JPS63245680A - Novel recombined plasmid pgif1 - Google Patents

Novel recombined plasmid pgif1

Info

Publication number
JPS63245680A
JPS63245680A JP7937887A JP7937887A JPS63245680A JP S63245680 A JPS63245680 A JP S63245680A JP 7937887 A JP7937887 A JP 7937887A JP 7937887 A JP7937887 A JP 7937887A JP S63245680 A JPS63245680 A JP S63245680A
Authority
JP
Japan
Prior art keywords
pgif1
gif
plasmid
coli
dhfr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7937887A
Other languages
Japanese (ja)
Other versions
JPH0371111B2 (en
Inventor
Masahiro Iwakura
正寛 巖倉
Tomokuni Kokubu
国分 友邦
Kiyotaka Furusawa
古澤 清孝
Shinichi Ohashi
信一 大箸
Keishiro Tsuda
津田 圭四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7937887A priority Critical patent/JPS63245680A/en
Publication of JPS63245680A publication Critical patent/JPS63245680A/en
Publication of JPH0371111B2 publication Critical patent/JPH0371111B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0026Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5)
    • C12N9/0028Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5) with NAD or NADP as acceptor (1.5.1)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/655Somatostatins

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Endocrinology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To readily give a fused protein measurable enzymatic activity by making up a novel recombined plasmid pGIF1 including a gene coding fused protein from dehydrofolate reductase and somastatin to solubilize the fused protein. CONSTITUTION:The recombinant plasmid pGIF1 is stably copied in E. coli and gives the host E. coli, resistance to trimethoprim and ampicillin. In the plasmid, the gene giving trimethoprim resistance is recombined by modifying a part of the 3'-terminal of dihydrofolate reductase in Bacillus subtilis to code the fused protein with 4789 pairs of bases. The recombinant plasmid pGIF1 is introduced into E. coli C600 strain and the transformed strain is deposited as FERM P-9301.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、成長ホルモン分泌抑制因子であるソマトスタ
チン(Ala−Gly  Gys−Lys −Asn−
Phe−Phe−Trp−Lys−Thr−Phe−T
hy−3er−Cysの14個のアミノ酸配列よりなる
ペプチド、以下、GIFと略す。)を生産可能とする新
規組換えプラスミドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to somatostatin (Ala-Gly Gys-Lys-Asn-
Phe-Phe-Trp-Lys-Thr-Phe-T
A peptide consisting of a 14 amino acid sequence of hy-3er-Cys, hereinafter abbreviated as GIF. ) is related to a new recombinant plasmid that enables the production of plasmids.

GIFは、視床下部ペプチドの一種であり、成長ホルモ
ンなど下垂体前葉ホルモン、及びインシュリン、グルカ
ゴンなど消化管で産生される多(のペプチドホルモンの
分泌を抑制する。このような作用を有することから、G
IFは、小人症、糖尿病等の治療薬としての利用が期待
されている。
GIF is a type of hypothalamic peptide that suppresses the secretion of anterior pituitary hormones such as growth hormone, and polypeptide hormones produced in the gastrointestinal tract such as insulin and glucagon. G
IF is expected to be used as a therapeutic agent for dwarfism, diabetes, and the like.

本発明の新規組換えプラスミドpGIF1は、第1図に
おいて示されるDNA配列を有する。この新規組換えプ
ラスミドpGIF1及びpGIFlを含有するE、 c
oli C600株は、微生物工業2発酵工業、医薬品
工業等の分野に好適である。
The novel recombinant plasmid pGIF1 of the present invention has the DNA sequence shown in FIG. E, c containing this new recombinant plasmid pGIF1 and pGIF1
Oli C600 strain is suitable for fields such as microbial industry, fermentation industry, and pharmaceutical industry.

従来の技術 本発明jア、’5術的背景としては、いわゆる遺伝子操
作技術がある。GIF遺伝子を組込んだプラスミド及び
そのE、coliでの発現に関しては、板金らの成果が
公知である(K、 Itakura et al、5c
ience+vo1.198. pp、 1056 1
063 (1977))。一般に2分子ff11万以下
のポリペプチドは、E、coljなどの宿主中で産生さ
せてもプロテアーゼなどによって分解されるため安定に
存在しない。これは9分子として小さいため安定なコン
フォメーションヲトれないためであると考えられている
。従って、遺伝子操作技術を利用してGIFなどの短い
ポリペプチドを生産しようとした場合、融合遺伝子を作
成し、融合タンパクとして発現させることが必要である
。彼らの方法は、GIFを暗号化する遺伝子を化学合成
し、これをβ−ガラクトシダーゼ遺伝子と融合し、多コ
ピープラスミドに組み込み。
BACKGROUND OF THE INVENTION The technical background of the present invention is the so-called gene manipulation technology. Regarding the plasmid incorporating the GIF gene and its expression in E. coli, the results of Itakura et al.
ience+vol1.198. pp, 1056 1
063 (1977)). Generally, polypeptides with two molecules ff of 110,000 or less do not exist stably because they are degraded by proteases and the like even if they are produced in a host such as E or colj. This is thought to be due to the fact that it cannot maintain a stable conformation due to its small size (9 molecules). Therefore, when attempting to produce a short polypeptide such as GIF using genetic engineering technology, it is necessary to create a fusion gene and express it as a fusion protein. Their method involves chemically synthesizing the gene encoding GIF, fusing it with the β-galactosidase gene, and incorporating it into a multicopy plasmid.

組換えプラスミドをE、coliに導入し、融合タンパ
クとして発現させたものである。融合タンパクは。
The recombinant plasmid was introduced into E. coli and expressed as a fusion protein. fusion protein.

