JPS6324571A - Rotary type zinc-bromine cell - Google Patents

Rotary type zinc-bromine cell

Info

Publication number
JPS6324571A
JPS6324571A JP61166774A JP16677486A JPS6324571A JP S6324571 A JPS6324571 A JP S6324571A JP 61166774 A JP61166774 A JP 61166774A JP 16677486 A JP16677486 A JP 16677486A JP S6324571 A JPS6324571 A JP S6324571A
Authority
JP
Japan
Prior art keywords
electrode
cell
positive
battery
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61166774A
Other languages
Japanese (ja)
Inventor
Yasuo Ando
保雄 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP61166774A priority Critical patent/JPS6324571A/en
Publication of JPS6324571A publication Critical patent/JPS6324571A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4214Arrangements for moving electrodes or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To make the electrolyte circulation device unnecessary and to realize a compact size, by laminating cells of opposing positive and negative electrodes to make an electrode body, housing them in a cell main body of an enclosed structure, and rotating the cell main body at a specific rotational frequency or more. CONSTITUTION:At the periphery of a disk-form positive and negative electrodes 30, a hollow and disk-form frame 32 with manifolds 33a and 33b is furnished, and they are opposed through a separator to make up a cell. Such cells are laminated to form an electrode 23, and assembled together with retaining plates 21 and a rotary shaft 22 to make a cell main body 20 of a zinc-bromine cell. Of the electrodes, at least the positive elctrodes are made with the outside of a carbon plastics combined integrally with an active carbon fiber sheet over the plastics. Then, by rotating the cell main body at 2 rpm or faster to carry out charge and discharge. Therefore, the electrolyte can be fed smoothly without circulation device, and the whole cell can be made in a compact size.

Description

【発明の詳細な説明】 A、産業上の利用分野 この発明は、例えば電気自動車の動力用電池のように小
型かつ軽量で、電解液循環装置を付設することな(電解
液を電解して充放電する密閉式バイポーラの回転型亜鉛
−臭素電池に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Field of Application This invention is a compact and lightweight battery, such as a power battery for an electric vehicle, that does not require an attached electrolyte circulation device (electrolytes electrolyte to charge the battery). This invention relates to a sealed bipolar rotating zinc-bromine battery that discharges electricity.

B0発明の概要 この発明は、正、負電極のうち、少くとも正電極をカー
ボンプラスチックの外側に活性炭繊維のシートを一体に
接合したものにし、かつ正、負電極を対向させてセルに
して、積層したもの全密閉構造とした電池本体に収納し
、各セルに電解液を供給して充放電する。
B0 Summary of the Invention This invention provides at least one of the positive and negative electrodes, in which a sheet of activated carbon fiber is integrally bonded to the outside of carbon plastic, and the positive and negative electrodes are made to face each other to form a cell. The stack is housed in a completely sealed battery body, and electrolyte is supplied to each cell for charging and discharging.

しかも充放電する際、電池本体又は電極を2r。Moreover, when charging and discharging, the battery body or electrodes should be heated for 2 hours.

p、 m 以上回転することにより、電解液の電解によ
)生成する臭素錯化合物を電極全面へ拡散させて電池の
エネルギー効率が高率になる。
By rotating the electrode for more than 100 m, the bromine complex compound produced (by electrolysis of the electrolytic solution) is diffused over the entire surface of the electrode, thereby increasing the energy efficiency of the battery.

C0従来の技術 電解液循環型の亜鉛−臭素電池は、現在余剰電力貯蔵用
電池として実用化のための開発が進められている。
C0 Prior Art Electrolyte circulation type zinc-bromine batteries are currently being developed for practical use as surplus power storage batteries.

