JPS63244720A - Superconducting magnet device - Google Patents

Superconducting magnet device

Info

Publication number
JPS63244720A
JPS63244720A JP62076473A JP7647387A JPS63244720A JP S63244720 A JPS63244720 A JP S63244720A JP 62076473 A JP62076473 A JP 62076473A JP 7647387 A JP7647387 A JP 7647387A JP S63244720 A JPS63244720 A JP S63244720A
Authority
JP
Japan
Prior art keywords
supporting
synthetic resin
support
load
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62076473A
Other languages
Japanese (ja)
Other versions
JPH0782928B2 (en
Inventor
Tatsumi Yamane
山根 達視
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62076473A priority Critical patent/JPH0782928B2/en
Publication of JPS63244720A publication Critical patent/JPS63244720A/en
Publication of JPH0782928B2 publication Critical patent/JPH0782928B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To render a supporting structure of inner vessel more stable so that no supporting cylinders made of synthetic resin change each shape very much after exceeding its elastic limit even through an abnormal load is applied, by causing inner or outer circumferences of either one at least among synthetic or metallic supporting cylinders to form supporting protrusions. CONSTITUTION:Supporting protrusions 20 and 21 are formed at an outer circumference of a center side end part of metallic supporting cylinders 7 and 11 in a load supporting device 3 and gaps delta1 and delta2 provided at the supporting protrusions 20 and 21 are installed so that their gaps are narrower than widths of heat insulation spaces. When a superconducting magnet device is used for a superconducting magnetic levitation system railway, its emergency stop that is performed while running allows an inner vessel 2 to be applied by a load in the direction of core slippage and when respective supporting cylinders 5-14 receive a bending load, the deformation due to core slippage caused by the synthetic resin supporting cylinders 5, 6, 9, 10, 13 and 14 makes the supporting protrusions 20 and 21 mounted at metallic supporting cylinders 7 and 11 move and come in contact with supporting connections 4 which are facing through gaps delta1 and delta2 or a metallic supporting cylinder 8 and then this approach prevents the deformation due to core slippage. Accordingly, no over-deformation develops in the synthetic resin supporting cylinders 5, 6, 9, 10, 13, and 14 and such a state keeps the above cylinders from being damaged.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、超電導磁石装置に関し、とくに異常荷重の
発生した時に内槽を安全に支持することができる荷重支
持構造を備えた超電導磁石装置に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention relates to a superconducting magnet device, and particularly to a superconducting magnet device that is equipped with a load supporting structure that can safely support an inner tank when an abnormal load occurs. The present invention relates to a superconducting magnet device.

(従来の技術) 一般に、超電導磁石装置は、超電導コイルを超電導状態
に保持するために、超電導コイルを収納した内槽に液体
ヘリウムのような寒剤を満して冷却するようにしている
。そしてこの内槽に対する外部からの熱侵入量を低減さ
れる目的で、液体ヘリウムを貯蔵する内槽を、内部が真
空となった外槽内に収容する二重構造にしている。
(Prior Art) Generally, in a superconducting magnet device, in order to maintain the superconducting coil in a superconducting state, an inner tank containing the superconducting coil is filled with a cryogen such as liquid helium to cool the superconducting coil. In order to reduce the amount of heat that enters the inner tank from the outside, the inner tank for storing liquid helium is housed in an outer tank with a vacuum inside, so it has a double structure.

そこで、外槽に対して内槽の荷重を支持する構造は、断
熱性の非常に良好なものであることが要求される。それ
と共に、超電導磁気浮上式鉄道のように高速で走行する
車両に対してこの超電導磁石装置を搭載する場合には、
走行中に発生する振動や衝撃にも耐えうる十分な強度と
構成とを有していなければならない。
Therefore, the structure that supports the load of the inner tank relative to the outer tank is required to have very good heat insulation properties. At the same time, when installing this superconducting magnet device on a vehicle running at high speed, such as a superconducting magnetic levitation railway,
It must have sufficient strength and structure to withstand the vibrations and shocks that occur during driving.

このような技術的課題に応える超電導コイルとして、従
来、特開昭55−16678号公報に記載されているよ
うな多重円筒はさみ込み方式の荷重支持構造を備えたも
のが知られている。
As a superconducting coil that can meet such technical problems, there has been known a superconducting coil equipped with a multi-cylindrical sandwiching type load support structure as described in Japanese Patent Application Laid-open No. 16678/1983.