β−ガラクトシダーゼとGIFとを、メチオニン残基を
介して結合している。このことから、ブロムシアン処理
によって、融合タンパクからGIFを特異的に切断分離
することができる。
β-galactosidase and GIF are linked via a methionine residue. From this, GIF can be specifically cleaved and separated from the fusion protein by bromcyan treatment.

問題点 しかしながら、上記の公知の方法の場合は、(1)E、
coljで発現した融合タンパクは不溶化していること
、(2)β−ガラクトシダーゼはそれ自身活性測定が容
易であり、融合タンパクの分離精製の際。
Problems However, in the case of the above known method, (1) E;
The fusion protein expressed in colj is insolubilized; (2) the activity of β-galactosidase itself is easy to measure, and during the separation and purification of the fusion protein;

酵素活性を指標に行うことが可能と考えられるが。It may be possible to use enzyme activity as an indicator.

実際は、GIFと融合することによってもはや酵素活性
を失っていること、などから、融合タンパクの分離精製
が問題となっている。
In reality, separation and purification of the fusion protein has become a problem because it no longer has enzymatic activity due to fusion with GIF.

発明の目的 本発明の目的は、上記問題点、すなわち、 HOGIF
を組み込んだ融合タンパクが不溶化すること。
OBJECT OF THE INVENTION The object of the present invention is to solve the above problems, namely: HOGIF
The fusion protein that incorporates becomes insolubilized.

及び、(2)融合タンパクに容易に測定可能な酵素活性
がないこと、を解消し、GIF生産技術を改良すること
にある。
and (2) the lack of easily measurable enzymatic activity in the fusion protein, and to improve the GIF production technology.

GIFは分子として小さいため安定なコンフォ′111
1.1,1 メーンヨンをとれないため* E、 c o 1 i 
fj”5−Jの宿主中で産生させてもプロテアーゼなど
によっテ分解されるため安定に存在しない。従って遺伝
子操作技術を利用してGIFを生産しようとした場合。
GIF is a stable conformo'111 because it is small as a molecule.
1.1,1 Because I can't get the main yong* E, c o 1 i
Even if it is produced in a host of fj''5-J, it does not exist stably because it is degraded by protease etc. Therefore, when attempting to produce GIF using genetic engineering technology.

融合遺伝子を作成し、融合タンパクとして発現させるこ
とは避けることができない。よって、GIF生産技術の
改良には、GIFと融合させるタンパクに関しての検討
が重要であると考えられる。
It is inevitable to create fusion genes and express them as fusion proteins. Therefore, in order to improve GIF production technology, it is considered important to consider proteins to be fused with GIF.

しかしながら、これまで種々の研究が行われているが、
融合タンパクが可溶性で、かつ酵素活性を有するものは
これまで知られていなかった。
However, although various studies have been conducted so far,
Until now, fusion proteins that are soluble and have enzymatic activity have not been known.

本発明者らは、鋭意研究の結果、枯草菌のジヒドロ葉酸
還元酵素遺伝子を用いることにより、上記問題点が解消
できることを見いだし、その知見に従って、ジヒドロ葉
酸還元酵素(以下、DHFRと略す。)とGIFの融合
タンパクを暗号化する遺伝子を組み込んだ組換えプラス
ミドpG I F 1を作成し2本発明を完成させた。
As a result of intensive research, the present inventors found that the above problems could be solved by using the dihydrofolate reductase gene of Bacillus subtilis, and based on that knowledge, dihydrofolate reductase (hereinafter abbreviated as DHFR) The present invention was completed by constructing a recombinant plasmid pGIF1 incorporating a gene encoding a GIF fusion protein.

発明の構成 本発明者らは、 B、5ubtilisのDHFRにつ
いて、(1)168個のアミノ酸より成り立っているこ
と、(2)遺伝子中に存在するEcoRI部位の下流の
配列によって暗号化されるC−末端側の6アミノ酸より
成るアミノ酸配列を他のアミノ酸配列と置き換えてもD
HFRの生産性及び活性に問題がないこと、 +3)C
−末端側アミノ産配列が変化したDHFRは、不溶化し
ないこと、を明らかにしている。
Structure of the Invention The present inventors have found that the DHFR of B.5ubtilis (1) consists of 168 amino acids, (2) the C- Even if the terminal amino acid sequence consisting of 6 amino acids is replaced with another amino acid sequence, D
There is no problem with HFR productivity and activity, +3)C
- It has been revealed that DHFR whose terminal amino acid sequence has been changed does not become insolubilized.

この結果を利用し、GIFを暗号化する遺伝子を読み取
り枠をあわせてB、 5ubtilis DHFR遺伝
子のEcoRI部位下流に組込むことにより、酵素活性
を保有するDHFR−GIF融合タンパクの合成が可能
であり、前述の問題点を解消できると考えられる。
By utilizing this result and integrating the gene encoding GIF with its reading frame downstream of the EcoRI site of the B.5ubtilis DHFR gene, it is possible to synthesize a DHFR-GIF fusion protein that retains enzymatic activity. It is thought that this problem can be solved.

本発明の組換えプラスミドp G I F 1は、 (
1)GIFを暗号化するDNAの分子設計及び化学合成
The recombinant plasmid pGIF1 of the present invention is (
1) Molecular design and chemical synthesis of DNA that encodes GIF.

及び(2)化学合成りNAのB、 5ubtilisの
DHFR遺伝子のEcoRI部位下流への組み込み、の
結果得られたものであり、全く新規な化合物である。
and (2) chemically synthesized NA B, which was obtained as a result of the integration of the DHFR gene of 5ubtilis downstream of the EcoRI site, and is a completely new compound.

