JPS63246236A - Conductive porous body and manufacture thereof - Google Patents

Conductive porous body and manufacture thereof

Info

Publication number
JPS63246236A
JPS63246236A JP62080104A JP8010487A JPS63246236A JP S63246236 A JPS63246236 A JP S63246236A JP 62080104 A JP62080104 A JP 62080104A JP 8010487 A JP8010487 A JP 8010487A JP S63246236 A JPS63246236 A JP S63246236A
Authority
JP
Japan
Prior art keywords
porous body
porous
particle powder
conductive
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62080104A
Other languages
Japanese (ja)
Inventor
佐々木 泰興
宗形 美幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP62080104A priority Critical patent/JPS63246236A/en
Publication of JPS63246236A publication Critical patent/JPS63246236A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は、良好な熱伝導性及び電気伝導性を有する導
電性多孔質体及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a conductive porous body having good thermal conductivity and electrical conductivity, and a method for manufacturing the same.

(技術的背景と解決すべき問題点) 多孔質体、特にポリビニルアセタール(以下、Pν八へ
という)系多孔質体は、水溶性のポリビニルアルコール
(以下、Pv八という)、気孔形成剤及びアルデヒドを
酸触媒と共に反応させることで9(ノられる。このPV
At系多孔質体は耐薬品性に優れ、又、稲々の製法によ
り平均孔径8〜1000μ慣の連続気孔を有する立体網
状構造を成しているので、機械的強度が高いという特徴
がある,そこでアセタール化度の低いt’VAL系多孔
質体である軟質材は、その立体網状構造による軽量性.
反撥弾性に優れていることからパラるため親木性であり
耐薬品性に優れていることがら濾材、吸水材、拭浄材等
に利用される。さらに、アセタール化度を高めたPVA
j系多孔質体あるいは、熱硬化性樹脂を併用したPVA
j系多孔質体である硬7τ材は、その機械的強度が高い
ことから研磨材に利用される。
(Technical background and problems to be solved) Porous bodies, especially polyvinyl acetal (hereinafter referred to as Pv8) based porous bodies, are made of water-soluble polyvinyl alcohol (hereinafter referred to as Pv8), a pore forming agent, and an aldehyde. By reacting with an acid catalyst, the PV
The At-based porous material has excellent chemical resistance, and is characterized by high mechanical strength because it has a three-dimensional network structure with continuous pores with an average pore size of 8 to 1000 μm using the Inanai manufacturing method. The soft material, which is a t'VAL porous material with a low degree of acetalization, is lightweight due to its three-dimensional network structure.
It is used for filter media, water-absorbing materials, cleaning materials, etc. because it has excellent rebound properties, is wood-friendly, and has excellent chemical resistance. Furthermore, PVA with increased degree of acetalization
J-based porous material or PVA combined with thermosetting resin
Hard 7τ material, which is a J-based porous material, is used as an abrasive material because of its high mechanical strength.

・上記のような多孔質体に、さらに良好な熱伝導性及び
電気伝導性が付加されると、その用途は例えば帯電フィ
ルターや電磁波吸収体等の電気工業方面に拡大される。
- If even better thermal conductivity and electrical conductivity are added to the above-mentioned porous body, its use will be expanded to electric industry fields such as charged filters and electromagnetic wave absorbers.

従来の、導電性多孔質体の製造の一例として、多孔71
体の原液に導電性を有する微粒子粉体を添加配合する方
法がある。
As an example of conventional manufacturing of a conductive porous body, pores 71
There is a method of adding conductive microparticle powder to the body solution.

