze the ethyl silicate. In this case, the hydrolysis rate of ethyl silicate is 69%. Next, the produced ethylsilicate polymer was poured onto a heat-resistant glass plate in the same manner as in Example 1 to form a film with a thickness of about 15 μm, and a moisture-sensitive element as shown in Fig. 1 was prepared. After drying for 40 minutes,
The final moisture-sensitive element was obtained by baking at 300°C for 2 hours.
The humidity-sensitive characteristics of the moisture-sensitive element were measured in the same manner as in Example 1, and the results are shown in FIG. As is clear from FIG. 3, the humidity sensing element of the present invention exhibited good moisture sensing characteristics over the entire relative humidity range, and was found to have excellent adhesion to the glass substrate. Example 3 Using silicon tetrachloride as a starting material, convert it into methyl silicate using a Grignard reagent, and add 100 g of this methyl silicate and isopropyl alcohol.
40 g were mixed uniformly, and 12 c.c. of water was gradually added dropwise under acidic sulfuric acid to hydrolyze the methyl silicate to obtain a silicate polymer with a hydrolysis rate of 69%. The produced silicate polymer was coated on an insulating substrate to a thickness of 40 μm in the same manner as in Examples 1 and 2, and was heated to a thickness of 40 μm at room temperature.
After drying for several minutes, it was fired at 500° C. for 1 hour to produce the moisture-sensitive element shown in FIG. As a result of measuring the moisture sensitivity characteristics of the device, it was revealed that the device had characteristics similar to those shown in FIG. Furthermore, it was found that the ethyl silicate polymer also had good adhesion to the insulating substrate, as in the case of the above-mentioned examples, and also had very good moisture-sensitive coating strength. By the way, the inventors have developed a moisture-sensing element whose moisture-sensing portion is a polymer (silicate polymer) produced through the same steps as in Examples 1 and 2 using various silicate esters other than those used in the examples. When the moisture characteristics were measured, both exhibited good characteristics as shown in FIGS. 2 and 3. The reason for this is that silanol remains or is formed on the surface of the moisture sensitive part due to chemical adsorption.

【式】に水が吸着し た際の電気抵抗値変化が大であることに起因して
いるものと推定される。したがつて、本発明で
は、いずれのけい酸エステルを出発原料として用
いてもよい。ただし、発明者らの検討によれば、
加える水の量によつて生成するシリケートポリマ
ーの造膜性が著しく異ることが明らかになつた。
即ち、加水分解率が65〜90%の範囲では良好な膜
となるが、この範囲をはずれると造膜しなかつた
り、たとえ造膜しても非常に脆い膜となつたり、
絶縁基板との密着性も悪くなるなど実用に供し得
ないものとなる事実を見い出した。すなわち、け
い酸エステルからのシリケートポリマーを感湿素
子として用いる場合は実施例にも詳述したよう
に、加える水の量を調整して、加水分解率が65〜
90%になるようにすれば良好な感湿膜を得ること
ができる。ところで、このシリケートポリマーの
感湿部を実施例で用いたように絶縁基板上に皮膜
状に塗着形成する場合、皮膜を厚くしすぎるとク
ラツクが入りやすくなり、逆にあまり薄いと皮膜
を均一に塗布することが難かしかつたり、ピンホ
ールなどの発生が懸念され、品質上に問題が多
い。発明者らは感湿部膜厚について種々検討した
結果、膜厚が10〜150μmの範囲が最も安定した
感湿皮膜が得られることも分つた。なお、塗布方
法はスプレー、デイツピング、ハケ刷りなどのい
かなる方法によつても簡単に行なうことができ
る。 当該膜厚を10〜150μmに調整した感湿素子は
常温で乾燥した状態のものでも短期的には良好な
感湿特性を示すが、常温で乾燥後さらに200〜600
℃で焼成することにより、長期的な信頼性が著し
く向上することが明らかになつた。この時、焼成
温度が200℃以下でもまた600℃以上でも良好な皮
膜強度を有し、かつ長期的に感湿特性がすぐれて
いる感湿素子は得られなかつた。以上のように明
らかとなつた事実から、高感度で耐久性のあるけ
い酸エステル系感湿素子を作るためには、その製
作工程が重要であることが判明した。 以上説明したように、感湿部がけい酸エステル
の加水分解によつて生成した重合物(シリケート
ポリマー)を主成分とする感湿素子において、け
い酸エステルの加水分解率が65〜90%のシリケー
トポリマーを用い、感湿部膜厚が10〜150μmで、
常温乾燥後200〜600℃で焼成する一連の工程を有
する本発明の製作方法によつて作製された感湿素
子であれば、湿度検出感度が優れ、測定可能湿度
範囲が広いことはもちろん、従来のセラミツク湿
度センサーなどより焼成温度が低く製作容易で、
しかも耐久性が良好な湿度センサー結露センサー
などの感湿素子を提供することができる。
This is presumed to be due to the large change in electrical resistance when water is adsorbed to [Formula]. Therefore, in the present invention, any silicate ester may be used as a starting material. However, according to the inventors' study,
It has become clear that the film-forming properties of the silicate polymer produced differ significantly depending on the amount of water added.
That is, when the hydrolysis rate is in the range of 65 to 90%, a good film will be obtained, but if it is outside this range, the film may not be formed, or even if it is formed, it will be a very brittle film.
It was discovered that the adhesion to the insulating substrate also deteriorated, making it impossible to put it into practical use. That is, when using a silicate polymer made from a silicate ester as a moisture-sensitive element, as detailed in the examples, the amount of water to be added is adjusted so that the hydrolysis rate is 65~65.
A good moisture-sensitive film can be obtained by setting the ratio to 90%. By the way, when forming a moisture-sensitive part of this silicate polymer in the form of a film on an insulating substrate as used in the example, if the film is too thick, cracks are likely to occur, and on the other hand, if it is too thin, the film may not be uniform. There are many quality problems, as it is difficult to apply and there are concerns that pinholes may occur. As a result of various studies regarding the thickness of the moisture sensitive portion, the inventors have also found that the most stable moisture sensitive film can be obtained when the thickness is in the range of 10 to 150 μm. Incidentally, the coating method can be easily carried out by any method such as spraying, dipping, brushing, etc. A moisture-sensitive element with a film thickness adjusted to 10 to 150 μm exhibits good moisture-sensing characteristics in the short term even when dried at room temperature, but after drying at room temperature,
It has become clear that long-term reliability is significantly improved by firing at ℃. At this time, it was not possible to obtain a moisture-sensitive element that had good film strength even when the firing temperature was below 200°C or above 600°C and had excellent long-term moisture-sensitive characteristics. From the facts that have become clear as described above, it has become clear that the manufacturing process is important in producing a highly sensitive and durable silicate ester moisture sensitive element. As explained above, in a moisture-sensing element whose moisture-sensing portion is mainly composed of a polymer (silicate polymer) produced by hydrolysis of a silicate ester, the hydrolysis rate of the silicate ester is 65 to 90%. Using silicate polymer, the thickness of the moisture sensitive part is 10 to 150 μm,
The humidity sensing element manufactured by the manufacturing method of the present invention, which includes a series of steps of drying at room temperature and then firing at 200 to 600°C, has excellent humidity detection sensitivity and a wide measurable humidity range, and is superior to conventional methods. The firing temperature is lower than that of ceramic humidity sensors, making it easier to manufacture.
Furthermore, it is possible to provide a humidity sensing element such as a humidity sensor or a dew condensation sensor that has good durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は感湿素子の一構成例を示す模式図、第
2図および第3図は、本発明のによる方法で作製
した感湿素子の感湿特性例を示すグラフである。 図中同一符号は、同一または相当部位を示し、
1は絶縁基板、2は電極、3は感湿部、4は導線
である。
FIG. 1 is a schematic diagram showing an example of the structure of a humidity-sensitive element, and FIGS. 2 and 3 are graphs showing examples of humidity-sensitive characteristics of a humidity-sensitive element manufactured by the method according to the present invention. The same symbols in the figures indicate the same or equivalent parts,
1 is an insulating substrate, 2 is an electrode, 3 is a moisture sensing portion, and 4 is a conducting wire.