GIFを蕪潟屍す6DNAとLriよ、以下1.示す配
列のものをホスホアミダイト法により化学合成し、それ
らを結合して用いているが2合成方法によって本発明は
制限されない。
6DNA and Lri who kill GIF, below 1. The sequences shown were chemically synthesized by the phosphoramidite method and used by combining them, but the present invention is not limited by the two synthesis methods.

1.5′−AATTCTATGGCTGGTTGT−3
’2.5’−AAGAACTTCTTTTGGAAGA
CTTTCACTTCGTGTTAAG−3’ 3.5’−GATCCTTAACACCAAGTGAA
AGTCTTCCAAAA−3’ 4.5’−GAAGTTCTTACAACCAGCCA
TAG−3’本発明のプラスミドpGIF1は、478
9塩基対の大きさを有し、宿主であるE、coliをト
リメトプリムおよびアンピンリン耐性に形質転換するこ
とができ、第1図に示される塩基配列によって確定され
る新規組換えプラスミドである。プラスミドpGIF1
は、制限酵素E c o RI 、 BamHI。
1.5'-AATTCTATGGCTGGTTGT-3
'2.5'-AAGAACTTCTTTTGGAAGA
CTTTCACTTCGTGTTAAG-3'3.5'-GATCCTTAACACCAAGTGAA
AGTCTTCCAAAA-3'4.5'-GAAGTTCTTAACAACCAGCCA
TAG-3' The plasmid pGIF1 of the present invention is 478
It is a novel recombinant plasmid, which has a size of 9 base pairs and can transform the host E.coli to be resistant to trimethoprim and ampinrin, and is determined by the base sequence shown in FIG. Plasmid pGIF1
are restriction enzymes EcoRI, BamHI.

Bgln、  BstEIl、 PstI、 PvuI
I、 Sat Iによって、各々1箇所切断されy A
a t TI+ CI a I + Hand■+ H
p a Iによって各々2箇所切断される。
Bgln, BstEIl, PstI, PvuI
I, Sat I cut one place each y A
a t TI+ CI a I + Hand■+H
Each is cut at two places by p a I.

第1図は、pGIFlの全塩基配列を示す図であり2本
mDNAのうち片方の配列だけを示している。第2図は
、pGIFl中に存在するDHFR−GIF融合タンパ
クを暗号化する部分の塩基配列及びタンパクのアミノ酸
配列を示す図である。
FIG. 1 is a diagram showing the entire base sequence of pGIFl, and only one of the two mRNA sequences is shown. FIG. 2 is a diagram showing the base sequence of the portion encoding the DHFR-GIF fusion protein present in pGIFl and the amino acid sequence of the protein.

制限酵素EcoRIの認識切断部位は、第1図において
は、676〜681塩基の所に、第2図においては、4
80〜485塩基の所に存在する。制限酵素BamHI
の認識切断部位は、第1図において、731〜736塩
基の所に存在する。このEcoRIとBamHI切断に
よって得られる55ヌクレオチド長よりなる配列が、上
記合成りNAによって導入された配列である。
The recognition cleavage site of the restriction enzyme EcoRI is at bases 676 to 681 in Figure 1, and at base 4 in Figure 2.
It exists between bases 80 and 485. Restriction enzyme BamHI
The recognition cleavage site exists at bases 731 to 736 in FIG. The sequence consisting of 55 nucleotides in length obtained by this EcoRI and BamHI cleavage is the sequence introduced by the above synthetic NA.

DHFR−GIF融合タンパクは、第2図に示されるよ
うに177個のアミノ酸より構成される。
The DHFR-GIF fusion protein is composed of 177 amino acids as shown in FIG.

融合タンパクのアミン末端側から162番目までは* 
 B、5ubtilisのDHFRのアミノ酸配列と同
一であり、164〜177番目の配列がGIFの配列で
ある。163番目のアミノ酸はメチオ、*”)”l0J
ie t)であり、ブロムシアンで融合タンパクを処理
することによりGIFを切り出すことが可能な構造であ
る。融合タンパクの分子量は20,380である。
The 162nd position from the amine end of the fusion protein is *
The amino acid sequence is the same as that of DHFR of B. 5ubtilis, and the sequence from positions 164 to 177 is the sequence of GIF. The 163rd amino acid is methio, *”)”l0J
ie t), and is a structure in which GIF can be excised by treating the fusion protein with bromcyanide. The molecular weight of the fusion protein is 20,380.

pGIFlを含有するE、coliは、DHFR−GI
F融合タンパクを細胞内で作ることができる。すなわち
、pGIFlを含有するE、coliを培養し。
E. coli containing pGIFl is DHFR-GI
F fusion proteins can be made intracellularly. That is, E. coli containing pGIFl was cultured.

菌体を集め、これを超音波破砕し、  20000回転
/分回転時間遠心分離して得られる上清中に、 DHF
R−GIF融合タンパクのほとんど全てが存在する。即
ち、融合タンパクは不溶性でなく可溶性の状態でE、 
c o 1 i細胞中に産生されている。また。
DHF was added to the supernatant obtained by collecting bacterial cells, disrupting them by ultrasonication, and centrifuging them at 20,000 revolutions per minute.
Almost all R-GIF fusion proteins exist. That is, the fusion protein is not insoluble but soluble in E,
It is produced in coi cells. Also.