このような従来の多重円筒はさみ込み方式の荷重支持構
造を有する超電導磁石装置の一例が、第2図に示されて
いる。この従来の超電導磁石装置は、内部を真空状態に
保った外槽1に対して、内部に超電導コイルの収納され
た内槽2が収容され、多重円筒はさみ込み方式の荷重支
持装M3により内槽2が外槽1に対して支持されている
。この荷重支持装置3は、内槽2の内周壁に設けられた
リング状の支持座4の内周を、FRP等の強度が高くか
つ熱絶縁性に優れた合成樹脂製支持筒5,6によっては
さみ込み、これらの合成樹脂製支持筒5.6の各端部に
はステンレスのような強度の高い金属製支持n7,8が
はめ込んでいる。さらに内側に、FRP等の合成樹脂製
支持筒9,10、アルミニウムのような軽量で強度の高
い金属製支持筒11.12、ざらにFRP等の合成樹脂
性支持筒13.14を順次同芯状にはさみ込んでいる。
An example of a superconducting magnet device having such a conventional multi-cylindrical sandwich type load support structure is shown in FIG. This conventional superconducting magnet device has an outer tank 1 whose interior is kept in a vacuum state, and an inner tank 2 in which superconducting coils are housed. 2 is supported with respect to the outer tank 1. This load support device 3 uses support cylinders 5 and 6 made of synthetic resin with high strength and excellent heat insulation properties such as FRP to support the inner periphery of a ring-shaped support seat 4 provided on the inner peripheral wall of the inner tank 2. High-strength metal supports n7 and 8, such as stainless steel, are fitted into each end of these synthetic resin support tubes 5 and 6. Furthermore, on the inside, support tubes 9 and 10 made of synthetic resin such as FRP, support tubes 11 and 12 made of lightweight and strong metal such as aluminum, and support tubes 13 and 14 made of synthetic resin such as FRP are arranged concentrically in order. It is inserted into the shape.

そして、この最も内側の合成樹脂製支持筒13゜14の
両端を、7ランジ15付の締結棒16とフランジ17付
のねじ金具18とによって締付けることにより、すべて
の支持筒5〜14を一体化している。
Then, by tightening both ends of this innermost synthetic resin support cylinder 13° 14 with a fastening rod 16 with a 7-flange 15 and a screw fitting 18 with a flange 17, all the support cylinders 5 to 14 are integrated. ing.

締結棒16のフランジ15、ねじ金具18のフランジ1
7はそれぞれ外槽1に溶接され、外W11の気密を保持
するとともに、ここで内槽2と荷重支持装置3との荷重
を外槽1に伝えている。
Flange 15 of fastening rod 16, flange 1 of screw fitting 18
7 are respectively welded to the outer tank 1 to maintain the airtightness of the outer tank 11 and to transmit the loads of the inner tank 2 and the load support device 3 to the outer tank 1 here.

このような多重円筒はさみ込み方式の荷重支持!!置3
により内槽2を外MJ1に対して支持する構造の超電導
磁石装置の場合、各支持筒5〜14の形成する空間部が
断熱層となり、寒剤としての液体ヘリウムが収納された
内槽2を、外槽1に対して高い熱絶縁性を保持したまま
支持できるのである。なお、19は内槽2に対する副射
熱の侵入を反射するためのaj射熱シールド板である。
Load support using this type of multi-cylindrical sandwiching method! ! Place 3
In the case of a superconducting magnet device having a structure in which the inner tank 2 is supported with respect to the outer MJ1, the space formed by each support cylinder 5 to 14 becomes a heat insulating layer, and the inner tank 2 containing liquid helium as a cryogen is It is possible to support the outer tank 1 while maintaining high thermal insulation. In addition, 19 is an aj radiation heat shield plate for reflecting the invasion of side radiation heat into the inner tank 2.

(発明が解決しようとする問題点) しかしながら、このような従来の超電導コイル″11t
’、は、内槽2の荷重支持装置3が軸方向に対しては強
度、剛性とも非常に優れたものであるが、曲げ方向に対
しては軸方向の約1/4〜115程度の剛性しか備えて
いない。そこで、特に、超電導磁気浮上式鉄道のように
、この超電導磁石装置が車両に搭載される場合、通常の
走行荷重だけではなく、異常時の荷重、すなわち車両の
緊急停止時の荷重も考慮に入れる必要がある。
(Problem to be solved by the invention) However, such a conventional superconducting coil "11t"
', the load support device 3 of the inner tank 2 has very good strength and rigidity in the axial direction, but the rigidity in the bending direction is about 1/4 to 115 of that in the axial direction. We only have the following. Therefore, especially when this superconducting magnet device is installed on a vehicle, such as in a superconducting magnetic levitation railway, not only the normal running load but also the load in abnormal situations, that is, the load when the vehicle stops in an emergency, are taken into account. There is a need.

