JPS6324558A - Manufacture of electrode for molten carbonate type fuel cell - Google Patents

Manufacture of electrode for molten carbonate type fuel cell

Info

Publication number
JPS6324558A
JPS6324558A JP61168964A JP16896486A JPS6324558A JP S6324558 A JPS6324558 A JP S6324558A JP 61168964 A JP61168964 A JP 61168964A JP 16896486 A JP16896486 A JP 16896486A JP S6324558 A JPS6324558 A JP S6324558A
Authority
JP
Japan
Prior art keywords
slurry
electrode
layer
porous layer
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61168964A
Other languages
Japanese (ja)
Inventor
Yukihiko Naka
幸彦 仲
Toshiki Omatsu
豪紀 尾松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP61168964A priority Critical patent/JPS6324558A/en
Publication of JPS6324558A publication Critical patent/JPS6324558A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To improve the electrode property, by forming an inside porous layer of a high porosity on one side of a metal net, over which an outside porous layer of a large surface area respectively to compose a porous plate, and applying the porous plate as an electrode for a fuel cell. CONSTITUTION:A slurry loading device consists of a metal net drawing device to move a metal net 1 together with a carrier tape 2 arranged under the metal net 1 to the right direction along the upper surface of a base board 3 by a drawing motor 4, and a spreading device to spread two kinds of slurries S1 and S2 over the moving metal net 1. The said spreading device consists of hoppers 5 and 6 arranged in the metal net moving direction, and the hoppers 5 and 6 have variable walls 7 and 8 to regulate the spreading thickness. By setting the heights of the movable walls 7 and 8, the outlet slits 9 and 10 of the hoppers 5 and 6 can be controlled to set so that the width of the slit 9 determines the thickness of the inside porous layer while that of the slit 10 determines the thickness of the outside layer. The porous plate composed in such a way is used for the electrode.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、溶融状態の炭酸塩を電解質とする溶融F′
A、酸塩型燃料電池に関し、さらに詳しくは同電池にお
いて電解質板の両側に配置けられる正負一対の多孔質電
極の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to the production of molten F′ using molten carbonate as an electrolyte.
A. This invention relates to an acid-acid fuel cell, and more specifically to a method for manufacturing a pair of positive and negative porous electrodes arranged on both sides of an electrolyte plate in the same cell.

発明の背mおよび従来の技術 溶融炭酸塩型燃料電池は、電解質板の両側に主としてニ
ッケル系合金から成る多孔質電極をそれぞれ配置した構
造をとる。電解質板は炭酸リチウムと炭酸カリウムの溶
融状態の混合炭酸塩を微細構造のりチウムアルミネート
などの保持材に毛fill管現象によって吸着させたも
のである。
Background of the Invention and Prior Art A molten carbonate fuel cell has a structure in which porous electrodes mainly made of a nickel-based alloy are arranged on both sides of an electrolyte plate. The electrolyte plate is made by adsorbing a molten mixed carbonate of lithium carbonate and potassium carbonate onto a holding material such as microstructured lithium aluminate by capillary fill phenomenon.

他方、溶融炭酸塩型燃料電池における電極は、ガスの透
過性をよくするために、一般にニッケル系合金粉末を焼
結して製造した板状の多孔質体から成っている。電極の
性能はその細孔の形状によって大きく影響される。すな
わち電極反応を促進するには反応側位である電極の表面
積が大きいことが必要である。そのため金属粉としては
粒径の小さいものを用いることが望ましい。ところが粒
径の小さい金属粉末を用いると、有効電橋面積が大きく
なる反面、電解質保持材に保持されていた上記炭酸塩が
毛細管現象によって電極の細孔内に吸収されてしまう。
On the other hand, electrodes in molten carbonate fuel cells are generally made of plate-shaped porous bodies manufactured by sintering nickel-based alloy powder in order to improve gas permeability. The performance of an electrode is greatly influenced by the shape of its pores. That is, in order to promote the electrode reaction, it is necessary that the surface area of the electrode, which is the reaction site, be large. Therefore, it is desirable to use metal powder with a small particle size. However, when metal powder with a small particle size is used, the effective bridge area increases, but the carbonate held in the electrolyte holding material is absorbed into the pores of the electrode by capillary action.