この上清から、DHFR酵素活性を目安に精製した融合
タンパクは、エンザイムイムノアッセイにより、GIF
に対する抗体と反応する。即ち、DHFR−GIF融合
タンパクは、DHFR酵素活性を有し、これを指標に分
離精製を行うことができる。従って2本発明のpGIF
lを用いることにより、遺伝子操作技術を利用したGI
F生産に係わる上記問題点を解消することができるので
ある。
From this supernatant, the fusion protein was purified using DHFR enzyme activity as a guideline, and was determined by enzyme immunoassay.
Reacts with antibodies against. That is, the DHFR-GIF fusion protein has DHFR enzyme activity, and can be separated and purified using this as an indicator. Therefore, the pGIF of the present invention
GI using genetic engineering technology by using l.
The above-mentioned problems related to F production can be solved.

本発明に係わる新規組換えプラスミドpGIF1は、p
BSFOLEKI (特許出願6l−234003)及
び化学合成したDNAをもちいて、実施例1に記す方法
に従って作成することができるが、プラスミドの作成方
法によって本発明が制限されるものではない。
The novel recombinant plasmid pGIF1 according to the present invention is p
The plasmid can be produced using BSFOLEKI (Patent Application No. 6l-234003) and chemically synthesized DNA according to the method described in Example 1, but the present invention is not limited by the method for producing the plasmid.

本発明のプラスミドpGIF1は、 E、coli C
600株に導入されて安定状態に保たれ、また9本発明
のpGIFlを含有するE、coli C600株は微
工研にFERM P−9301として寄託されている。
The plasmid pGIF1 of the present invention can be used in E, coli C
The E. coli C600 strain, which has been introduced into 600 strains and maintained in a stable state, and which contains the pGIFl of the present invention, has been deposited with the FEI as FERM P-9301.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例1 組換えプラスミドpGIF1の作成 o、ooi+r@のプラスミドpBSFOLEKI (
特許出願 6l−234003)を制限酵素EcoRI
及びBamHIを用いて切断後;196アガロースゲル
電気泳動法により分離した。約4,7キロ塩基対のDN
A断片をw’e出し透析チー−プに入れ1dの50mM
 Tris−HCI、pH8,0を加えシールし、電気
溶出法(electroelution法+ T、Ma
niatisら、 MolecularCIoning
 A Loboratory Manual+ p、 
164 t Co1d Spr−ing Harbor
 Laboratory (1982)、文献1)によ
り。
Example 1 Creation of recombinant plasmid pGIF1 o, ooi+r@ plasmid pBSFOLEKI (
Patent application 6l-234003) with restriction enzyme EcoRI
After cleavage using BamHI and BamHI; separation by 196 agarose gel electrophoresis. Approximately 4.7 kilobase pairs of DNA
Take out the A fragment and put it in a dialysis chamber at 1d of 50mM.
Tris-HCI, pH 8.0 was added, sealed, and electroelution method + T, Ma
Niatis et al., Molecular CIoning
A Laboratory Manual + p.
164t Co1d Spring Harbor
Laboratory (1982), document 1).

ゲルからDNAを回収し、エタノールでDNAを沈殿後
、減圧下に沈殿を乾燥した(DNA−1と呼ぶ)。この
DNA配列は、第1図の1〜677番目と731−47
89番目の配列である。(第1図は、環状構造の配列を
便宜上直鎖上配列で表わしているため、4789番目の
塩基と1番目の塩基は隣り合ってつながっている。) GIFを暗号化するDNAとしては、以下に示す配列の
ものをホスホアミダイト法により化学合成して用いた。
DNA was collected from the gel, precipitated with ethanol, and the precipitate was dried under reduced pressure (referred to as DNA-1). This DNA sequence is 1-677 and 731-47 in Figure 1.
This is the 89th array. (In Figure 1, the arrangement of the circular structure is shown as a linear arrangement for convenience, so the 4789th base and the 1st base are connected next to each other.) The DNA that encodes GIF is as follows. A compound having the sequence shown in was chemically synthesized by the phosphoramidite method and used.

この配列の設計指針としては、(1)pBsFOLEK
lのEcoRI及びBamHI切断部位に導入できるこ
と、その際、(2)EcoRI切断部位がDHFRの1
60〜162番目を暗号化することから、遺伝子の読み
取り枠をあわせること、(3)DHFRとGIFとをメ
チオニンを介して融合させ。
As a design guideline for this sequence, (1) pBsFOLEK
(2) the EcoRI cleavage site can be introduced into the 1 EcoRI and BamHI cleavage sites of DHFR;
(3) DHFR and GIF are fused via methionine by encoding the 60th to 162nd to match the open reading frames of the genes.

ブロムシアン処理によってGIFを切り出せる構造にす
ること、を検討した。
We considered creating a structure that allows GIF to be cut out using Bromsian processing.

1.5°−AATTCTATGGCTGGTTGT−3
’2.5″−AAGAACTTCTTTTGGAAGA
CTTTCACTTCGTGTTAAG−3’ 3.5’−GATCCTTAACACGAAGTGAA
AGTCTTCCAAAA−3゜ 4.5’−GAAGTTCTTACAACCAGCCA
TAG−3’の4本のDNAをホスホアミダイト法に従
って化学合成し、精製後、ポリヌクレオチドキナーゼで
5°−末端をリン酸化した後、各々を約0.1 at 
(約0.0001rl1gのDNAを含んでいる)ずつ
取り、これを60°Cでインキュベートすることにより
アニールさせた(これをDNA−2と呼ぶ)。
1.5°-AATTCTATGGCTGGTTGT-3
'2.5''-AAGAACTTCTTTTGGAAGA
CTTTCACTTCGTGTTAAG-3'3.5'-GATCCTTAACACGAAGTGAA
AGTCTTCCAAAA-3゜4.5'-GAAGTTCTTAACAACCAGCCA
Four DNAs of TAG-3' were chemically synthesized according to the phosphoramidite method, purified, and phosphorylated at the 5°-end with polynucleotide kinase.
(containing approximately 0.0001 rl 1 g of DNA) was taken and annealed by incubating at 60°C (this is referred to as DNA-2).