Claims (1)

【特許請求の範囲】[Claims] 1 溶剤とけい酸エステルとの混合物を、酸の存
在下で加水分解率65〜90%の範囲内で加水分解し
て重合物を得る工程、重合物を絶縁基板上に乾燥
膜厚10〜150μmの範囲内で塗布する工程、およ
び塗布物を温度範囲200〜600℃において焼成する
工程を有することを特徴とする感湿素子の製作方
法。
1 A step of obtaining a polymer by hydrolyzing a mixture of a solvent and a silicate ester in the presence of an acid within a hydrolysis rate of 65 to 90%, and depositing the polymer on an insulating substrate with a dry film thickness of 10 to 150 μm. 1. A method for manufacturing a moisture-sensitive element, comprising the steps of: coating within a temperature range of 200 to 600°C; and baking the coated material within a temperature range of 200 to 600°C.
JP57012223A 1982-01-28 1982-01-28 Manufacture of humidity sensor Granted JPS58129240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57012223A JPS58129240A (en) 1982-01-28 1982-01-28 Manufacture of humidity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57012223A JPS58129240A (en) 1982-01-28 1982-01-28 Manufacture of humidity sensor

Publications (2)

Publication Number Publication Date
JPS58129240A JPS58129240A (en) 1983-08-02
JPS632464B2 true JPS632464B2 (en) 1988-01-19

Family

ID=11799373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57012223A Granted JPS58129240A (en) 1982-01-28 1982-01-28 Manufacture of humidity sensor

Country Status (1)

Country Link
JP (1) JPS58129240A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940002635B1 (en) * 1988-06-27 1994-03-26 세이꼬 엡슨 가부시끼가이샤 Humidity sensor

Also Published As

Publication number Publication date
JPS58129240A (en) 1983-08-02

Similar Documents

Publication Publication Date Title
WO1983001339A1 (en) Humidity sensor
JPS632464B2 (en)
RU2485465C1 (en) Method to manufacture vacuum sensor with nanostructure and vacuum sensor on its basis
CA1054224A (en) Method for applying electrodes to ceramic electrochemical gas analysers
JPS6131417B2 (en)
JPH0161175B2 (en)
RU2506659C2 (en) Method to manufacture vacuum sensor with nanostructure higher sensitivity and vacuum sensor on its basis
JPS6154175B2 (en)
JPH0246099B2 (en)
JPS61147135A (en) Production of moisture sensitive material
JPH0240183B2 (en)
JPH0231843B2 (en) KANON * KANSHITSUSOSHINOSEIZOHOHO
JPS6345803A (en) Moisture-sensitive device
JPS617455A (en) Humidity sensitive material
JPS6345802A (en) Amorphous film and manufacture of the same
JPH03108650A (en) Manufacture of humidity sensor element
JPS61147134A (en) Production of temperature sensitive material
JPH0372253A (en) Humidity-sensitive element and preparation thereof
JPS59102150A (en) Moisture sensitive material
JPH052099B2 (en)
JPH03172749A (en) Gas sensor
JPS5999702A (en) Moisture sensitive element
JPS6255681B2 (en)
JPS61145803A (en) Manufacture of thermosensitive/moisture sensitive element
JPS5817426B2 (en) microwave humidity sensor