溶融炭酸塩型燃料電池における反応は、炭酸塩、電極表
面および反応ガスの三相界面において進行するので、電
極の表面は炭酸塩に覆われている必要があるが、電極全
体にわたって炭酸塩が浸透していると、上記三相界面が
減少し、そのため電極の性能が低下し、また電極がニッ
ケル系合金多孔質体のみで構成されている場合は強度が
十分でないので、ステンレスtJAllの金網などによ
る補強がなされ、電池のケーシングもステンレス鋼で構
成されているが、炭酸塩が電極内に必要以上に吸収され
ると、ステンレス鋼に接触してこれを@食させ、溶融炭
酸塩型燃料電池の寿命を著しく短くする原因となる。
The reaction in a molten carbonate fuel cell proceeds at the three-phase interface of carbonate, electrode surface, and reactant gas, so the electrode surface must be covered with carbonate, but carbonate permeates throughout the electrode. If this is done, the three-phase interface will be reduced, which will reduce the performance of the electrode.Also, if the electrode is made only of a nickel-based alloy porous material, the strength will not be sufficient. Although reinforcement is provided and the cell casing is also made of stainless steel, if more carbonate is absorbed into the electrode than necessary, it will come into contact with the stainless steel and eat it, causing the molten carbonate fuel cell to This will cause the lifespan to be significantly shortened.

一方、粒径が大きい金属粉末で電極を製作した場合には
、孔径が大きくなるため、電解質の細孔内への浸透は必
要以上には起きない。しかし、この場合には、電極の表
面積が小さいため、電極としての性能の向上は望めない
On the other hand, when an electrode is made of metal powder with a large particle size, the pore size becomes large, so that the electrolyte does not penetrate into the pores more than necessary. However, in this case, since the surface area of the electrode is small, no improvement in performance as an electrode can be expected.

このように、従来の単純な構造から成る多孔質板では、
燃料電池の電極として求められる機能を十分に発揮する
ことはできなかった。また、電極材料であるニッケルは
高価な金属であり、電極材料にニッケルを大filに使
用することは、燃料電池のコストを上げる原因となる。
In this way, in the conventional porous plate with a simple structure,
It was not possible to fully demonstrate the function required as an electrode for a fuel cell. Further, nickel, which is an electrode material, is an expensive metal, and using a large amount of nickel as an electrode material increases the cost of the fuel cell.

この発明は、金網の片面上に空孔率の高い多孔質層とさ
らにその上に表面積の大きい多孔質層とを形成して成る
多孔質板を製作する方法を提供し、かくして得られた多
孔質板を溶融炭酸塩型燃料電池用電極として使用するこ
とにより、電極の性能を向上させるとともに、電極のコ
スト低減を果たすことを目的としている。
The present invention provides a method for manufacturing a porous plate comprising a porous layer with a high porosity and a porous layer with a large surface area formed on one side of a wire mesh, and the porous plate thus obtained. By using the quality plate as an electrode for molten carbonate fuel cells, the aim is to improve the performance of the electrode and reduce the cost of the electrode.

発明の構成 この発明による溶融炭酸塩型燃料電池用電(船の!lJ
造方法は、上記の目的の達成のために、金属粉末、有機
造孔材および有機バインダーを含むスラリーと、金属粉
末および右はバインダーを含むスラリーとの二種類のス
ラリーを用意し、まず前者のスラリーを補強用金網の上
面に層状に10持させ、ついで前者のスラリーから成る
11持層の上面に後者のスラリーを層状に担持させ、得
られた上下二層のスラリー担持層を焼成して、下側スラ
リー担持層から空孔率の高い内側多孔質層を形成すると
ともに、上側スラリー担持層から表面積の大きい外側多
孔質層を形成することを重ねて配する、。
Structure of the invention
In order to achieve the above purpose, two types of slurry are prepared: one containing metal powder, an organic pore-forming material, and an organic binder, and the other containing metal powder and a binder. The slurry is deposited in 10 layers on the top surface of a reinforcing wire mesh, and then the latter slurry is deposited in a layer on the top surface of 11 layers made of the former slurry, and the resulting two upper and lower slurry carrier layers are fired, An inner porous layer with a high porosity is formed from the lower slurry carrying layer, and an outer porous layer with a large surface area is formed from the upper slurry carrying layer.

この発明において、有機造孔材としてはボリエヂレン、
ポリスチレン、ブイロンなどのプラスチック粉末や合成
繊維片が用いられるか、または小麦粉や木yJなどの天
然石門物の粉末や天然繊維片が用いられる。
In this invention, the organic pore-forming material is polyethylene,
Plastic powder and synthetic fiber pieces such as polystyrene and bouylon are used, or natural stone powder and natural fiber pieces such as wheat flour and wood are used.

有機バインダーとしてはメヂルレルロースやポリビニル
ブチラートなどが用いられる。
Medillulose, polyvinyl butyrate, etc. are used as the organic binder.

また通常は金網の下面にキャリアテープを重ねて配する
。キャリアテープとしては濾紙や液吸収性のよい合成樹
脂フィルムが用いられる。
Also, carrier tape is usually placed on the underside of the wire mesh. As the carrier tape, filter paper or a synthetic resin film with good liquid absorption properties is used.

焼成は好ましくは水素気流中のような還元雰囲気で行な
われる。
Calcining is preferably carried out in a reducing atmosphere, such as in a stream of hydrogen.

この発明による電極の製造において、スラリー4Q持工
程に直接使用されるスラリー担持装置は、金網を基台上
に沿って所要方向に移動させる金網牽引手段と、移動す
る金網の上面に二種類のスラリーを層状に塗布するスラ
リー塗布手段とから成る。スラリー塗布手段は、好まし
くは、金網移動方向に配列されかつ金網の上面との間に
それぞれ幅調節自在のスラリー出ロスリットを有する二
基のホッパーから成る。なお、スラリー塗布手段は上記
構造のホッパー1基から成るものでもよい。この場合、
同ホッパーにまず第1のスラリーを投入して塗布を行な
い、ついで第2のスラリーを投入して塗布を行なう。
In the production of electrodes according to the present invention, the slurry carrying device used directly in the slurry 4Q holding process includes a wire mesh pulling means that moves the wire mesh in a desired direction along the base, and two types of slurry on the top surface of the moving wire mesh. and a slurry coating means for applying the slurry in a layered manner. The slurry application means preferably comprises two hoppers arranged in the moving direction of the wire mesh and each having a slurry outlet slit with an adjustable width between the hopper and the upper surface of the wire mesh. Note that the slurry application means may consist of one hopper having the above structure. in this case,
First, a first slurry is charged into the same hopper for coating, and then a second slurry is charged and coating is carried out.

作   用 空孔率の高い内側多孔質層の表面に表面積の大きい外側
多孔質層を配して成る電極の有意性について説明する。
The significance of an electrode in which an outer porous layer with a large surface area is arranged on the surface of an inner porous layer with a high working porosity will be explained.

この発明の方法によって製作される電極では、電解質と
接触する外側多孔質層tよ、孔径が小さいため毛細管現
象により溶融炭酸塩電解質を吸収しやすくなり、電wl
質が十分に電極と接触し、電極の表面積が大きいことに
より電極反応が促進される。一方、内側多孔質層は、有
機造孔材の大きさの空孔と、金属扮末の相互間に形成さ
れる空孔との二種類の空孔を右しており、空孔率が高く
、かつ孔径が大きいために、毛細管現象による炭酸塩に
対する吸収力は小さい。そのためこの層によって電解質
の電極内への必要以上の浸透が阻止される。
In the electrode manufactured by the method of this invention, the outer porous layer t in contact with the electrolyte has a small pore diameter, so it easily absorbs the molten carbonate electrolyte through capillary action, and the
The electrode reaction is facilitated by the sufficient contact of the electrode with the electrode and the large surface area of the electrode. On the other hand, the inner porous layer has two types of pores: pores the size of the organic pore-forming material and pores formed between the metal particles, and has a high porosity. , and the pore size is large, so the absorption capacity for carbonate by capillary action is small. This layer therefore prevents the electrolyte from penetrating into the electrode more than necessary.

また内側多孔質層の細孔は、電解質によって完全には埋
まっておらず、空孔率も高いため、電極の裏側すなわら
金網側からのガスの供給や排出といった拡散性がよい。
In addition, the pores of the inner porous layer are not completely filled with the electrolyte and have a high porosity, so that gas can be supplied and discharged from the back side of the electrode, that is, from the wire mesh side, and has good diffusivity.