第6図は、電解液循環型の亜鉛−臭素二次電池の基本的
構成を示す。図中の符号(1)は電池本体をなす単セル
、(2)は正極室、(3)は負極室、(4)は隔膜で、
正極室(2)と負極室(3)を区画する。(5)は正極
、(6)は負極、(7)は正極側配管系、(8)は負極
側配管系、(9)は正極電解液槽、αQは負極電解液槽
、αη、(6)は共にポンプで、それぞれの配管系(7
)、 (8)t−介して各電解液槽(9)、αQから電
解液(ZnBr1水溶液)1−循環させるようKなって
いる。
FIG. 6 shows the basic configuration of an electrolyte circulation type zinc-bromine secondary battery. The code (1) in the figure is a single cell forming the battery body, (2) is a positive electrode chamber, (3) is a negative electrode chamber, and (4) is a diaphragm.
A positive electrode chamber (2) and a negative electrode chamber (3) are defined. (5) is the positive electrode, (6) is the negative electrode, (7) is the positive electrode side piping system, (8) is the negative electrode side piping system, (9) is the positive electrode electrolyte tank, αQ is the negative electrode electrolyte tank, αη, (6 ) are both pumps, and each piping system (7
), (8) The electrolytic solution (ZnBr1 aqueous solution) 1- is circulated from each electrolytic solution tank (9) and αQ via t-.

しかして、充電時には負極(6)ではZH+2e→Zn
、正極(5)では2Br−→Brl+2e  の反応を
生じ、放電時には各電極(6)、 (5)で上記反応式
と逆の反応を生じ、析出物(Zn、 Brl )が各電
極(6)、 (5)上で消費(酸化、還元)され、電気
エネルギーが放出される。
Therefore, during charging, ZH+2e→Zn at the negative electrode (6)
, a reaction of 2Br-→Brl+2e occurs at the positive electrode (5), and during discharge, a reaction opposite to the above reaction formula occurs at each electrode (6), (5), and the precipitates (Zn, Brl) form at each electrode (6). , (5) is consumed (oxidized, reduced) and electrical energy is released.

D1発明が解決しようとする問題点 上記の電解液循環型の亜鉛−臭素二次電池は、エネルギ
ー密度が高(、高い電池効率を有し、Zn。
D1 Problems to be Solved by the Invention The above-mentioned electrolyte circulation type zinc-bromine secondary battery has a high energy density (and high battery efficiency).

Brz共資源的に豊富でかつ安価であることから、エネ
ルギー貯蔵用電池として用いることが検討されており、
電気自動車用としての需要も見込まれている。そして、
電解液循環型の特徴としては(イ)反応活物質が電解液
槽の液容量で可変であること、(ロ)亜鉛電着の均一性
が増加すること、(ハ)反応過電圧を小さくすることが
できること、が利点として挙げられる。
Since Brz is abundant as a common resource and inexpensive, its use as an energy storage battery is being considered.
Demand is also expected for use in electric vehicles. and,
The characteristics of the electrolyte circulation type are (a) the reactive active material is variable depending on the liquid volume of the electrolyte tank, (b) the uniformity of zinc electrodeposition is increased, and (c) the reaction overvoltage is reduced. An advantage is that it can be done.

しかし、上記電池は、電解液を循環することが必要なた
め、電池本体と電解液槽、配管系、ポンプからなる電解
液循環装置を補機として併設するが、電気自動車に用い
た場合装置が複雑でかつ嵩張ることから積載面積をとシ
、部材破損の恐れもある。そのため、電解液循環型に代
るものとして電解液を循環させないで済む電解液静止型
バイポーラの亜鉛−臭素電池が考えられるが、(ハ)亜
鉛のデンドライト発生の恐れがあること、(ロ)反応過
電圧が増加することが問題となっていた。
However, since it is necessary to circulate the electrolyte in the above battery, an electrolyte circulation device consisting of the battery body, an electrolyte tank, piping system, and a pump is installed as an auxiliary equipment, but when used in an electric vehicle, the device is Since it is complex and bulky, it reduces the loading area and there is a risk of component damage. Therefore, as an alternative to the electrolyte circulation type, a static electrolyte type bipolar zinc-bromine battery that does not require circulation of the electrolyte is considered, but (c) there is a risk of zinc dendrite formation, and (b) reaction The problem was that overvoltage increased.

E3問題点を解決するための手段 この発明に係る回転型亜鉛−臭素電池は、正、負電極の
うち、少くとも正電極をカーボンプラスチックの外側に
活性炭繊維のシー)1−一体に接合したものKし、かつ
正、負電極を対向させて対にしてセルとしたものを積層
した電極を密閉構造とした電池本体に収納し、各セルの
電解液の電解充放電を行なう際、電池本体又は電極を2
r、p−m以上で回転させ、正極で生成する臭素錯化合
物を電極全面へ供給するようにしたものである。
E3 Means for Solving Problems The rotating zinc-bromine battery according to the present invention is one in which at least one of the positive and negative electrodes is integrally bonded to the outside of a carbon plastic with an activated carbon fiber sheath. The electrodes, which are made by stacking the positive and negative electrodes in pairs to form cells, are housed in a sealed battery body, and when performing electrolytic charging and discharging of the electrolyte in each cell, the battery body or 2 electrodes
The bromine complex compound generated at the positive electrode is supplied to the entire surface of the electrode by rotating at a speed of r, pm or higher.