この緊急停止時の荷重は、ごく短時間に働くものではあ
るが、このような緊急停止時の異常荷重に対し、ステン
レスその他の金属製支持筒はその変形1が弾性限界を超
えても塑性変形で逃げることができるが、FRP等の非
金属、合成樹脂製支持筒では破壊に至り、荷重支持とし
ての機能を果さなくなってしまう恐れがあるという問題
点があった。
Although this load during an emergency stop is applied for a very short time, stainless steel or other metal support tubes will not undergo plastic deformation even if the deformation 1 exceeds the elastic limit. However, there is a problem in that support tubes made of non-metal or synthetic resin such as FRP may break and may no longer function as a load support.

この発明は、このような従来の問題点を解決するための
なされたもので、異常な荷重が働く場合にも合成樹脂製
支持筒がその弾性限界を超えて大きく変形することがな
く、内槽の安定した支持が行なえる超電導磁石装置を提
供することを目的とする。
This invention was made to solve these conventional problems, and even when an abnormal load is applied, the synthetic resin support tube will not be significantly deformed beyond its elastic limit, and the inner tank will remain stable. An object of the present invention is to provide a superconducting magnet device that can stably support a magnet.

[発明の構成] (問題点を解決するための手段) この発明の超電導磁石装置は、外槽に対して内槽を、合
成樹脂製支持筒と金属製の支持筒とを交互に同心状に配
置して構成される多重円筒はさみ込み方式の荷重支持装
置により支持するものであり、合成樹脂製支持筒または
金属製支持筒の少なくとも一方の内周又は外周に支持突
部を形成することにより異常荷重時に合成樹脂製支持筒
が隣接する内、外の金属製支持筒に接触してその過剰な
変形を防止するようにしたものである。
[Structure of the Invention] (Means for Solving the Problems) The superconducting magnet device of the present invention has an inner tank with respect to an outer tank, and a synthetic resin support tube and a metal support tube are arranged concentrically alternately. It is supported by a multi-cylindrical sandwich type load support device, which is constructed by arranging multiple cylinders, and a support protrusion is formed on the inner or outer periphery of at least one of the synthetic resin support tube or the metal support tube to prevent abnormalities. When a load is applied, the synthetic resin support tube comes into contact with the adjacent metal support tubes to prevent excessive deformation.

(作用) この発明の超電導磁石装置では、合成樹脂性支持筒と金
属製支持筒とで構成される荷重支持装置が内槽を外槽に
対して断熱的に支持する。そして、異常荷重により合成
樹脂製支持筒が芯ずれ変形を起すような場合には、支持
突部によって合成樹脂製支持筒が隣接する内側又は外側
の金属製支持筒に接触して過剰な芯ずれ変形を抑止し、
過剰変形による破壊を防止し、内槽の安定した支持を行
な・うことができる。
(Function) In the superconducting magnet device of the present invention, a load supporting device composed of a synthetic resin support cylinder and a metal support cylinder supports the inner tank adiabatically with respect to the outer tank. If the synthetic resin support tube is deformed due to an abnormal load, the support protrusion may cause the synthetic resin support tube to come into contact with the adjacent inner or outer metal support tube, causing excessive misalignment. prevents deformation,
It is possible to prevent destruction due to excessive deformation and provide stable support for the inner tank.

(実施例) 以下、この発明の実施例を図に基いて詳説する。第1図
はこの発明の一実施例を示している。
(Example) Hereinafter, an example of the present invention will be explained in detail based on the drawings. FIG. 1 shows an embodiment of the invention.

内部が真空に保たれた外槽1内に、副側熱シールド板1
9を介して内MJ2が収容されている。そしてこの内槽
2の内周壁に設けた支持座4を、荷重支持装置3により
締結棒16に連結し、この締結棒16により外槽1で内
槽2の荷重支持を行なうようになっている。
A sub-side heat shield plate 1 is placed inside the outer tank 1 whose interior is kept in a vacuum.
Inner MJ2 is accommodated through 9. A support seat 4 provided on the inner peripheral wall of the inner tank 2 is connected to a fastening rod 16 by a load support device 3, and the load of the inner tank 2 is supported by the outer tank 1 by the fastening rod 16. .