しかし、上記方法では微粒子粉体が、多孔質体の原液中
に含まれる反応系原料、溶媒又は触媒等の作用で化学変
化したり、加熱反応等の雰囲気中にさらされて分解した
りして、微粒子粉体の有する機能、特性が損なわれると
いう問題があった。さらに、多孔質体中に微粒子粉体を
均一分散させることが困難であり、また、微粒子粉体の
周りを多孔質体が覆ってしまい、微粒子粉体の特性機能
が効率良く発揮できないという欠売があった。
However, in the above method, the fine particle powder may be chemically changed by the action of reaction raw materials, solvents, catalysts, etc. contained in the raw solution of the porous body, or decomposed by being exposed to the atmosphere of heating reactions, etc. However, there was a problem in that the functions and characteristics of the fine particle powder were impaired. Furthermore, it is difficult to uniformly disperse fine-particle powder in a porous material, and the porous material covers the fine-particle powder, making it impossible for the fine-particle powder to efficiently demonstrate its characteristics. was there.

そこで、上述した問題点、欠点を解決する製造の一例と
して、多孔質体外表面にj’;I電性をイTする微粒子
粉体な接着あるいは融着する方法がある。
Therefore, as an example of a manufacturing method that solves the above-mentioned problems and drawbacks, there is a method of adhering or fusing fine particle powder having an electric property to the outer surface of a porous body.

しかし、上述の方法では、多孔質体外表面の摩擦により
微粒子粉体が脱落し易いという問題があった。
However, the above-mentioned method has a problem in that the fine particles easily fall off due to friction on the outer surface of the porous body.

(発明の目的) この発明は上述のような事情からなされたものであり、
この発明の目的は熱伝導性及び電気伝導性に優れた導電
性多孔質体及びその製造方法を提(9することにある。
(Object of the invention) This invention was made under the above circumstances,
An object of the present invention is to provide a conductive porous body having excellent thermal conductivity and electrical conductivity, and a method for producing the same.

(問題点を解決するための手段) この発明は、良好な熱及び電気伝導性を有するL’;I
電性多孔質体に関するもので、上記この発明の目的は、
多孔質体と、導電性を有する微粒子粉体が付着された多
孔質体層とを具備したことによって達成され、上記導電
性多孔質体は、導電性を有する微粒子粉体を熱硬化性樹
脂の水溶液に添加して分散混合液とし、この分散混合液
を多孔質体に含浸し、乾燥処理によって前記分散混合液
の含有水分を除去し、熱処理によって前記熱硬化性樹脂
を硬化し、前記多孔質体に前記微粒子粉体を付着せしめ
ることによって得られる。
(Means for Solving the Problems) The present invention provides L';I having good thermal and electrical conductivity.
The present invention relates to an electrically conductive porous body, and the object of the present invention is to:
This is achieved by comprising a porous body and a porous body layer to which conductive fine particle powder is attached, and the conductive porous body is made of a thermosetting resin made of conductive fine particle powder. It is added to an aqueous solution to form a dispersion mixture, this dispersion mixture is impregnated into a porous body, the moisture contained in the dispersion mixture is removed by drying treatment, the thermosetting resin is hardened by heat treatment, and the porous body is It can be obtained by attaching the fine particle powder to a body.

(発明の作用) この発明は導電性を有する微粒子粉体が予め熱硬化性樹
脂の水溶液に分散混合されているので、多孔質体に良く
浸透して強力に付着されるものである。
(Function of the Invention) In the present invention, conductive fine particles are dispersed and mixed in advance in an aqueous solution of a thermosetting resin, so that they penetrate well into a porous body and are strongly adhered to the porous body.

(発明の実施例) この発明による導電性多孔質体50は第1図。(Example of the invention) A conductive porous body 50 according to the present invention is shown in FIG.

第2図及び第3図の断面図に示すように、多孔1τ体5
1と、導電性を有する微粒子粉体52が付着された多孔
質体層53とで構成されている。
As shown in the cross-sectional views of FIGS. 2 and 3, the porous 1τ body 5
1 and a porous layer 53 to which conductive fine particles 52 are attached.