20作用 この発明においては、正、負電極のうち、少くとも正電
極をカーボンプラスチックの外側に活性炭繊維のシート
を一体に結合したものにし、かつ正、負電極を対にして
、セル処したものを積層し、各セルに供給した電解液の
電解により充放電を行なう際、電池方体又は電極を2r
、 p、 m以上で回転するので、 ■電解液は、回転して攪拌されて電解し、充放電する。
20 Effects In this invention, at least the positive electrode of the positive and negative electrodes is formed by integrally bonding a sheet of activated carbon fiber to the outside of carbon plastic, and the positive and negative electrodes are paired and treated in a cell. When charging and discharging is performed by electrolyzing the electrolyte supplied to each cell, the battery square or electrode is
, p, m or higher, so that the electrolytic solution is rotated and stirred, electrolyzed, and charged/discharged.

■正、負電極のうち、少くとも正極の電極の表面は活性
炭繊維シートになっておシ、電池本体又は電極を2r、
 p、 m以上回転するので、正電極で生成する臭素錯
化合物は拡散されて電極全面に供給され、電池のエネル
ギー効率は高くなる。
■Of the positive and negative electrodes, at least the surface of the positive electrode is made of activated carbon fiber sheet, and the battery body or electrode is
Since the electrode rotates by more than p and m, the bromine complex compound generated at the positive electrode is diffused and supplied to the entire surface of the electrode, increasing the energy efficiency of the battery.

G、実施例 wZ1図は、この発明の一実施例の模式斜視図である。G. Example Figure wZ1 is a schematic perspective view of an embodiment of the present invention.

図において、翰は回転型亜鉛−臭素電池の本体、(21
m)、 (21b)は両端の円板状の押え板、(22a
)、 (22b)は押え板(21a)、 (21b)に
それぞれ取付けた回転シャフトでモータによシ回転する
In the figure, the handle is the main body of a rotating zinc-bromine battery (21
m), (21b) are disc-shaped presser plates at both ends, (22a
) and (22b) are rotated by a motor with rotating shafts attached to the holding plates (21a) and (21b), respectively.

(財)はセルが積層された電極で、積層の両端から押え
板(21a)、 (22b) K押えられて積層状態を
保持する。積層された各電極は、中心に孔のない直径1
αの円板状での′gL極を正極として、この正極にセパ
レータを介して同じ形状の電極負極にして対向させて1
対のセルとする。そして正極はカーボンプラスチックの
外側にフェノールレジン系活性炭の繊維シートを一体的
に結合したものである。フェノールレジン系の活性炭繊
維のシートは日本カイドル(株)製の入CC507−1
5(商品名)を使用した。カーボンプラスチックは、正
極活物質の臭素に対性があpかつ成形し易く、大量生産
が可能で安価なポリエチレン等のポリオレフィン系樹脂
に導電性付与のため黒鉛粉末又はカーボンブラック等の
炭素質を混合、混線、成形して電極としたものである。
(2015) is an electrode in which cells are stacked, and the stacked state is maintained by being pressed by holding plates (21a) and (22b) K from both ends of the stack. Each stacked electrode has a diameter of 1 without a hole in the center.
The disk-shaped 'gL electrode of α is used as a positive electrode, and an electrode with the same shape as a negative electrode is placed opposite to this positive electrode through a separator.
A pair of cells. The positive electrode is made by integrally bonding a fiber sheet of phenol resin-based activated carbon to the outside of carbon plastic. The phenol resin-based activated carbon fiber sheet is CC507-1 manufactured by Nippon Kaidol Co., Ltd.
5 (trade name) was used. Carbon plastic is made by mixing carbonaceous materials such as graphite powder or carbon black to impart electrical conductivity to polyolefin resins such as polyethylene, which is anti-bromine as a positive electrode active material, easy to mold, mass-produced, and inexpensive. , mixed wires, and formed into electrodes.