また一般に溶融炭酸塩型燃料′電池の場合、電極の材料
としてニッケル系合金が使用されるが、ニッケルは金属
としては高価な材料であるので、ニッケルの使用量を低
減させることが重要である。この発明の方法によれば、
同じ厚さの電((を製作する場合、右は造花材として加
えた右橢物の体積に相当する最のニッケルの使用を省く
ことができるため、電極のコスト低減が可能である。
Generally, in the case of molten carbonate fuel cells, a nickel-based alloy is used as the material for the electrodes, but since nickel is an expensive metal, it is important to reduce the amount of nickel used. According to the method of this invention,
When producing electrodes of the same thickness, the cost of electrodes can be reduced because the use of nickel, which corresponds to the volume of the artificial flower material on the right, can be omitted.

発明の効果 この発明の方法ににれば、従来の電(Cでは両立させる
ことができなかっだ2つの特性、すなわち電極の表面積
が大きいことと、ガスの拡散性がよいこととを兼ね備え
、さらに電解質の必要以上の吸収を行なわない電極が容
易に得られる。また、この発明の方法によれば、高価な
電極材料の使用量を著しく減少ざVることが可能であり
、電極のコス1−を大幅に低減づることができる。
Effects of the Invention The method of this invention combines two characteristics that could not be achieved with conventional electrodes, namely, a large electrode surface area and good gas diffusivity. An electrode that does not absorb more electrolyte than necessary can be easily obtained.Furthermore, according to the method of the present invention, it is possible to significantly reduce the amount of expensive electrode material used, and the cost of the electrode is reduced. can be significantly reduced.

実  施  例 つぎに上記効果を実証Jるためにこの発明の実施例を挙
げる。
EXAMPLES Next, examples of the present invention will be given to demonstrate the above effects.

第1図において、スラリー担持装置は、ステンレス鋼(
SUS316)%Jの50メツシユの金網(1)を、こ
れの下面に重ねて配したキトリアテープ(2)とともに
、基台(3)の上面に沿って牽引モーター(4)で右方
向に一定速度で移動さける金網牽引手段と、移動する金
網(1)の上面に2種類のスラリー(S−+ ) (S
2>を層状に塗布するスラリー塗布手段とから成る。キ
A・リアテープ(2)としては濾紙が用いられている。
In FIG. 1, the slurry carrying device is made of stainless steel (
A 50-mesh SUS316)%J wire mesh (1) is moved along the top surface of the base (3) along the top surface of the base (3) at a constant speed to the right with a traction motor (4). Two types of slurry (S-+) (S
2> in a layered manner. Filter paper is used as the rear tape (2).

スラリー塗布手段は、金網移動方向に配列された第1お
よび第2のホッパー(5)(6)から成り、これらホッ
パー(5)(6)はそれぞれスラリー塗布厚調節用の可
動壁(7)(8)を備えている。そして可動壁(708
)の高さを設定することによりホッパー(506)のス
ラリー出ロスリット(9)(10)の幅が調節けられ、
第1ホツパー(5)のスリット(9)の幅が電極グリー
ンシー1−の内側多孔¥′j層の厚さになり、また第2
ホツパ=(6)のスリット(10)の幅がff1l−4
jグリーンシートの外側多孔質層の厚さになるように、
それぞれ設定されている。
The slurry application means consists of first and second hoppers (5) (6) arranged in the direction of movement of the wire mesh, and these hoppers (5) (6) each have a movable wall (7) (7) for adjusting the slurry application thickness. 8). and a movable wall (708
) The width of the slurry outlet loss slits (9) and (10) of the hopper (506) can be adjusted by setting the height of the hopper (506).
The width of the slit (9) of the first hopper (5) is equal to the thickness of the inner porous layer of the electrode green sheet 1-, and
Hopper = width of slit (10) in (6) is ff1l-4
j to the thickness of the outer porous layer of the green sheet,
Each is set.

上記構成のスラリー担持装置においてつぎの操作を行な
った。まず水807とメタノール70gから成る混合溶
媒にメチルセルロース8゜09を溶解し、得られたバイ
ンダー溶液と粒径ニッケル粉末(粒径2〜7切)200
gと有機造孔材としてのポリエチレン粉末60gとを、
減圧下で24時間撹拌混合してスラリー化し、得られた
スラリー(Sl)を第1ホツパー(5)に投入した。ま
た水15gとメタノール139から成る混合溶媒にメチ
ルセルロース1.5gを溶解し、得られたバインダー溶
液とニッケル粉末(粒径2〜7p)100gとを、減圧
下で24時間撹拌混合してスラリー化し、(9られたス
ラリー(S2)を第2ホツパー(6)に投入した。
The following operations were performed in the slurry supporting device having the above configuration. First, 8°09 of methyl cellulose was dissolved in a mixed solvent consisting of 807 g of water and 70 g of methanol, and the resulting binder solution and 200 g of nickel powder (particle size 2 to 7) were dissolved.
g and 60 g of polyethylene powder as an organic pore-forming material,
The mixture was stirred and mixed under reduced pressure for 24 hours to form a slurry, and the resulting slurry (Sl) was charged into the first hopper (5). In addition, 1.5 g of methyl cellulose was dissolved in a mixed solvent consisting of 15 g of water and 139 methanol, and the resulting binder solution and 100 g of nickel powder (particle size 2 to 7 p) were stirred and mixed under reduced pressure for 24 hours to form a slurry. (The slurry (S2) was poured into the second hopper (6).

つぎに金網(1)とキャリアテープ(2)を基台(3)
上に沿って牽引モーター(4)で15cm/minの速
度で右方向に移動させ、金網(1)の上面にスラリー(
Sl)とその上にスラリー(S2)を層状に塗布した。
Next, place the wire mesh (1) and carrier tape (2) on the base (3).
The slurry (
Sl) and slurry (S2) were applied thereon in a layered manner.

こうして層状のスラリーを担持した金網(1)すなわち
グリーンシートをスラリー担持装置からはずしてスラリ
ーを乾燥ざVた後、グリーンシートからキャリアテープ
(2)を剥離し、ついでグリーンシートを電気炉に入れ
、炉内空気を水素で置換した後、グリーンシートを水素
気流中に温度400℃で12時間、900℃で1時間そ
れぞれ保持し、層状のスラリーを焼成して多孔質焼結板
を得た。
The wire mesh (1), that is, the green sheet carrying the layered slurry in this way is removed from the slurry carrying device, the slurry is dried, the carrier tape (2) is peeled off from the green sheet, and then the green sheet is placed in an electric furnace. After replacing the air in the furnace with hydrogen, the green sheet was held in a hydrogen stream at a temperature of 400° C. for 12 hours and at 900° C. for 1 hour, respectively, and the layered slurry was fired to obtain a porous sintered plate.

こうして得られた多孔質板は厚さQ、5mm1空孔率7
8%のものであって、第2図に示す顕微鏡写真から明ら
かなように、補強材としての金網と、有機造孔材を含ん
だスラリー(S、)から形成されかつ有機造孔材の蒸発
後に残った大きな空孔率の空孔を持つ内側多孔質層と、
金属粉末が密に焼結して形成された大きな表面積の外側
多孔質層とから成る多孔質板であった。したがってこの
二層多孔質板は溶融炭酸塩型燃料電池用電極として好適
な構成をすものであった。
The porous plate thus obtained has a thickness of Q, 5 mm, and a porosity of 7.
8%, and as is clear from the micrograph shown in Figure 2, it was formed from a wire mesh as a reinforcing material and a slurry (S) containing an organic pore-forming material, and the organic pore-forming material was evaporated. an inner porous layer with large porosity pores left behind;
It was a porous plate consisting of an outer porous layer with a large surface area formed by densely sintering metal powder. Therefore, this two-layer porous plate had a suitable structure as an electrode for a molten carbonate fuel cell.

またこの厚さQ、5mmの電極の製作に使用したニッケ
ル粉末の量は、電極の表面積100 cuiあたり9.
9gであった。これに対し、右改造孔材を使用せずに製
作した電極におけるニッケル粉末の使用量は18.1z
であった。したがってこの発明の方法ににればニッケル
の使用mは45%減少したことになり、電極のコストの
削減に著しい効果があることがわかる。
Also, the amount of nickel powder used to manufacture this electrode with a thickness Q of 5 mm was 9.9 mm per 100 cui of surface area of the electrode.
It was 9g. On the other hand, the amount of nickel powder used in the electrode manufactured without using the modified hole material is 18.1z
Met. Therefore, according to the method of the present invention, the amount of nickel used (m) was reduced by 45%, and it can be seen that it has a remarkable effect on reducing the cost of the electrode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明によるスラリー担持装置を示す垂直縦
断面図、第2図はこの発明により1qられた多孔質板の
粒子構造を示す顕微鏡写真である。 (1)・・・金網、(2)・・・キャリアテープ、(3
)・・・基台、(4)・・・牽引モーター、(5)・・
・第1ホツパー、(6)・・・第2小ツバ−1(7)(
8)・・・可動壁、(9)(10)・・・スラリ1−1
(S+  ) (32)・・・スラリー。 以  上
FIG. 1 is a vertical cross-sectional view showing a slurry supporting device according to the present invention, and FIG. 2 is a microscopic photograph showing the grain structure of a porous plate prepared by the present invention. (1)...wire mesh, (2)...carrier tape, (3
)... Base, (4)... Traction motor, (5)...
・First hopper, (6)...Second small hopper -1 (7) (
8)...Movable wall, (9)(10)...Slurry 1-1
(S+) (32)...Slurry. that's all

Claims (8)

【特許請求の範囲】[Claims] (1)金属粉末、有機造孔材および有機バインダーを含
むスラリーと、金属粉末および有機バインダーを含むス
ラリーとの二種類のスラリーを用意し、まず前者のスラ
リーを補強用金網の上面に層状に担持させ、ついで前者
のスラリーから成る担持層の上面に後者のスラリーを層
状に担持させ、得られた上下二層のスラリー担持層を焼
成して、下側スラリー担持層から空孔率の高い内側多孔
質層を形成するとともに、上側スラリー担持層から表面
積の大きい外側多孔質層を形成することを特徴とする溶
融炭酸塩型燃料電池用電極の製造方法。
(1) Two types of slurry are prepared: one containing metal powder, an organic pore-forming material, and an organic binder, and the other containing metal powder and an organic binder, and the former slurry is first supported in a layer on the top surface of a reinforcing wire mesh. Then, the latter slurry is supported in a layered manner on the upper surface of the support layer made of the former slurry, and the obtained upper and lower slurry support layers are fired to form inner pores with high porosity from the lower slurry support layer. 1. A method for producing an electrode for a molten carbonate fuel cell, comprising forming a porous layer and forming an outer porous layer having a large surface area from an upper slurry supporting layer.
(2)有機造孔材を含むスラリーから下側スラリー担持
層を成形し、これを高温で焼成することにより、有機造
孔材を飛散させ、下側スラリー担持層から得られる内側
多孔質層の空孔率を増大させる、特許請求の範囲第1項
記載の方法。
(2) A lower slurry support layer is formed from a slurry containing an organic pore-forming material and is fired at a high temperature to scatter the organic pore-forming material and form an inner porous layer obtained from the lower slurry support layer. 2. A method according to claim 1, wherein the porosity is increased.
(3)有機造孔材を含むスラリーから下側スラリー担持
層を成形し、これを高温で焼成することにより有機造孔
材を飛散させ、下側スラリー担持層から得られる内側多
孔質層の製造に必要な金属粉末の使用量を減少させる、
特許請求の範囲第1項記載の方法。
(3) Production of an inner porous layer obtained from the lower slurry support layer by forming a lower slurry support layer from a slurry containing an organic pore former and firing it at a high temperature to scatter the organic pore former. reducing the amount of metal powder required for
A method according to claim 1.
(4)有機造孔材としてポリエチレン、ポリスチレン、
ナイロンなどのプラスチック粉末や合成繊維片を用いる
か、または小麦粉や木粉などの天然有機物の粉末や天然
繊維片を用いる、特許請求の範囲第1項記載の方法。
(4) Polyethylene, polystyrene, as an organic pore-forming material
2. The method according to claim 1, wherein a plastic powder such as nylon or a piece of synthetic fiber is used, or a powder of a natural organic material such as wheat flour or wood flour or a piece of natural fiber is used.
(5)有機バインダーとしてメチルセルロースやポリビ
ニルブチラートなどを用いる、特許請求の範囲第1項記
載の方法。
(5) The method according to claim 1, wherein methylcellulose, polyvinyl butyrate, or the like is used as the organic binder.
(6)金網の下面にキャリアテープを重ねて配する、特
許請求の範囲第1項記載の方法。
(6) The method according to claim 1, wherein a carrier tape is placed on the lower surface of the wire mesh.
(7)キャリアテープとして濾紙や液吸収性のよい合成
樹脂フィルムを用いる、特許請求の範囲第6項記載の方
法。
(7) The method according to claim 6, wherein filter paper or a synthetic resin film with good liquid absorption properties is used as the carrier tape.
(8)焼成を還元雰囲気で行なう、特許請求の範囲第1
項記載の方法。
(8) Claim 1, in which the firing is performed in a reducing atmosphere.
The method described in section.
JP61168964A 1986-07-16 1986-07-16 Manufacture of electrode for molten carbonate type fuel cell Pending JPS6324558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61168964A JPS6324558A (en) 1986-07-16 1986-07-16 Manufacture of electrode for molten carbonate type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61168964A JPS6324558A (en) 1986-07-16 1986-07-16 Manufacture of electrode for molten carbonate type fuel cell