荷重支持装置3の構造は、従来例と略同様であり、FR
Pのような比較的剛性が高くかつ熱絶縁性に優れた合成
樹脂製支持筒5.6が支持座4をはさみ込み、この合成
樹脂製支持筒5,6の端部にステンレスのような強度の
高い金属製支持筒7゜8の端部がはめ込まれている。そ
して、この金属製支持筒7,8の内側端部が、さらに内
側に配置されたFRPのような合成樹脂製支持筒8,1
0によってはさみ込まれ、さらに金属製支持筒11゜1
2、合成樹脂製支持筒13.14が順次はめ込まれて構
成されている。
The structure of the load support device 3 is approximately the same as that of the conventional example, and the FR
The support seat 4 is sandwiched between synthetic resin support cylinders 5 and 6, such as P, which have relatively high rigidity and excellent thermal insulation properties, and the ends of these synthetic resin support cylinders 5 and 6 have a strength similar to that of stainless steel. The end of the high metal support cylinder 7°8 is fitted. The inner ends of the metal support tubes 7 and 8 are connected to the support tubes 8 and 1 made of synthetic resin such as FRP, which are disposed further inside.
0, and further a metal support tube 11゜1
2.Synthetic resin support tubes 13 and 14 are fitted in order.

この実施例の特徴どして、荷重支持装M3における各金
属製支持筒7,11の中央側端部外周に支持突部20.
21が形成されており、この支持突部20,21におけ
るギャップδ1.δ2を断熱空間の幅よりも狭く設定し
ている。このギャップδ1,62は通常の荷重条件では
相対する支持座4、金属製支持筒8と接触することがな
くて断熱性を維持することができ、しかも異常荷重によ
り合成樹脂製支持筒5.6.9.10などが変形を受け
た時は、その変形が破壊を引き起すような大きなものと
ならないように金属製支持筒7,8゜11.12などと
接触することができる大きさのものである。
A feature of this embodiment is that a support protrusion 20.
21 is formed, and a gap δ1 . δ2 is set narrower than the width of the heat insulating space. Under normal load conditions, this gap δ1, 62 does not come into contact with the opposing support seat 4 and metal support cylinder 8, and can maintain heat insulation properties.Moreover, under abnormal loads, the synthetic resin support cylinder 5. .9.10, etc., should be large enough to come into contact with the metal support tubes 7, 8, 11, 12, etc. to prevent the deformation from becoming large enough to cause destruction. It is.

上記構成の超電導磁石装置の動作について、次に説明す
る。外槽1内は真空状態に保たれ、内槽2内に寒剤とし
て液体ヘリウムが充填され、超電導コイルが収納される
。副側熱シールド板19は、外槽1を通って侵入する副
側熱をシールドし、内槽2への副側熱の伝達を防止して
いる。
The operation of the superconducting magnet device having the above configuration will be explained next. The inside of the outer tank 1 is kept in a vacuum state, and the inside of the inner tank 2 is filled with liquid helium as a cryogen, and the superconducting coil is housed therein. The secondary heat shield plate 19 shields secondary heat that enters through the outer tank 1 and prevents secondary heat from being transferred to the inner tank 2.

荷重支持装置3は、内槽2を支持座4によって支持し、
この支持座4に掛る内槽2からの荷重は各支持筒5〜1
4を伝って中央の締結棒16に係り、この締結棒16に
より外槽1にて支持する。
The load support device 3 supports the inner tank 2 with a support seat 4,
The load from the inner tank 2 applied to this support seat 4 is
4 to the central fastening rod 16, and is supported by the outer tank 1 by this fastening rod 16.

また荷重支持装置3の各支持筒5〜14の形成する空間
部は断熱空間となり、外槽1から締結棒16、ねじ金具
18を伝って侵入してくる熱の伝達を極小に抑えること
ができる。
In addition, the spaces formed by the support cylinders 5 to 14 of the load support device 3 become heat insulating spaces, and the transfer of heat transmitted from the outer tank 1 through the fastening rods 16 and screw fittings 18 can be minimized. .