第2図は、正極及び負極の各々の電極の平面図である。FIG. 2 is a plan view of each of the positive and negative electrodes.

図において、(ト)は円形の平板状の電極、0■は電極
(ト)の外周縁に一体和固定された中空円板のフレーム
、(33m)、 (33b)はフレーム0■に設けたマ
ニホールドである。
In the figure, (G) is a circular flat electrode, 0■ is a hollow disk frame integrally fixed to the outer periphery of electrode (G), (33m), (33b) is installed on frame 0■ It is a manifold.

そして、先に述べたように、正極と負極の電極(1)は
フレーム(イ)のマニホールド(33a)、 (33b
)の位置を一致させてセパレータを介して対にしてセル
になる。そして積層したセルのマニホールド(32a)
As mentioned earlier, the positive and negative electrodes (1) are connected to the manifolds (33a) and (33b) of the frame (A).
) to form a pair of cells with a separator in between. And the stacked cell manifold (32a)
.

(32b)と押え板(21b)の電解液注入口(ハ)及
び電解液排出口@と全一致させ、電解液が注入口ぐ→か
らマニホールド(33m)を通って各セルの間に流入す
るようになっている。そして、第1図の’* 極wは各
セルを10ケ積層したものである。
(32b) and the electrolyte inlet (c) and electrolyte outlet @ of the holding plate (21b), and the electrolyte flows from the inlet through the manifold (33m) between each cell. It looks like this. The '* pole w in FIG. 1 is a stack of 10 cells each.

第3図はこの発明の一実施例の全体模式斜視図であシ、
図において、(40a)、 (40b)は、電池支持台
で、回転シャツ) (22a)、 (22b) を軸受
ベアリング全弁して支持する。0υは回転シャツ) (
22b)を回転させるモータである。
FIG. 3 is an overall schematic perspective view of an embodiment of the present invention;
In the figure, (40a) and (40b) are battery support stands, which support rotating shirts (22a) and (22b) with full bearings. 0υ is a rotating shirt) (
22b).

この発明は以上のように構成され、電池本体(1)をモ
ータ0υによシ回転させながら、ZnBr2+臭素錯化
剤の電解液を電解液注入口(ハ)から注入して充放電す
る実験を行なった。なお充電は定電流20mA/−で8
時間行った。
This invention is constructed as described above, and an experiment was carried out in which an electrolytic solution of ZnBr2 + bromine complexing agent was injected from the electrolytic solution injection port (c) while the battery main body (1) was rotated by a motor at 0υ. I did it. In addition, charging is at a constant current of 20 mA/- at 8
Time went.

電解液を電解液注入口(ハ)より注入して電池本体−を
回転させると、電解液はマニホールド(3ろa)から、
各セルに並列に供給され、第2図矢印人に示すように各
セル内で回転して攪拌されて、酸化還元反応によシ充放
電が行なわれる。
When the electrolyte is injected from the electrolyte inlet (c) and the battery body is rotated, the electrolyte will flow from the manifold (roa 3).
The fuel is supplied to each cell in parallel, rotated and stirred within each cell as shown by the arrows in FIG. 2, and charged and discharged through an oxidation-reduction reaction.

そして、実験の結果、電極(1)の回転数と電池のエネ
ルギー効率との関係が第4図の示す関係になることが明
らかになった。
As a result of the experiment, it became clear that the relationship between the rotation speed of the electrode (1) and the energy efficiency of the battery was as shown in FIG. 4.

なお、第4図は電池のエネルギー効率と電池の電極の回
転数との関係を示す線図である。この第4図の結果から
、電極(7)の回転数が1r、p、mではエネルギー効
率の低下が認められたが、2r、 p。
Incidentally, FIG. 4 is a diagram showing the relationship between the energy efficiency of the battery and the number of revolutions of the electrodes of the battery. From the results shown in FIG. 4, a decrease in energy efficiency was observed when the rotation speed of the electrode (7) was 1r, p, and m, but when the rotation speed was 2r, p.

m以上では、はぼ一定で71%前後のエネルギー効率で
あった。これよう実用的電池でも電極(1)の回転数は
、2r、p、mであれば十分であることが明らかとなっ
た。
Above m, the energy efficiency was approximately constant at around 71%. It has become clear that even in such a practical battery, it is sufficient for the rotational speed of the electrode (1) to be 2r, p, m.