Publications (1)

Publication Number Publication Date
JPS6324558A true JPS6324558A (en) 1988-02-01

Family

ID=15877829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61168964A Pending JPS6324558A (en) 1986-07-16 1986-07-16 Manufacture of electrode for molten carbonate type fuel cell

Country Status (1)

Country Link
JP (1) JPS6324558A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051943A1 (en) * 2004-11-15 2006-05-18 Konica Minolta Holdings, Inc. Proton conductive electrolyte membrane, method for producing proton conductive electrolyte membrane and solid polymer fuel cell
WO2006080159A1 (en) * 2005-01-27 2006-08-03 Konica Minolta Holdings, Inc. Proton-conductive electrolyte film, process for producing the same, and solid polymer type fuel cell employing the proton-conductive electrolyte film
JP2010500705A (en) * 2006-08-07 2010-01-07 エム・テー・ウー・オンサイト・エナジー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Molten carbonate fuel cell electrode and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051943A1 (en) * 2004-11-15 2006-05-18 Konica Minolta Holdings, Inc. Proton conductive electrolyte membrane, method for producing proton conductive electrolyte membrane and solid polymer fuel cell
JPWO2006051943A1 (en) * 2004-11-15 2008-05-29 コニカミノルタホールディングス株式会社 Proton-conducting electrolyte membrane, method for producing proton-conducting electrolyte membrane, and polymer electrolyte fuel cell
WO2006080159A1 (en) * 2005-01-27 2006-08-03 Konica Minolta Holdings, Inc. Proton-conductive electrolyte film, process for producing the same, and solid polymer type fuel cell employing the proton-conductive electrolyte film
JP4957544B2 (en) * 2005-01-27 2012-06-20 コニカミノルタホールディングス株式会社 PROTON CONDUCTIVE ELECTROLYTE MEMBRANE, METHOD FOR PRODUCING THE SAME, AND SOLID POLYMER TYPE FUEL CELL USING THE PROTON CONDUCTIVE ELECTROLYTE MEMBRANE
JP2010500705A (en) * 2006-08-07 2010-01-07 エム・テー・ウー・オンサイト・エナジー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Molten carbonate fuel cell electrode and method for producing the same

Similar Documents

Publication Publication Date Title
EP0764489B1 (en) Porous metallic body with large specific surface area, process for producing the same, porous metallic platy material, and electrode of alkaline secondary battery
US4132547A (en) Method of producing self-supporting fully activated iron electrodes by thermal reduction-sintering
CN102093075A (en) Method for preparing ceramic foams with pore gradient
JPH05144426A (en) Electrochemical battery
JPS6324558A (en) Manufacture of electrode for molten carbonate type fuel cell
JP2004508981A (en) Cold isostatic pressing method
US3393096A (en) Method of manufacturing a porous plaque
JP3698906B2 (en) Multi-layer honeycomb filter and manufacturing method thereof
JPH0118543B2 (en)
JPS5795816A (en) Molded body of activated carbon
JPS61221309A (en) Method and apparatus for producing wire net reinforcement type multi-layer porous plate
JPH0652863A (en) Electrode body for solid electrolytic fuel cell and manufacture thereof
JPH01274815A (en) Production of ceramics filter
JPS61224273A (en) Electrode for molten carbonate fuel cell
JPS6329450A (en) Manufacture of electrode for cell
JPH01312097A (en) Method and apparatus for producing diaphram
JPS61224272A (en) Electrode for molten carbonate fuel cell
JP3166333B2 (en) Ceramic coating method
CN107437645B (en) Method for manufacturing porous high-performance oxygen electrode of metal fuel cell
JPS61221379A (en) Method and apparatus for producing wire net reinforcement type porous plate
KR102333629B1 (en) Moisture adsorption filter for gas sensor based on anodic aluminum oxide substrate using ultrasonic spray method and method of manufacturing the same
JPS62147660A (en) Manufacture of electrode for fuel cell
JPS62186908A (en) Production of asymmetric membrane
WO1990001538A1 (en) Bioreactor using open-cell porous ceramic carrier
JPS60170167A (en) Manufacturing method for alkaline cell electrode