上述の多孔質体51としては、例えばI’VAt、セラ
ミックが有り、特に限定されるものではない。又、上述
した微粒子粉体52としては、例えば、金属粉(銀、銅
、金、アルミ、スズ、鉄等)、金属酸化物粉(酸化スズ
、酸化インジウムスズ等)、炭素粉等が有り、また、こ
れらの混合物あるいは、これらと導電性を有しない微粒
子粉体との混合物でも良く、特に限定されるものではな
い。
Examples of the above-mentioned porous body 51 include I'VAt and ceramic, and are not particularly limited. Further, as the above-mentioned fine particle powder 52, there are, for example, metal powder (silver, copper, gold, aluminum, tin, iron, etc.), metal oxide powder (tin oxide, indium tin oxide, etc.), carbon powder, etc. Further, it may be a mixture of these or a mixture of these and a fine particle powder having no conductivity, and is not particularly limited.

次に上述した導電性多孔質体50の製造方法について第
4図を参照して説明する。
Next, a method for manufacturing the above-mentioned conductive porous body 50 will be explained with reference to FIG. 4.

第4図は導電性多孔質体50の製造装置の一例を示す概
略構成図であり、多孔質体シート!が巻回されているロ
ーラ2と、このローラ2から搬出される多孔質体シート
1が含浸IA埋される含浸槽3と、含浸処理された多孔
質体シート1を搬出するローラ4とを有している。さら
に、ローラ4から搬出される多孔質体シート1を、乾燥
処理する装置5と熱処理する装置6と、以上の処理が終
了した多孔質体シート1を巻回するローラフとが設けら
れている。
FIG. 4 is a schematic configuration diagram showing an example of an apparatus for manufacturing the conductive porous material 50, and shows a porous material sheet! The roller 2 has a roller 2 around which the porous sheet 1 is wound, an impregnation tank 3 in which the porous sheet 1 discharged from the roller 2 is buried in the impregnation IA, and a roller 4 which discharges the impregnated porous sheet 1. are doing. Furthermore, a device 5 for drying the porous sheet 1 carried out from the rollers 4, a device 6 for heat-treating the porous sheet 1, and a roller ruff for winding the porous sheet 1 after the above-mentioned treatments are provided.

上述した製造装置の動作を説明すると、まず、熱硬化性
樹脂の水溶液に導電性を有する微粒子粉体52を分散混
合し、この分散混合液10を含浸イク3内に入れておく
。そして、ローラ2からI2所された多孔質体シート1
は含浸槽3内の分散混合液10に浸漬され、多孔質体シ
ート1の内部に分散混合液lOか含浸される。含浸処理
された多孔質体シーh lはローラ4によって乾燥IA
埋装置5に搬出され、含浸した分散混合液lOの含有水
分が除去される。さらに、熱処理装置6に搬出され、多
孔71体シート1内に含浸されている熱硬化性樹脂が硬
化される。このとき、熱硬化性樹脂と共に、微粒子粉体
が多孔質体シート1に付着するので第1図に示すような
導電性多孔質体50を得ることができる。
To explain the operation of the above-mentioned manufacturing apparatus, first, conductive fine particle powder 52 is dispersed and mixed in an aqueous solution of a thermosetting resin, and this dispersion mixture 10 is placed in the impregnating tank 3. Then, the porous sheet 1 is rolled from the roller 2 to the I2 position.
is immersed in the dispersion mixture 10 in the impregnating tank 3, and the inside of the porous sheet 1 is impregnated with the dispersion mixture 10. The impregnated porous sheet is dried by roller 4.
It is carried out to the burial device 5, and the water contained in the impregnated dispersion mixture lO is removed. Furthermore, it is carried out to a heat treatment apparatus 6, and the thermosetting resin impregnated in the porous 71 sheet 1 is cured. At this time, the fine particle powder adheres to the porous material sheet 1 together with the thermosetting resin, so that a conductive porous material 50 as shown in FIG. 1 can be obtained.