次に電極(1)の回転が電極のエネルギー効率に与える
影響を明らかにするため、電極(1)を回転した場合と
静止した場合のそれぞれについて、充放電のエネルギー
効率を調べた。なお、第5図は回転及び静止した場合の
電池の充放電時間と電池電圧の関係を示す。その実験の
結果が次の第1表であるO 第   1   表 この第1表の結果から、放電時に電極01ft静止した
状態であると、電池のエネルギー効率が低下する。これ
は、発生した臭素錯化合物が、電極(7)の下部に溜ま
シミ極(1)の上部が有効に使われないからである。又
充電時罠おいて、電極(1)を回転した場合よシ静止し
た場合の方がエネルギー効率が低くなるのは、正極の電
極(1)下部に臭素錯化合物が溜まり、その部分の液抵
抗が増加することと、電流分布の乱れにより亜鉛tNも
悪化することによる。以上のエネルギー効率の低下とそ
の原因となる現象から、電極(1)の回転の効果は正極
において生成する臭素錯化合物の波数と密接に関係し、
電気化学反応の還元過電圧の寄与が小さいことが要因と
なる。
Next, in order to clarify the influence of the rotation of the electrode (1) on the energy efficiency of the electrode, the energy efficiency of charging and discharging was investigated when the electrode (1) was rotated and when it was stationary. Incidentally, FIG. 5 shows the relationship between the charging/discharging time of the battery and the battery voltage when the battery is rotating and stationary. The results of the experiment are shown in Table 1 below.Table 1 From the results in Table 1, the energy efficiency of the battery decreases when the electrodes are stationary during discharge. This is because the generated bromine complex compound accumulates in the lower part of the electrode (7) and the upper part of the stain electrode (1) is not used effectively. Also, the reason why the energy efficiency is lower when the electrode (1) is stationary than when it is rotated during charging is because bromine complex compounds accumulate at the bottom of the positive electrode (1), and the liquid resistance at that part increases. This is because zinc tN also deteriorates due to an increase in the current distribution and a disturbance in the current distribution. From the above reduction in energy efficiency and the phenomena that cause it, the effect of rotation of the electrode (1) is closely related to the wave number of the bromine complex compound generated at the positive electrode.
This is due to the small contribution of the reduction overpotential of the electrochemical reaction.

しかも、この発明においては、正極に、カーボンプラス
チックの外側にフェノールレジン系活性炭の繊維シート
を一体的に結合した電極(7)を使用し、電解液と接す
る正極の面はミクロ的に凹凸がある。
Moreover, in this invention, an electrode (7) in which a fiber sheet of phenol resin-based activated carbon is integrally bonded to the outside of carbon plastic is used as the positive electrode, and the surface of the positive electrode in contact with the electrolyte has microscopic irregularities. .

そのため、正極の表面状態及び電極(1)の回転は正極
の電極(1)下部に溜まる臭素錯化合物の拡散させ、電
極中全面へ臭素錯化合物を分散供給し、エネルギー効率
の向上の要因となる。又、電極(1)を丸形にしている
ので、電解液は第2図の矢印入に示すようにスムースに
回転する。しかも、電極(7)の中心部に孔を設けて、
その孔に回転シャフト(22a)、 (22b)を挿入
する等の手段が設けられておらず、電極(1)の全面が
平板になっているので、電極(1)の有効面積が大きく
なシ、かつ電解液の回転がスムースとなり、エネルギー
効率の向上に寄与する。又、充放電の実験が終了後電池
を解体して観察すると、亜鉛電着は回転を与えた場合の
方が良好で、著しいデンドライトの発生はなかった。
Therefore, the surface condition of the positive electrode and the rotation of the electrode (1) will cause the bromine complex compound that accumulates at the bottom of the positive electrode (1) to diffuse, and the bromine complex compound will be distributed and supplied to the entire surface of the electrode, which will be a factor in improving energy efficiency. . Furthermore, since the electrode (1) is round, the electrolyte rotates smoothly as shown by the arrow in FIG. Moreover, by providing a hole in the center of the electrode (7),
Since there is no means for inserting the rotating shafts (22a) and (22b) into the holes, and the entire surface of the electrode (1) is a flat plate, the effective area of the electrode (1) is large. , and the electrolyte rotates smoothly, contributing to improved energy efficiency. Further, when the battery was disassembled and observed after the charge/discharge experiment was completed, zinc electrodeposition was better when rotation was applied, and there was no significant dendrite formation.

しかもクーロン効率が回転を与えた場合の方が優れてい
るのは、電解液の回転によシ亜鉛の均一溶解性が向上す
ることによる。正極における臭素は臭素錯化合物になっ
ているが、電極(7)に回転を与えると、その臭素錯化
合物も確実に反応していると考えられる。
Moreover, the reason why the Coulombic efficiency is better when rotation is applied is because the uniform solubility of zinc is improved by the rotation of the electrolytic solution. Bromine in the positive electrode is a bromine complex compound, and it is thought that when the electrode (7) is rotated, the bromine complex compound also reacts.

H1発明の詳細 な説明したよ5に、この発明は正、負電極のうち、少く
とも正電極をカーボンプラスチックの外側に活性繊維の
シートを一体に接合したものにし、かつ正、負電極を対
向させて対にしてセルとしたものを積層した電極を密閉
構造とした電池本体に収納し、各セルの電解液の電解に
よシ充放電を行なう際、電池本体又は電極を、2r、 
p、 m 以上回転するようにしたので、以下のような
効果が得られる。
H1 In the detailed explanation of the invention, in 5, this invention is such that at least the positive electrode of the positive and negative electrodes is formed by integrally bonding an active fiber sheet to the outside of carbon plastic, and the positive and negative electrodes are opposed to each other. The electrodes, which are stacked in pairs to form cells, are housed in a battery body with a sealed structure, and when charging and discharging is performed by electrolysis of the electrolyte in each cell, the battery body or electrodes are
Since the rotation is made more than p, m, the following effects can be obtained.

■静止型電池に必要な電解液循環装置が不要となるので
、電池全体を軽量、コンパクト化することができ、自動
車等の積載重量及び積載用の空間に制約があるものにも
容易に使用することができる。
■Since the electrolyte circulation device required for stationary batteries is not required, the entire battery can be made lighter and more compact, making it easy to use in vehicles with limited loading weight and loading space. be able to.

■電池本体又は電極の回転数が2r、 p、 m程度の
低回転でも、エネルギー効率が高いので取扱いが容易で
、機械的耐久性が大きい。
■ Even when the battery body or electrode rotation speed is as low as 2r, p, or m, it has high energy efficiency, is easy to handle, and has great mechanical durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例の模式斜視図、第2図は
電極の平面図、第3図はこの発明の一実施例の全体模式
斜視図、第4図は電極の回転数と電池のエネルギー効率
との関係を示す線図、第5図は、回転型電池及び静止型
電池の充放電時間と電池電圧との関係を示す線図、第6
図は従来の電解液循環型の亜鉛−臭素二次電池の基本的
構成を示す説明図である。 図において、翰は回転型亜鉛−臭素電池の本体、(21
a)、 (21b)は押え板、(22a)、 (22b
)は回転シャフト、翰はセルが積層された電極、(ハ)
は電解液注入口、(ハ)は電解液排日、(1)はフレー
ム、(33a)。 (33b)はマニホールド、(40m)、 (40b)
は電池支持台、αυはモータである。 代理人 弁理士 佐 藤 正 年 第1団 第2図 第4図 償〕&の回転族(rpm) 第5因 光Kl!IM? (Hv) 第6図 O■
Fig. 1 is a schematic perspective view of an embodiment of the present invention, Fig. 2 is a plan view of an electrode, Fig. 3 is an overall schematic perspective view of an embodiment of the invention, and Fig. 4 shows the rotation speed of the electrode. Figure 5 is a diagram showing the relationship between battery energy efficiency and Figure 6 is a diagram showing the relationship between charging and discharging time and battery voltage for rotating batteries and stationary batteries.
The figure is an explanatory diagram showing the basic configuration of a conventional electrolyte circulation type zinc-bromine secondary battery. In the figure, the handle is the main body of a rotating zinc-bromine battery (21
a), (21b) are presser plates, (22a), (22b)
) is the rotating shaft, the wire is the electrode with stacked cells, (c)
(c) is an electrolyte solution inlet, (1) is a frame, (33a). (33b) is a manifold, (40m), (40b)
is the battery support stand and αυ is the motor. Agent Patent Attorney Tadashi Sato Group 1, Figure 2, Figure 4 Compensation] &'s Rotating Group (rpm) 5th Inko Kl! IM? (Hv) Figure 6 O■

Claims (1)

【特許請求の範囲】 亜鉛−臭素電池において、 (イ)正、負の電極を有し、 同上記電極のうち、少くとも正の電極をカーボンプラス
チックの外側に活性炭繊維のシートを一体に結合したも
のにし、 (ハ)上記電極は、正、負の電極を対向して位置させて
対にしたものをセルとし、該セルを積層したものにし、 (ニ)上記(ハ)の電極を密閉構造とした電池本体に収
納し、 (ホ)上記各セルに供給した電解液を電解して充放電す
る際、上記電池本体又は上記電極を2r.p.m以上で
回転するようにしたことを特徴とする回転型亜鉛−臭素
電池。
[Scope of Claims] A zinc-bromine battery (a) having positive and negative electrodes, of which at least the positive electrode is integrally bonded to an activated carbon fiber sheet on the outside of carbon plastic. (c) The above electrode is a cell made up of a pair of positive and negative electrodes positioned opposite each other, and the cells are stacked, (d) The electrode in (c) above is formed into a sealed structure. (e) When charging and discharging by electrolyzing the electrolyte solution supplied to each cell, the battery body or the electrodes are placed in a 2r. p. A rotating zinc-bromine battery, characterized in that it rotates at a speed of m or more.
JP61166774A 1986-07-17 1986-07-17 Rotary type zinc-bromine cell Pending JPS6324571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61166774A JPS6324571A (en) 1986-07-17 1986-07-17 Rotary type zinc-bromine cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61166774A JPS6324571A (en) 1986-07-17 1986-07-17 Rotary type zinc-bromine cell

Publications (1)

Publication Number Publication Date
JPS6324571A true JPS6324571A (en) 1988-02-01

Family

ID=15837437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61166774A Pending JPS6324571A (en) 1986-07-17 1986-07-17 Rotary type zinc-bromine cell

Country Status (1)

Country Link
JP (1) JPS6324571A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002009217A3 (en) * 2000-07-20 2002-12-05 Forschungszentrum Juelich Gmbh Method for operating a fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002009217A3 (en) * 2000-07-20 2002-12-05 Forschungszentrum Juelich Gmbh Method for operating a fuel cell

Similar Documents

Publication Publication Date Title
Li et al. Membrane‐free Zn/MnO2 flow battery for large‐scale energy storage
US3822149A (en) Rechargeable zinc electrochemical energy conversion device
CN1151577C (en) Secondary lithium battery
US9728767B2 (en) Magnetic device for producing electrolyte flow in battery systems
KR20100040606A (en) Electrode for soluble lead acid redox flow battery and soluble lead acid redox flow battery using the same
CN111106373B (en) Zinc-bromine storage battery
CN109818085A (en) A kind of lead silicon complex bipolar battery
CN108134141A (en) A kind of no diaphragm static state zinc-bromine bettery
KR102379200B1 (en) Zinc-bromide flow battery comprising conductive interlayer
CN115441048A (en) Composite electrolyte with stable gradient distribution structure, battery and preparation method
CN115149106B (en) Pre-lithiation method of lithium ion battery and lithium ion battery
KR20190072124A (en) Carbon material electrode, its surface treatment method and zinc-bromide toxic flow secondary cell having the same
JPS6324571A (en) Rotary type zinc-bromine cell
CN106298273A (en) A kind of high-octane aquo-lithium ion type fluid capacitor anode and cathode slurry formula
KR20170120226A (en) Test device of accelerated life time for redox flow battery
CN217114716U (en) Large-capacity battery structure
JPS628469A (en) Rotary zinc-bromine cell
CN102522577A (en) Current collecting plates and liquid stream battery stack adopting same
CN106025320A (en) Methylene blue flow battery
CN106229508A (en) A kind of lithium rechargeable battery of magnesio carborundum negative material
JP2853271B2 (en) Electrolyte static zinc-bromine battery
CN218306505U (en) Solid-liquid separation device for battery anode slurry
CN213071299U (en) Secondary battery with electrolyte diffusion promoting function
KR102302464B1 (en) A negative electrode having zinc particle coating layer and zinc-bromine flow battery comprising the same
TWI699028B (en) Metal-air flow secondary battery