超電導磁気浮上式鉄道にこの超電導磁石装置が用いられ
る場合、走行中の緊急停止により内槽2に芯ずれ方向の
荷重が加わり、各支持筒5〜14が曲げ荷重を受(プる
ような場合、合成樹脂製支持筒5,6,9.10.13
.14が起す芯ずれ変形により、金属製支持筒7,11
に設けられた支持突部20.21が移動してギャップδ
1.δ2を介して相対する支持座4や金属製支持筒8と
接触し、芯ずれ変形を抑止する。この結果、合成樹脂製
支持筒5,6.9,10.13.14に過剰な変形が起
らず、その破壊を防止することができる。
When this superconducting magnet device is used in a superconducting magnetic levitation railway, a load in the direction of misalignment is applied to the inner tank 2 due to an emergency stop during running, and each support tube 5 to 14 receives a bending load. , synthetic resin support tube 5, 6, 9.10.13
.. Due to the misalignment deformation caused by 14, the metal support tubes 7 and 11
The supporting protrusions 20.21 provided in the gap δ are moved.
1. It comes into contact with the opposing support seat 4 and metal support cylinder 8 via δ2, thereby suppressing misalignment deformation. As a result, the synthetic resin support cylinders 5, 6.9, 10, 13, 14 do not undergo excessive deformation and can be prevented from breaking.

なお、内側と外側の支持筒が接触することにより、荷重
支持装置3の部分における断熱性が損なわれることにな
るが、このような内側と外側の支持筒間の接触は異常荷
重が働く短時間だけ起るものであるため、その断熱性の
消失によっても内槽3に大きな影響が及ぶ恐れはない。
Note that contact between the inner and outer support tubes will impair the insulation properties of the load support device 3, but such contact between the inner and outer support tubes will occur for a short period of time when an abnormal load is applied. Therefore, there is no risk that the loss of heat insulation will have a major effect on the inner tank 3.

したがって、内槽2を荷重支持装置3により断熱性を維
持したまま十分な強度で安定して支持することができる
のである。
Therefore, the inner tank 2 can be stably supported with sufficient strength by the load support device 3 while maintaining its heat insulation properties.

なお、この発明は上記の実施例に限定されるものではな
く、例えば荷重支持装置の合成樹脂製支持筒は必要に応
じて増減させることが可能である。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and for example, the number of synthetic resin support cylinders of the load support device can be increased or decreased as necessary.

また、上記の実施例の場合には、金属製支持筒の中央側
端部に支持突部を形成し、合成樹脂製支持筒の芯ずれ変
形を抑止するようにしたが、支持突部は合成樹脂製支持
筒側に設けてもよいものであり、また−個所だけでなく
軸方向の複数個所に設けることも可能であり、設ける位
置や個数については特に限定されるものではない。
In addition, in the case of the above embodiment, a support protrusion was formed at the center end of the metal support tube to prevent misalignment deformation of the synthetic resin support tube. They may be provided on the side of the resin support cylinder, and may be provided not only at one location but also at multiple locations in the axial direction, and the location and number of locations are not particularly limited.

[発明の効果コ 以上のようにこの発明によれば、内槽の中央部に設けた
合成樹脂製支持筒と金属製支持筒との荷重支持装置によ
って内槽を外槽に対して断熱的に支持することができる
。しかも交互に同芯状に配置された金属製支持筒と合成
樹脂製支持筒との少なくとも一方の内側または外側に支
持突部を設け、通常の断熱空間の間隙よりも狭いギャッ
プを形成しているため、異常荷重により合成樹脂製支持
筒が芯ずれ変形を生ずるような場合には、支持突部によ
って隣接する金属製支持筒に接触することができ、全体
の剛性が高められ、合成樹脂製支持筒が破壊に至るよう
な過剰な変形が起ることがなく、内槽を安定して支持で
きる。
[Effects of the Invention] As described above, according to the present invention, the inner tank can be thermally insulated from the outer tank by the load supporting device consisting of the synthetic resin support tube and the metal support tube provided in the center of the inner tank. can be supported. In addition, support protrusions are provided on the inside or outside of at least one of the metal support tubes and the synthetic resin support tubes, which are alternately arranged concentrically, forming a gap narrower than the gap in a normal heat insulation space. Therefore, if the synthetic resin support tube is deformed due to an abnormal load, the support protrusion can contact the adjacent metal support tube, increasing the overall rigidity. Excessive deformation that could lead to destruction of the cylinder does not occur, and the inner tank can be stably supported.