第5図は導電性多孔質体50の製造装置の別の例を示す
概略構成図であり、含ff14f!3の代りに多孔質体
シー1−1の表裏側に1木ずつスプレーノズル20が設
りられている。これらのスプレーノズル20から、上述
した分11に混合液10が多孔質体シート1の表裏面に
吹付けられ、第4図で説明した処理が施されて、第2図
に示すような導電性多孔質体50を得るものである。
FIG. 5 is a schematic diagram showing another example of the manufacturing apparatus for the conductive porous body 50, including ff14f! 3, spray nozzles 20 are provided for each tree on the front and back sides of the porous material sheet 1-1. From these spray nozzles 20, the mixed liquid 10 is sprayed on the front and back surfaces of the porous sheet 1 in the above-mentioned portion 11, and the treatment explained in FIG. A porous body 50 is obtained.

第6図は導電性多孔質体50の製造装置のさらに別の例
を示す概略構成図であり、含j:24ff3の代りに、
多孔質体シート1の表面に並列する2個のローラ31.
32 と、多孔質体シートtの裏面に上記ローラ31,
32の1個32に対向したローラ33とが設けられてい
る。並列しているローラ:ll、32間に、上述した分
散混合液lOを溜め、これらのり−ラ:11.:12の
間隙を調整することで多孔質体シートlの表面に分11
り混合液lOか塗布され、対向したローラ33で多孔質
体シート1か搬出される。そして、’:414図で説明
した処理が施されて、第3図に示すような導電性多孔’
ET体50をマ:ノるものである。
FIG. 6 is a schematic configuration diagram showing still another example of the manufacturing apparatus for the conductive porous body 50, in which instead of j: 24ff3,
Two rollers 31 arranged in parallel on the surface of the porous sheet 1.
32, and the roller 31,
A roller 33 facing one of the rollers 32 is provided. The above-mentioned dispersion mixture lO is stored between rollers 11 and 32 which are arranged in parallel, and these glue rollers 11. :11 on the surface of the porous sheet l by adjusting the gap of 12
A mixed liquid lO is applied thereto, and the porous sheet 1 is conveyed out by opposing rollers 33. Then, the process explained in Figure 414 is applied to form conductive pores as shown in Figure 3.
It is a master of 50 ET bodies.

上述した熱硬化性樹脂の水溶液の代わりに、そのプレポ
リマないし前駆体の水溶液を用いても良く、さらに、こ
れらの水溶液に硬化1チ:媒を添加しても良い。
Instead of the aqueous solution of the thermosetting resin described above, an aqueous solution of its prepolymer or precursor may be used, and a curing medium may be added to these aqueous solutions.

また、この熱硬化性樹脂としては、例えばPVAが有り
、そのケン化度98.5モル%以上1m合度1700以
上が好ましく、上記範囲を逸脱すると、耐水性に優れた
強固な付着性が得られなくなる。そして、上記したPV
Aの水溶液の濃度は1〜5wt零が好ましく、濃度が低
過ぎると強固な付着性が得られず、濃度が高過ぎると高
粘度になって微粒子粉体52の分散性が悪化する。さら
に、このl’VAの水溶液に対する微粒子粉体52の添
加量は1〜l0wt%が好ましく、添加量が低過ぎると
効果に乏しく、添加量が高過ぎると多孔質体に均一な付
着を行なうことが困難になる。
In addition, this thermosetting resin includes, for example, PVA, and its saponification degree is preferably 98.5 mol% or more and 1 m ratio of 1700 or more, and if it deviates from the above range, strong adhesion with excellent water resistance may not be obtained. It disappears. And the PV mentioned above
The concentration of the aqueous solution A is preferably 1 to 5 wt zero; if the concentration is too low, strong adhesion cannot be obtained, and if the concentration is too high, the viscosity becomes high and the dispersibility of the fine particle powder 52 deteriorates. Furthermore, the amount of the fine particle powder 52 added to the l'VA aqueous solution is preferably 1 to 10 wt%; if the amount added is too low, the effect will be poor, and if the amount added is too high, it will not adhere uniformly to the porous body. becomes difficult.

上述では多孔質体51の形状をシートとしたが、特に限
定されるものでなく、円筒でも良い。
In the above description, the shape of the porous body 51 is a sheet, but the shape is not particularly limited and may be a cylinder.

乾燥処理条件としては、多孔質体51及び微粒子粉体5
2に悪影郷を及ぼさないで含有水分を除去できれば良く
、特に限定されないが例えば加熱による場合には80℃
以下で行なうのが良い。
The drying treatment conditions include a porous body 51 and a fine particle powder 5.
It is sufficient as long as the moisture content can be removed without causing any adverse effect on 2. Although there is no particular limitation, for example, when heating is used, the temperature may be 80°C.
It is best to do the following.

熱処理条件としては、微粒子粉体52が強固に付着すれ
ば良く、特に限定されないが、例えば110〜150℃
で行なうのが良い。
The heat treatment conditions are not particularly limited as long as the fine particle powder 52 adheres firmly, but for example, 110 to 150°C.
It is better to do it with

上述のように、熱硬化性樹脂の水溶r(Mと共に、微粒
子粉体52が多孔質体51の細孔に浸透するため、乾燥
処理後も熱硬化性樹脂及び微粒子粉体52は残留する。
As mentioned above, since the fine particle powder 52 permeates into the pores of the porous body 51 together with the water-soluble R(M) of the thermosetting resin, the thermosetting resin and the fine particle powder 52 remain even after the drying process.

そして、熱処理によって熱硬化性樹脂は、微粒子粉体の
比較的表面部で水不溶性の皮膜に変化し、多孔質体51
に微粒子粉体52を付着させるので、微粒子粉体52の
特性機能を損なうことがない。また、熱硬化性樹脂の付
着量は少ない方が多孔質体51の物性に影響を与えない
ので、付着量は多孔質体51に対して10w1%以下に
することが望ましい。
Then, by heat treatment, the thermosetting resin changes into a water-insoluble film on a relatively surface area of the fine particle powder, and the porous body 51
Since the fine particle powder 52 is attached to the surface, the characteristics and functions of the fine particle powder 52 are not impaired. Furthermore, since the smaller the amount of thermosetting resin attached, the less it affects the physical properties of the porous body 51, it is desirable that the amount of attached thermosetting resin be 10w1% or less with respect to the porous body 51.

次に具体的な実施例を説明する。Next, a specific example will be described.

重合度1700の完全ケン化Pvへ及びアルデヒド水溶
1&に、澱粉及び水溶性高分子を気孔形成剤として添加
し、硫酸触媒の下で55℃、 10時間のアセタール化
反応を行い、平均気孔径300μm、気孔率93%の軟
質ポリビニルアセタール系多孔質体を得た。そして、こ
の多孔質体を水洗、脱水後、/l硫酸15jfg、ホル
マリン20にg、水150 Kgのゲル化浴に浸漬し、
温度60℃、湿度90%の高温加湿反応室に100時間
静置反応させた後、洗浄、脱水、乾燥した湿潤時半硬質
状の多孔質体シートを得た6次に、平均重合度1700
以上でケン化度98.5モル%以上のPVAの5wL%
水溶液に、アルミニウム金属粉ペーストを70g/β添
加し、粘度100 CPS/25℃に調整した。そして
、この分散混合液を第1図〜第3図に示す製造装置を用
いて、上記多孔質体シートに3wL%以上(;1着させ
、70℃で2時間乾燥処理後、150℃で40分熱処理
した。こうして得られた導電性多孔質体シートは、良好
な熱及び電気伝導性を示した。
Starch and a water-soluble polymer were added as pore-forming agents to the completely saponified Pv with a degree of polymerization of 1700 and an aqueous aldehyde solution 1&, and an acetalization reaction was carried out at 55°C for 10 hours under a sulfuric acid catalyst, resulting in an average pore diameter of 300 μm. A soft polyvinyl acetal porous body with a porosity of 93% was obtained. After washing and dehydrating this porous body, it was immersed in a gelling bath containing 15 jfg/l of sulfuric acid, 20 g of formalin, and 150 kg of water.
After standing in a high-temperature humidified reaction chamber at a temperature of 60°C and a humidity of 90% for 100 hours, a porous sheet was washed, dehydrated, and dried to obtain a porous sheet with an average degree of polymerization of 1700.
5 wL% of PVA with saponification degree of 98.5 mol% or more
70 g/β of aluminum metal powder paste was added to the aqueous solution, and the viscosity was adjusted to 100 CPS/25°C. Then, using the manufacturing apparatus shown in FIGS. 1 to 3, this dispersion mixture was applied to the porous sheet at 3 wL% or more (1 wL%), and after drying at 70°C for 2 hours, it was dried at 150°C for 40 The conductive porous sheet thus obtained exhibited good thermal and electrical conductivity.

(発明の効果) 以上のようにこの発明の導電性多孔質体及びその製造方
法によれば、良好な熱及び電気伝導性を有する導電性多
孔質体を簡単に製造できるので、コストダウンを図るこ
とができる。また、濾過性能と集塵性能とを兼備えた帯
電フィルタにすることができるので、工数削減を図るこ
とができると共に、従来の機械的濾過装置でj\ は達成で一シい低圧損、高捕集率、粉塵保持容量大の性
能も備えているので、確実な濾過を行なうことがで阿る
(Effects of the Invention) As described above, according to the conductive porous body and the manufacturing method thereof of the present invention, it is possible to easily manufacture a conductive porous body having good thermal and electrical conductivity, thereby reducing costs. be able to. In addition, since it is possible to create a charged filter that has both filtration performance and dust collection performance, it is possible to reduce the number of man-hours and to achieve low pressure drop and high It also has a high collection rate and a large dust holding capacity, allowing for reliable filtration.

ンlノ、INlno, I

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図はそれぞれこの発明の導電性多孔質体の
断面図、第4図〜第6図はそれぞれこの発明の導電性多
孔質体の製造装置の例を示す概略構成図である。 1・・・多孔質体シート、5・・・乾燥処理装置1q、
6・・・熱処理装置、In・・・分散混合液、50・・
・導電性多孔質体。 出願人代理人  安 形 雄 三 県 l 医 j#2  図 第3 図 蔓4 図 第 6 図
FIGS. 1 to 3 are cross-sectional views of the conductive porous body of the present invention, and FIGS. 4 to 6 are schematic configuration diagrams showing examples of the apparatus for manufacturing the conductive porous body of the present invention, respectively. . 1... Porous sheet, 5... Drying processing device 1q,
6...Heat treatment device, In...Dispersion mixed liquid, 50...
・Electrically conductive porous material. Applicant's agent Yu Yasugata Three prefectures l Medical #2 Figure 3 Figure 4 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)多孔質体と、導電性を有する微粒子粉体が付着さ
れた多孔質体層とを具備したことを特徴とする導電性多
孔質体。
(1) A conductive porous body comprising a porous body and a porous body layer to which conductive fine particle powder is attached.
(2)導電性を有する微粒子粉体を熱硬化性樹脂の水溶
液に添加して分散混合液とし、この分散混合液を多孔質
体に含浸し、乾燥処理によって前記分散混合液の含有水
分を除去し、熱処理によって前記熱硬化性樹脂を硬化し
、前記多孔質体に前記微粒子粉体を付着せしめるように
したことを特徴とする導電性多孔質体の製造方法。
(2) Add conductive fine particle powder to an aqueous solution of thermosetting resin to form a dispersed mixture, impregnate a porous body with this dispersed mixture, and remove water contained in the dispersion mixture by drying. A method for manufacturing a conductive porous body, characterized in that the thermosetting resin is cured by heat treatment, and the fine particle powder is adhered to the porous body.
JP62080104A 1987-04-01 1987-04-01 Conductive porous body and manufacture thereof Pending JPS63246236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62080104A JPS63246236A (en) 1987-04-01 1987-04-01 Conductive porous body and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62080104A JPS63246236A (en) 1987-04-01 1987-04-01 Conductive porous body and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63246236A true JPS63246236A (en) 1988-10-13

Family

ID=13708875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62080104A Pending JPS63246236A (en) 1987-04-01 1987-04-01 Conductive porous body and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63246236A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006290A (en) * 2002-04-01 2004-01-08 Canon Inc Manufacturing method of conductive member
JP2004311962A (en) * 2003-03-24 2004-11-04 Konica Minolta Holdings Inc Thin film transistor element, thin film transistor element sheet and its manufacturing method
CN115366492A (en) * 2021-05-17 2022-11-22 航天特种材料及工艺技术研究所 Conductive high-temperature-resistant polyimide composite adhesive film and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006290A (en) * 2002-04-01 2004-01-08 Canon Inc Manufacturing method of conductive member
JP2004311962A (en) * 2003-03-24 2004-11-04 Konica Minolta Holdings Inc Thin film transistor element, thin film transistor element sheet and its manufacturing method
JP4581423B2 (en) * 2003-03-24 2010-11-17 コニカミノルタホールディングス株式会社 Thin film transistor element, element sheet and method for manufacturing the same
CN115366492A (en) * 2021-05-17 2022-11-22 航天特种材料及工艺技术研究所 Conductive high-temperature-resistant polyimide composite adhesive film and preparation method thereof
CN115366492B (en) * 2021-05-17 2023-05-26 航天特种材料及工艺技术研究所 Conductive high-temperature-resistant polyimide composite adhesive film and preparation method thereof

Similar Documents

Publication Publication Date Title
US3353994A (en) Novel reticulated products
TWI358316B (en) Chemical filter
WO1995026844A1 (en) Method for producing porous bodies
JPH05508049A (en) Glass fiber separator and its manufacturing method
JP7208362B2 (en) Pore-filled ion-exchange polymer electrolyte composite membrane from which surface ion-exchange polymer electrolyte is removed and method for producing the same
JP2004082420A (en) Functional sheet with reinforcing material
CN107617344B (en) Nanowire-loaded polymer microporous membrane and preparation method thereof
CN111132532B (en) Electromagnetic shielding material based on metal nanowires and preparation method thereof
CN114456686B (en) Powder coating and preparation method thereof
CN110482534A (en) A kind of controllable porous structure graphene paper
JP3809201B2 (en) Hydrophilic tetrafluoroethylene resin porous membrane and method for producing the same
JPS63246236A (en) Conductive porous body and manufacture thereof
CN112970138B (en) Gas diffusion electrode, method for producing gas diffusion electrode, membrane electrode assembly, and fuel cell
JPH09500174A (en) Metallization method for non-conductive substrate
JPH0350039B2 (en)
CN108889142A (en) A kind of polyvinyl alcohol-hydroxyethyl cellulose/polyacrylonitrile gas dehumidification membrane preparation method
JP2006080498A (en) Electric wave absorber and manufacturing method therefor
JPH07100917B2 (en) Mat of conductive fiber
JP3218845B2 (en) Method for manufacturing three-dimensional copper network structure
JPS6237482B2 (en)
US3667984A (en) Coated porous structures and method for forming them
JP2649768B2 (en) Method for producing metal fiber molded body
JP2572015B2 (en) Method for producing aromatic polysulfone composite semipermeable membrane
JPH0315299B2 (en)
JPH03329B2 (en)