DNA−1を0.05141のりガーゼ用反応液(10
mM Trjs−HCI、 pH7,4,5mM Mg
C1z 、  10mMジチオトレイトール、0.5m
M ATP)に溶解した後、0.05−のDNA−2及
び、0.5ユニツトのT4−DNAリガーゼを加え、3
7°C,1時間、DNAの連結反応を行なわせた。この
反応を。
Add DNA-1 to 0.05141 gauze reaction solution (10
mM Trjs-HCI, pH7, 4, 5mM Mg
C1z, 10mM dithiothreitol, 0.5m
After dissolving in MATP), add 0.05 units of DNA-2 and 0.5 units of T4-DNA ligase,
DNA ligation reaction was carried out at 7°C for 1 hour. This reaction.

形質転換法(t rans f o rma t io
n me t hoa’呟)何己文献1゜pp、250
)に従って、 E、 coli C600株に取り込ま
せた。この処理をした菌体を、  50rag/IIの
アンピンリンナトリウム及び1omg/lのトリメトプ
リムを含む栄養寒天培地(ll中に、Igのグルツース
、1gのリン酸2カリウム、5gのポリペプトン、及び
15gの寒天を含む寒天培地)上に塗布し、37°Cで
24時間培養することにより、 30個のコロニーを得
ることができた。これらのコロニーから、適当に8個選
び、1.5−のYT+Ap培地(Ig中に、5gのNa
Ct、 8 gのトリプトン。
Transformation method
n me t hoa' murmuring) What self literature 1゜pp, 250
) was introduced into E. coli strain C600. The treated bacterial cells were placed on a nutrient agar medium containing 50 rag/II sodium ampinrin and 1 omg/l trimethoprim (in 1 liter, Ig of glutose, 1 g of dipotassium phosphate, 5 g of polypeptone, and 15 g of agar). 30 colonies were obtained by plating the cells on an agar medium (containing agar medium) and culturing at 37°C for 24 hours. From these colonies, 8 colonies were randomly selected and added to 1.5-YT+Ap medium (5 g of Na in Ig).
Ct, 8 g of tryptone.

5gのイーストエキス、及び50rrIgのアンピンリ
ンナトリウムを含む液体培地)で37°Cで、−晩菌体
を培養した。培養液をそれぞれ、エツペンドルフ遠心管
にとり、12000回転/分で10分間遠心し、菌体を
集めた。上清を捨て、これに0.1−の電気泳動サンプ
ル調製液(0,0625MのTris−HCt、pH6
,8,296のラウリル硫酸ナトリウム(SDSと略す
。)、1096のグリセリ、ン、  591)の2−メ
ルカプトエタノール、及び0.00196プロムフエノ
ールブルーを含む。)を加え、菌体を懸濁し。
The bacterial cells were cultured at 37°C in a liquid medium containing 5 g of yeast extract and 50 rrIg of ampinlin sodium. Each culture solution was placed in an Eppendorf centrifuge tube and centrifuged at 12,000 rpm for 10 minutes to collect bacterial cells. Discard the supernatant and add to it 0.1-electrophoresis sample preparation solution (0.0625M Tris-HCt, pH 6).
, 8,296 sodium lauryl sulfate (abbreviated as SDS), 1096 glycerol, 2-mercaptoethanol (591), and 0.00196 promphenol blue. ) and suspend the bacterial cells.

これを沸騰水中に5分間保つことにより菌体を溶かした
。この処理をしたサンプルを5DS−ポリアクリルアミ
ド電気泳動法(U、に、 Lamm1i、Nat−ur
e、vol、227.pp、680−685 (197
0))に従って分析した。標準サンプルとしてpBsF
OLEKlを含有するE、coliに同様な処理をした
もの及び分子量マーカーサンプルとしてラクトアルブミ
ン、トリプシンインヒビター、トリプシノーゲン、カー
ボニックアンヒドラーゼ、グリセロアルデヒド−3リン
酸デヒドロゲナーゼ、卵アルブミン、及び牛血清アルブ
ミンを含むサンプルを泳動した。その結果、8個のコロ
ニーのうち、6個のコロニーでは、pBSFOLEKI
を含有するE、C01iが作るDHFR−ロイシンエン
ケファリン融合タンパクが消失し、新たに、それより約
1000ダルトン大赤いタンパクが作られていることが
明らかとなった。また、新たに得られたタンパクバンド
の量は、pBsFOLEKlを含有するE、coliが
作るDIIFR−ロイシンエンケファリン融合タンパク
のバンドのw(:、’Ai差がないことから、遺伝子発
現の効率は変化していないものと考えられた。この6個
から適当に1個選び、これをYT+Ap培地で培養しr
  TanaicaとWeisblumの方法(T、 
Tanaka+B、 Weisblumy J、 Ba
cteriology、 vol 121 + pp、
354 (1975))にしたがってプラスミドを調製
した。
The bacterial cells were dissolved by keeping this in boiling water for 5 minutes. This treated sample was subjected to 5DS-polyacrylamide electrophoresis (U, Lammli, Nat-ur).
e, vol, 227. pp, 680-685 (197
0)). pBsF as a standard sample
E. coli containing OLEKl was treated in the same way, and molecular weight marker samples include lactalbumin, trypsin inhibitor, trypsinogen, carbonic anhydrase, glyceraldehyde-3-phosphate dehydrogenase, egg albumin, and bovine serum albumin. The sample was run. As a result, in 6 out of 8 colonies, pBSFOLEKI
It was revealed that the DHFR-leucine enkephalin fusion protein produced by E and C01i, which contains E and C01, disappeared, and a new protein about 1000 daltons larger was produced. In addition, the amount of the newly obtained protein band is the same as that of the band of the DIIFR-leucine enkephalin fusion protein produced by E. coli containing pBsFOLEKl (:, 'As there is no difference in Ai, the efficiency of gene expression does not change. It was thought that one of these six cells was not properly selected and cultured in YT+Ap medium.
Tanaica and Weisblum's method (T,
Tanaka + B, Weisblumy J, Ba
cteriology, vol 121 + pp,
354 (1975)).

得られたプラスミドを制限酵素E c oRI 、 B
amHI。
The obtained plasmid was treated with restriction enzymes EcoRI, B
amHI.

Bg l II t Bs t En、P s t L
 Sat L Aa t II+ C1a I tHi
ndIII、 Hpa Iによって切断を試みたところ
、各々1. 1. 1. 1. 1. 1. 2. 2
.2. 2”箇所切断されることが明らかとなった。得
られたプラスミドをp G I F ’1と称した。p
GIF・1の全塩基配列を、ジデオキシ法に従って決定
した。その結果、第1図に示す塩基配列が明らかとなり
、プラスミドpGIF1は4789塩基対より成り立っ
ていることが明らかとなった。
Bg l II t Bs t En, P s t L
Sat L Aat II+ C1a I tHi
When cleavage was attempted with ndIII and HpaI, 1. 1. 1. 1. 1. 1. 2. 2
.. 2. It was revealed that the plasmid was cleaved at the 2" site. The obtained plasmid was named pGIF'1.p
The entire base sequence of GIF-1 was determined according to the dideoxy method. As a result, the base sequence shown in FIG. 1 was revealed, and it was revealed that plasmid pGIF1 consists of 4789 base pairs.

実施例2 組換えプラスミドpGIF1を含有するE、 col 
1C600株からのDHFR−GIF融合タンパクの精
製。
Example 2 E, col containing recombinant plasmid pGIF1
Purification of DHFR-GIF fusion protein from strain 1C600.

プラXミ)’pGIF1を含有t ルE、 colt 
C600株を31のYT+Ap培地中で37°Cで一晩
培養後。
Contains pGIF1, colt
After culturing C600 strain in 31 YT+Ap medium at 37°C overnight.

菌体を遠心分離により集めた。湿重量約14gの菌体が
得られた。菌体を28m1の1 mMのジチオトレイト
ール(DTT)及び0.1 mMのエチレンジアミン4
酢酸2ナトリウム(EDTA)を含む10mM リン酸
カリウム緩衝液pH7,0に懸濁し、超音波破砕により
細胞を破砕した後、20000回転/分回転時間の遠心
分離により上清30−を得た。
Bacterial cells were collected by centrifugation. Bacterial cells with a wet weight of about 14 g were obtained. The bacterial cells were mixed with 28ml of 1mM dithiothreitol (DTT) and 0.1mM ethylenediamine4.
After suspending the cells in 10 mM potassium phosphate buffer pH 7.0 containing disodium acetate (EDTA) and disrupting the cells by ultrasonic disruption, supernatant 30- was obtained by centrifugation at 20,000 rpm.

えられた上清のDHFRの酵素活性を測定したところ、
144ユニット/mJ(全活性4320ユニツト、全タ
ンパク1t1200■、比活性3.6ユニツト/■タン
パク)という値であった。上清を。
When the DHFR enzyme activity of the obtained supernatant was measured,
The value was 144 units/mJ (total activity: 4320 units, total protein: 1t1,200 mm, specific activity: 3.6 units/■ protein). supernatant.

DEAE−)ヨーパール650Mカラム(’250rr
mx1500 mm、約75 ca )に吸着させ、O
Mから50mMのKCI濃度勾配をかけ溶出した。約5
 mlずつフラクションを集め、DHFRの酵素活性を
測定し。
DEAE-) Yopar 650M column ('250rr
mx1500 mm, about 75 ca), and O
Elution was performed by applying a KCI concentration gradient from M to 50mM. Approximately 5
Fractions were collected in ml portions and the enzyme activity of DHFR was measured.

酵素活性を有する両分を集めた。8211/の酵素液が
得られた(回収活性1830ユニツト(42%)。
Both fractions with enzyme activity were collected. An enzyme solution of 8211/ml was obtained (recovery activity 1830 units (42%)).

回収タンパク量20.2■、比活性90.6−Sニット
/ff1gタンパク)。これをアミコン限外ろ過装置を
用いて約11rLlにまで濃縮し、これをトヨパールH
W55カラムクロマトグラフィーにより分画した。
Amount of recovered protein: 20.2■, specific activity: 90.6-S nits/ff1g protein). This was concentrated to about 11 rLl using an Amicon ultrafiltration device, and this was
Fractionation was performed by W55 column chromatography.

約2.8コずつフラクションを集め、DHFRの酵素活
性を測定し、酵素活性のピーク画分を集めた(約3.4
 rnl 、回収活性462ユニツト(10,7%)。
Approximately 2.8 fractions were collected, the enzyme activity of DHFR was measured, and the fractions with the peak enzyme activity were collected (approximately 3.4
rnl, recovered activity 462 units (10.7%).

回収タンパク量1.9[11g、比活性243ユニツト
/■タンパク)。得られた酵素タンパクをSDS電気泳
動法により分析したところ、均一であり、ラクトアルブ
ミン、トリプシンインヒビター、トリプシノーゲン、カ
ーボニックアンヒドラーゼ、グリセロアルデヒド−3リ
ン酸デヒドロゲナーゼ、卵アルブミン、及び牛血清アル
ブミンを分子量マーカーとして精製ジヒドロ葉酸還元酵
素の分子量を推定したところ21000であり、塩基配
列から予想される分子量20,380とほぼ一致した値
であった。
Amount of recovered protein: 1.9 [11 g, specific activity: 243 units/■ protein). When the obtained enzyme protein was analyzed by SDS electrophoresis, it was found to be homogeneous, and the molecular weight of lactalbumin, trypsin inhibitor, trypsinogen, carbonic anhydrase, glyceraldehyde-3-phosphate dehydrogenase, egg albumin, and bovine serum albumin was determined. The estimated molecular weight of purified dihydrofolate reductase as a marker was 21,000, which was almost the same as the predicted molecular weight of 20,380 from the base sequence.

精製したDHFR活性を有するタンパクをエンザイムイ
ムノアッセイにより測定したところ、GIFによって抗
原−抗体反応が競争的に阻害されることが明らかとなっ
た。また、精製したDHFR活性を有するタンパクのカ
ルボキシ末端側の配列をカルボキシペプチダーゼ法を用
いて検討したところ、  −Trp  Lys−(Th
r、Phe、Thr)−3er−(カルボキシ末端)で
あることが判明した。
When the purified protein having DHFR activity was measured by enzyme immunoassay, it was revealed that the antigen-antibody reaction was competitively inhibited by GIF. Furthermore, when the carboxy-terminal sequence of the purified protein with DHFR activity was examined using the carboxypeptidase method, it was found that -Trp Lys-(Th
r, Phe, Thr)-3er- (carboxy terminal).

DHFR−GIFのカルボキシ末端のアミノ酸はCys
(システィン)であるが、このアミノ酸は本発明者らが
用いた方法では検出できないので、さらに、Ellma
nの方法を用いて5,5°−ジチオビス2−ニトロ安息
香酸を用いてDHFR−GIF融合タンパクのチオール
(SH)基の含量を測定したところ、4.2〜4.6残
基/分子という値が得られた。第2図に示したDHFR
−GIFのCyS含量は、5残基/分子であり、この値
とほぼ一致した。また、カルボキシ末端側を変化させて
いないDHFR(1−168)のSH基の含量を同様に
測定した結果は、2.4〜2.7残基/分子という値で
あった。以上の結果は2組換えプラスミドpGIFIを
含有するE、coli C600株から得られたD H
F R≦G、=I’ F融合タンパクが、確かにGIF
を含んでいることを示している。
The carboxy-terminal amino acid of DHFR-GIF is Cys
(cysteine), but since this amino acid cannot be detected by the method used by the present inventors,
The content of thiol (SH) groups in the DHFR-GIF fusion protein was measured using 5,5°-dithiobis2-nitrobenzoic acid using the method of 4.2-4.6 residues/molecule. value was obtained. DHFR shown in Figure 2
The CyS content of -GIF was 5 residues/molecule, which almost matched this value. Further, the SH group content of DHFR (1-168) whose carboxy terminal side was not changed was similarly measured, and the result was a value of 2.4 to 2.7 residues/molecule. The above results were obtained from E.coli strain C600 containing two recombinant plasmids pGIFI.
F R≦G, = I' The F fusion protein is certainly GIF
It shows that it contains.

発明の効果 上記のように、新規組換えプラスミドpGIF1は、D
HFR−GIF融合タンパクを暗号化しており、かつp
GIFlを含有するE、col i C600は、DH
FR−GIF融合タンパクを可溶性の状態で生産する。
Effects of the Invention As mentioned above, the novel recombinant plasmid pGIF1 is
encodes the HFR-GIF fusion protein and p
E, coli C600 containing GIFl is DH
The FR-GIF fusion protein is produced in a soluble state.

さらに、産生したDHFR−GIF融合タンパクはDH
FR酵素活性を示し、精製を容易に行うことができる。
Furthermore, the produced DHFR-GIF fusion protein
It exhibits FR enzyme activity and can be easily purified.

このような性質を有することから1本発明の新規組換え
プラスミドpGIFI及びそれを含有するE、coli
C600は、DHFR−GIF融合タンパクの生産、及
びそれを利用したGIFの生産に有益である。
Because it has such properties, the novel recombinant plasmid pGIFI of the present invention and E. coli containing it.
C600 is useful for the production of DHFR-GIF fusion protein and the production of GIF using it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、pGIFlの全塩基配列を示した図であり、
鴫本鎖DNAのうち片方のDNA鎖配列だけを、5′末
端から3′末端の方向に記述している。 図中符号は、核酸塩基を表わし、Aはアデニーンを。 Cはシトシンを、Gはグアニンを、Tはチミンを示して
いる。図中番号はpGIFlに2箇所存在する制限酵素
C1aI切断認識部位のうち制限酵素H4ndlI[切
断部位に近い方のC1aI切断認識部位の、ATCGA
Tの最初の′A”を1番として数えた番号を示している
。 第2図は、pGIFl中に存在するDHFR−GIF融
合タンパクを暗号化する部分の塩基配列及びタンパクの
アミノ酸配列を示す図である。図中群中は、核酸塩基及
びアミノ酸を表わし、Aはアデニン、Cはシトシン、G
はグアニンを、Tはチミン苓、AlaはアラニンをIA
rgはアルギニンを+Asnはアスパラギンを、Asp
はアスパラギン酸を、Cysはシスティンを、Ginは
グルタミンを、Gluはグルタミン酸を、G+yはグリ
シンを。 Hisはヒスチジンを、■ceはイソロイシンを。 L e uはロイシンを、Lysはリジンを、Metは
メチオニンヲ+Pheはフェニルアラニン’;i:、P
r。 はプロリンを、  Setはセリンを、Thrはトレ第
37を、Trpl;!h!Jプ、7アアをe T y 
r Edf俗しンを+ Vatはバリンを示している。 図中番号は。 一番目のアミノ酸であるメチオニンを暗号化するATG
コドンの”A″を1番として数えた番号を示している。
FIG. 1 is a diagram showing the entire base sequence of pGIFl,
Only one DNA strand sequence of the Shizumoto strand DNA is described in the direction from the 5' end to the 3' end. The symbols in the figure represent nucleobases, and A represents adenine. C represents cytosine, G represents guanine, and T represents thymine. The numbers in the figure indicate the restriction enzyme H4ndlI among the two restriction enzyme C1aI cleavage recognition sites that exist in pGIFl [the ATCGA of the C1aI cleavage recognition site that is closer to the cleavage site].
The numbers are shown with the first 'A' of T as number 1. Figure 2 is a diagram showing the base sequence of the part encoding the DHFR-GIF fusion protein present in pGIFl and the amino acid sequence of the protein. The groups in the figure represent nucleobases and amino acids, A is adenine, C is cytosine, G
stands for guanine, T stands for thymine, and Ala stands for alanine.
rg is arginine + Asn is asparagine, Asp
represents aspartic acid, Cys represents cysteine, Gin represents glutamine, Glu represents glutamic acid, and G+y represents glycine. His stands for histidine, ■ce stands for isoleucine. L eu is leucine, Lys is lysine, Met is methionine + Phe is phenylalanine'; i:, P
r. is Proline, Set is Serine, Thr is Tre No. 37, Trpl;! h! Jp, 7 aa e T y
r Edf stands for + Vat stands for valine. The numbers in the diagram are. ATG encodes the first amino acid, methionine
The numbers are shown starting from codon "A" as number 1.

Claims (1)

【特許請求の範囲】 1、E.coliにおいて安定に複製され、宿主である
E.coliにトリメトプリム耐性及びアンピンリン耐
性を与えることができ、トリメトプリム耐性を付与する
遺伝子がBacillus subtilisのジヒド
ロ葉酸還元酵素遺伝子の3′末端側が一部改変されたこ
とによりジヒドロ葉酸還元酵素−ソマトスタチン融合タ
ンパクを暗号化し、4789塩基対の大きさを有し、第
1図において示されるDNA配列を有する新規組換えプ
ラスミドpGIF1。 2、特許請求範囲第1項記載の新規組換えプラスミドp
GIF1を含有するE.coli C600株。
[Claims] 1.E. It is stably replicated in the host E.coli. The gene conferring trimethoprim resistance encodes a dihydrofolate reductase-somatostatin fusion protein by partially modifying the 3' end of the Bacillus subtilis dihydrofolate reductase gene. The new recombinant plasmid pGIF1 has a size of 4789 base pairs and has the DNA sequence shown in FIG. 2. Novel recombinant plasmid p described in claim 1
E. containing GIF1. coli strain C600.
JP7937887A 1987-03-31 1987-03-31 Novel recombined plasmid pgif1 Granted JPS63245680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7937887A JPS63245680A (en) 1987-03-31 1987-03-31 Novel recombined plasmid pgif1

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7937887A JPS63245680A (en) 1987-03-31 1987-03-31 Novel recombined plasmid pgif1

Publications (2)

Publication Number Publication Date
JPS63245680A true JPS63245680A (en) 1988-10-12
JPH0371111B2 JPH0371111B2 (en) 1991-11-12

Family

ID=13688209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7937887A Granted JPS63245680A (en) 1987-03-31 1987-03-31 Novel recombined plasmid pgif1

Country Status (1)

Country Link
JP (1) JPS63245680A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4348457B2 (en) 2002-03-13 2009-10-21 ドルビー ラボラトリーズ ライセンシング コーポレイション High dynamic range display, display controller, and image display method
US9143657B2 (en) 2006-01-24 2015-09-22 Sharp Laboratories Of America, Inc. Color enhancement technique using skin color detection
US8941580B2 (en) 2006-11-30 2015-01-27 Sharp Laboratories Of America, Inc. Liquid crystal display with area adaptive backlight

Also Published As

Publication number Publication date
JPH0371111B2 (en) 1991-11-12

Similar Documents

Publication Publication Date Title
KR101299417B1 (en) Method for producing carboxy-terminal amidified peptides
US20240288416A1 (en) Artificial nanopores and uses and methods relating thereto
De Graaf et al. Purification and Characterization of a Complex between Cloacin and Its Immunity Protein Isolated from Enterobacter cloacae (Clo DF13) Dissociation and Reconstitution of the Complex
EP1304381A2 (en) Process for producing hydrophobic polypeptides, proteins or peptides
JPH0371112B2 (en)
JPS63245680A (en) Novel recombined plasmid pgif1
JPS6387981A (en) Novel recombinant plasmid pbsfolek1
JPS63245679A (en) Novel recombined plasmid pblak1
JPS63258597A (en) Dihydrofolic acid reductase-somatostatin fused protein
JPS63102698A (en) Production of leucine enkephalin
JPH0354560B2 (en)
JPH0364517B2 (en)
KR0132003B1 (en) Process for preparation of recombinant proteins by use of streptomyces thermonitrificans aminopeptidase
JPH0371113B2 (en)
JPH0355111B2 (en)
JPH0354555B2 (en)
JPH0364518B2 (en)
JPH02142476A (en) Novel recombinant plasmid pgrfm44-6
JPH0279978A (en) Delta-endorphin
JPH0355112B2 (en)
JPH0354554B2 (en)
JPH0364114B2 (en)
JPH0364113B2 (en)
JPH042236B2 (en)
JPH0638786A (en) Production of fused protein

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term