また、このように合成樹脂製支持筒の芯ずれ変形時の荷
重負担を金属製支持筒に分担させるようにしているため
、合成樹脂製支持筒の芯ずれ変形に対する強度向上のた
めの肉厚の増加を考慮せずとも済み、荷重支持装置を軽
量化できる。。
In addition, since the load burden when the synthetic resin support tube deforms out of alignment is shared with the metal support tube, the wall thickness is increased to improve the strength against the misalignment deformation of the synthetic resin support tube. There is no need to consider the increase, and the weight of the load supporting device can be reduced. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の断面図、第2図は従来例
の断面図である。 1・・・外槽      2・・・内槽3・・・荷重支
持装置 5.6・・・合成樹脂製支持筒 7.8・・・金属製支持筒 9.10・・・合成樹脂製支持筒 11.12・・・金属製支持筒 13.14・・・合成樹脂製支持筒 16・・・締結棒 20.21・・・支持突部 δ1.δ2・・・ギャップ
FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional example. 1...Outer tank 2...Inner tank 3...Load support device 5.6...Synthetic resin support tube 7.8...Metal support tube 9.10...Synthetic resin support Cylinder 11.12... Metal support tube 13.14... Synthetic resin support tube 16... Fastening rod 20.21... Support protrusion δ1. δ2...gap

Claims (1)

【特許請求の範囲】[Claims]  超電導コイルを収納したリング状の内槽を外槽内に収
容し、前記内槽の中央部に、熱絶縁性に優れた合成樹脂
製の支持筒と強度の高い金属製の支持筒とを交互に同心
状に配置して各々の両端部を前記外槽にて支持し、前記
支持筒のうち最も外側に位置するものに対して前記内槽
の内周壁を支持リング部材にて支持し、前記合成樹脂製
支持筒と金属製支持筒とのうちの少なくとも一方の内周
又は外周に、異常荷重によって合成樹脂製支持筒が芯ず
れ変形を起す時に隣接する内、外の金属製支持筒に接触
することによってその過剰な変形を防止するための支持
突部を形成して成る超電導磁石装置。
A ring-shaped inner tank containing a superconducting coil is housed in an outer tank, and a synthetic resin support cylinder with excellent thermal insulation and a strong metal support cylinder are arranged alternately in the center of the inner tank. The inner peripheral wall of the inner tank is supported by a support ring member with respect to the outermost support cylinder, and the inner peripheral wall of the inner tank is supported by a support ring member, The inner or outer periphery of at least one of the synthetic resin support tube and the metal support tube comes into contact with the adjacent inner and outer metal support tubes when the synthetic resin support tube causes misalignment deformation due to an abnormal load. A superconducting magnet device comprising a supporting protrusion for preventing excessive deformation of the superconducting magnet device.
JP62076473A 1987-03-31 1987-03-31 Superconducting magnet device Expired - Fee Related JPH0782928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62076473A JPH0782928B2 (en) 1987-03-31 1987-03-31 Superconducting magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62076473A JPH0782928B2 (en) 1987-03-31 1987-03-31 Superconducting magnet device

Publications (2)

Publication Number Publication Date
JPS63244720A true JPS63244720A (en) 1988-10-12
JPH0782928B2 JPH0782928B2 (en) 1995-09-06

Family

ID=13606147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62076473A Expired - Fee Related JPH0782928B2 (en) 1987-03-31 1987-03-31 Superconducting magnet device

Country Status (1)

Country Link
JP (1) JPH0782928B2 (en)

Also Published As

Publication number Publication date
JPH0782928B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
JP5534713B2 (en) Superconducting magnet
US4516405A (en) Supporting tie configuration for cryostat for cold shipment of NMR magnet
US3481505A (en) Support system for cryogenic containers (1)
US2926810A (en) Suspension system for container for storing liquefied gas
EP0135185B1 (en) Cryostat for nmr magnet
JPH0418189B2 (en)
JPH09283322A (en) Magnet assembly
US7728707B2 (en) Split-coil magnet arrangement with improved mechanical construction
JPH04226005A (en) Mr magnet longitudinal support system
JPH0559567B2 (en)
JPH09120912A (en) Open structure conductive cooling magnetic resonance imagingmagnet
GB2440369A (en) A superconducting magnet control system
US20220326325A1 (en) Coil Support
JPS63244720A (en) Superconducting magnet device
JPH04252004A (en) Supporting body for axial-direction heat shielding part of mr magnet
US4487332A (en) Cryostat vessel wall spacing system
US4622824A (en) Cryostat suspension system
JPH03174706A (en) Superconductive coil device, nuclear fusion reactor including the same and energy storage apparatus
JPS6171607A (en) Apparatus for supporting inner tank of superconductive magnet
WO2022224761A1 (en) Magnetic field generating device
US3692207A (en) Cryogenic electrical transformer apparatus having double wall construction
JPS6119089B2 (en)
JPS63244601A (en) Superconducting coil
JPS6163069A (en) Cryostat
JPS6353907A (en) Superconducting apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees