JPS63244671A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63244671A
JPS63244671A JP62077135A JP7713587A JPS63244671A JP S63244671 A JPS63244671 A JP S63244671A JP 62077135 A JP62077135 A JP 62077135A JP 7713587 A JP7713587 A JP 7713587A JP S63244671 A JPS63244671 A JP S63244671A
Authority
JP
Japan
Prior art keywords
well
semiconductor substrate
substrate
layer
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62077135A
Other languages
Japanese (ja)
Inventor
Narihito Yamagata
整人 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62077135A priority Critical patent/JPS63244671A/en
Publication of JPS63244671A publication Critical patent/JPS63244671A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Abstract

PURPOSE:To prevent the generation of latchup, by arranging, between a well and a semiconductor substrate, a high concentration layer whose conductivity type is identical with that of the semiconductor substrate, and whose impurity concentration is higher than that of the semiconductor substrate. CONSTITUTION:Between the region of a P-type semiconductor substrate 1 and an N-well 2, a high concentration P<+> layer 11 is formed, whose impulity concentration is higher than that of the P-type semiconductor substrate 1. A depletion layer between the N-well 2 and the P<+> layer 11 is narrower as compared with the case where the high concentration P<+> layer 11 does not exisit. Accordingly, a P-N junction capacity also becomes larger in the case where the P<+> layer 11 is formed. By the effect of its capacitive coupling, a sharp and large change of electric potential in the N-well 2 and the substrate 1 can be restrained, so that latchup is hard to generate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体装置、特にウェル構造を有するCMO
S半導体装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to semiconductor devices, particularly CMO devices having a well structure.
This relates to S semiconductor devices.

〔従来の技術〕[Conventional technology]

第2図は従来のCMOSインバータを、そのラッチアッ
プを引き起こす寄生バイポーラトランジスタとともに示
す断面図で゛あり、図において、1はP型半導体基板、
2はN−ウェル、3はNチャネルMOSFET、4はP
チャネルMO3FETであり、上記P型半導体基板1は
P型拡散層5を介して接地されており、またN−ウェル
2はN型拡散層6を介して電源VCCに接続されている
。■Iはインバータの入力、v outはインバータの
出力、7.8は寄生バイポーラトランジスタ、9a。
FIG. 2 is a cross-sectional view showing a conventional CMOS inverter together with a parasitic bipolar transistor that causes latch-up. In the figure, 1 is a P-type semiconductor substrate;
2 is N-well, 3 is N-channel MOSFET, 4 is P
This is a channel MO3FET, and the P-type semiconductor substrate 1 is grounded through a P-type diffusion layer 5, and the N-well 2 is connected to a power supply VCC through an N-type diffusion layer 6. ■I is the input of the inverter, v out is the output of the inverter, 7.8 is the parasitic bipolar transistor, 9a.

9bはP型半導体基板1の電気抵抗、10はN−ウェル
2の電気抵抗である。ここでPチャネルMO5FET4
のソースが電源VCCに、ドレインがNチャネルMOS
 F ET 3のドレインに、又NチャネルMOS F
 ET 3のソースが接地電位に接続されており、これ
らはCMOSインバータを構成している。
9b is the electrical resistance of the P-type semiconductor substrate 1, and 10 is the electrical resistance of the N-well 2. Here P channel MO5FET4
The source is connected to the power supply VCC, and the drain is N-channel MOS.
At the drain of FET3, there is also an N-channel MOS F
The source of ET 3 is connected to ground potential, and they constitute a CMOS inverter.

このようなCMOSインバータでは入力信号■■が両M
O3FET3.4のゲートに印加されて、V114と逆
相の信号がV 01lTとして出力される。
In such a CMOS inverter, the input signal
It is applied to the gate of O3FET3.4, and a signal having the opposite phase to V114 is output as V011T.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この様な0MO3構成の半導体装置では、第2図に示す
様に、寄生バイポーラトランジスタによるサイリスク回
路が形成され、雑音電流が引き金となって電源VCCか
ら接地レベルに大電流が流れてしまう、いわゆるラッチ
アップ現象が起きる場合がある。特に、高集積化される
につれてデバイスを構成する素子間の距離は小さくなり
、ウェルの深さは浅くなっていくため、第2図における
寄生バイポーラトランジスタ7.8のベース幅が小さく
なっていき、益々、ランチアップが起こり易くなる。
In a semiconductor device with such a 0MO3 configuration, as shown in Figure 2, a si-risk circuit is formed by a parasitic bipolar transistor, and a large current flows from the power supply VCC to the ground level due to noise current, which is a so-called latch. Up phenomenon may occur. In particular, as the degree of integration increases, the distance between the elements constituting the device becomes smaller and the depth of the well becomes shallower, so the base width of the parasitic bipolar transistor 7.8 in FIG. 2 becomes smaller. Lunch-ups are becoming more and more likely to occur.

そもそもラッチアップは外来雑音によりウェルあるいは
半導体基板の電位が変動し、寄生バイポーラトランジス
タがON状態になると起こり始める。第2図について説
明すると、例えばvoutからの雑音によりN−ウェル
2の電位が下がり、寄生バイポーラトランジスタ8のベ
ース・エミッタ間電圧が大きくなるとこのトランジスタ
8がON状態になり、電源vecからトランジスタ8を
介して正孔がP型半導体基板1に流れ込み、基板1の電
位が上昇し、寄生バイポーラトランジスタ7のベース・
エミッタ間電圧が大きくなると、このトランジスタ7が
ON状態になり、電子が接地レベルからトランジスタ7
を介してN−ウェル2に流れ込み更にN−ウェル2の電
位を下げる事になる、といった具合に正帰還がかかり、
電源vecから接地に大電流が流れる。
To begin with, latch-up begins to occur when the potential of the well or semiconductor substrate changes due to external noise and the parasitic bipolar transistor turns on. Explaining FIG. 2, for example, when the potential of the N-well 2 decreases due to noise from vout, and the voltage between the base and emitter of the parasitic bipolar transistor 8 increases, this transistor 8 turns on, and the transistor 8 is turned on from the power supply vec. Holes flow into the P-type semiconductor substrate 1 through the substrate, the potential of the substrate 1 increases, and the base of the parasitic bipolar transistor 7 increases.
When the emitter voltage increases, this transistor 7 is turned on, and electrons are transferred from the ground level to the transistor 7.
It flows into N-well 2 through , further lowering the potential of N-well 2, causing positive feedback.
A large current flows from the power supply vec to ground.

本発明は、上記のような問題を解決するためになされた
もので、ラッチアップ現象が起こりにくいCMO3半導
体装置を得る事を目的としている。
The present invention was made to solve the above-mentioned problems, and aims to obtain a CMO3 semiconductor device in which latch-up phenomenon is less likely to occur.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る半導体装置はウェルあるいは基板の電位が
変動しにくい様なデバイス構造を実現すれば、ラッチア
ップを防ぐ事が出来ることに着目し、上記ウェルと基板
との間に導電型が基板と同一で、基板よりも不純物濃度
が高い高濃度層を設けたものである。
The semiconductor device according to the present invention focuses on the fact that latch-up can be prevented by realizing a device structure in which the potential of the well or the substrate is less likely to fluctuate. This is the same as the substrate, but a high concentration layer with a higher impurity concentration than the substrate is provided.

〔作用〕[Effect]

本発明においては、ウェルと基板との間に導電型が基板
と同一で、基板よりも不純物濃度が高い高濃度層を設け
たから、ウェル、基板の間の容量が大きくなり、ウェル
及び基板での急峻で大きな電位変動を抑える事ができ、
さらにウェルもしくは基板の電位が大きく変動したとし
ても寄生サイリスタ回路が低抵抗状態になることがなく
、ラッチアップの発生を防止できる。
In the present invention, since a high concentration layer having the same conductivity type as the substrate and higher impurity concentration than the substrate is provided between the well and the substrate, the capacitance between the well and the substrate is increased, and the capacitance between the well and the substrate is increased. Steep and large potential fluctuations can be suppressed,
Furthermore, even if the potential of the well or the substrate fluctuates greatly, the parasitic thyristor circuit does not go into a low resistance state, and latch-up can be prevented from occurring.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例によるCMOSインバータを
示し、図において1〜6は第2図と同一のものを示し、
11はP型半導体基板領域とN−ウェル2との間に形成
されP型半導体基板lより不純物濃度が高い高濃度P゛
層である。
FIG. 1 shows a CMOS inverter according to an embodiment of the present invention, in which numerals 1 to 6 are the same as in FIG. 2,
Reference numeral 11 denotes a highly doped P layer formed between the P type semiconductor substrate region and the N-well 2 and having a higher impurity concentration than the P type semiconductor substrate l.

このような構成のCMOSインバータでは高濃度29層
11をN−ウェル2とP型半導体基板領狭(なっている
、従ってPN接合容量もP゛層11を設けた方が大きく
なり、その容量カンプリングにより、N−ウェル2及び
基板lでの急峻で大きな電位変動を抑える事ができ、こ
れによりラッチアップは起こりにくくなる。又、N−ウ
ェル2と基板1のどちらかの電位が何らかの原因で大き
く変動し、上記容量カップリングのために、もう一方も
変動してしまうとしても、この場合の変動の仕方は、ラ
ッチアップが起こりにくい変動の仕方である。
In a CMOS inverter with such a configuration, the high-concentration 29 layer 11 is connected to the N-well 2 and the P-type semiconductor substrate has a narrow area. The ring can suppress steep and large potential fluctuations in N-well 2 and substrate 1, which makes latch-up less likely to occur.Also, if the potential of either N-well 2 or substrate 1 changes for some reason, Even if it fluctuates greatly and the other one also fluctuates due to the capacitive coupling, the manner of fluctuation in this case is such that latch-up is unlikely to occur.

すなわち、第2図の寄生サイリスク回路を用いて説明す
ると、今、仮に半導体基板1の電位が大きく上昇し、寄
生バイポーラトランジスタ7がONしたとする。その時
、N−ウェル2と基板lの間のカップリング容量は大き
いので、N−ウェル2の電位も大きく上昇するが、この
時、寄生バイポーラトランジスタ8のベース・エミッタ
間は大きく逆バイアスをかけられる事になり、ONL、
にくい状態になってラッチアップは起こらない、このよ
うにラッチアップは寄生バイアストランジスタ7.8共
にONLなければ起こらないのでこの状態ではラッチア
ップは起こらず、またN−ウェル2の電位が大きく変動
した場合も同様にラッチアップは起こらない。
That is, to explain using the parasitic bipolar circuit shown in FIG. 2, it is assumed that the potential of the semiconductor substrate 1 increases significantly and the parasitic bipolar transistor 7 is turned on. At that time, since the coupling capacitance between the N-well 2 and the substrate l is large, the potential of the N-well 2 also increases greatly, but at this time, a large reverse bias is applied between the base and emitter of the parasitic bipolar transistor 8. Something happened, ONL,
In this way, latch-up does not occur unless parasitic bias transistors 7 and 8 are ON, so latch-up does not occur in this state, and the potential of N-well 2 fluctuates greatly. Similarly, latch-up will not occur in this case.

なお、上記実施例ではP型半導体基板にN−ウェルを形
成した場合を示したが、これはN型基板にP−ウェルを
形成してもよく、この場合にも同様の効果を奏する。
In the above embodiment, a case was shown in which an N-well was formed on a P-type semiconductor substrate, but a P-well may also be formed on an N-type substrate, and the same effect can be obtained in this case as well.

〔発明の効果〕〔Effect of the invention〕

以上の様に、この発明によればウェルと半導体基板との
間に、導電型が半導体基板と同じで該半導体基板より不
純物濃度が高い高濃度層を設けたので、ラッチアップが
起こりにくい半導体装置を得ることができる。
As described above, according to the present invention, a highly concentrated layer having the same conductivity type as the semiconductor substrate and a higher impurity concentration than the semiconductor substrate is provided between the well and the semiconductor substrate, so that latch-up is less likely to occur in the semiconductor device. can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例によるCMOSインバータの
構造を示す図、第2図は従来のCMOSインバータの構
造及び寄生す゛イリスタ回路を示す図である。 ■・・・P型半導体基板、2・・・N−ウェル、3・・
・NチャネルMO3FET、4・・・PチャネルMO3
FET、5・・・P°拡散層、6・・・N+拡散層、1
1・・・高濃度21層。 なお図中同一符号は同−又は相当部分を示す。 第1図 1t:JJ膚P′i 第2図
FIG. 1 is a diagram showing the structure of a CMOS inverter according to an embodiment of the present invention, and FIG. 2 is a diagram showing the structure of a conventional CMOS inverter and a parasitic iris circuit. ■...P-type semiconductor substrate, 2...N-well, 3...
・N-channel MO3FET, 4...P-channel MO3
FET, 5...P° diffusion layer, 6...N+ diffusion layer, 1
1...21 layers of high concentration. Note that the same reference numerals in the figures indicate the same or equivalent parts. Figure 1 1t: JJ skin P'i Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)第1導電型半導体基板の表面、該基板表面に形成
した第2導電型領域にそれぞれ第2、第1導電型ソース
・ドレイン拡散層を有する異なる導電型のMOSトラン
ジスタを形成してなる半導体装置において、 上記基板の第1、第2導電型領域間に該基板よりその不
純物濃度が高い第1導電型半導体層を設けたことを特徴
とする半導体装置。
(1) MOS transistors of different conductivity types having second and first conductivity type source/drain diffusion layers are formed on the surface of a first conductivity type semiconductor substrate and a second conductivity type region formed on the substrate surface, respectively. A semiconductor device, characterized in that a first conductivity type semiconductor layer having a higher impurity concentration than the substrate is provided between the first and second conductivity type regions of the substrate.
JP62077135A 1987-03-30 1987-03-30 Semiconductor device Pending JPS63244671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62077135A JPS63244671A (en) 1987-03-30 1987-03-30 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62077135A JPS63244671A (en) 1987-03-30 1987-03-30 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS63244671A true JPS63244671A (en) 1988-10-12

Family

ID=13625358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62077135A Pending JPS63244671A (en) 1987-03-30 1987-03-30 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63244671A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100641954B1 (en) 2004-07-12 2006-11-06 주식회사 하이닉스반도체 Memory device for preventing a latch-up in a well junction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184754A (en) * 1982-04-23 1983-10-28 Fujitsu Ltd Semiconductor device
JPS59110153A (en) * 1982-12-15 1984-06-26 Fujitsu Ltd Complementary mis field effect semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184754A (en) * 1982-04-23 1983-10-28 Fujitsu Ltd Semiconductor device
JPS59110153A (en) * 1982-12-15 1984-06-26 Fujitsu Ltd Complementary mis field effect semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100641954B1 (en) 2004-07-12 2006-11-06 주식회사 하이닉스반도체 Memory device for preventing a latch-up in a well junction

Similar Documents

Publication Publication Date Title
EP0009782A1 (en) CMOS Semiconductor device
JPS62272620A (en) Logic circuit
US9899471B2 (en) Compact CMOS device isolation
US20150287719A1 (en) Semiconductor device
JPH0654797B2 (en) CMOS semiconductor device
JP5079974B2 (en) Semiconductor device
JPH03190426A (en) Integrated bicmos circuit
JPH0144021B2 (en)
US10665690B2 (en) Gate-controlled bipolar junction transistor and operation method thereof
US5559356A (en) Semiconductor device with large substrate contact region
JPS63252464A (en) Semiconductor device
US6084272A (en) Electrostatic discharge protective circuit for semiconductor device
JPS60247959A (en) Latch-up preventive circuit
US4868627A (en) Complementary semiconductor integrated circuit device capable of absorbing noise
JP2825038B2 (en) Semiconductor device
JPS63244671A (en) Semiconductor device
JPH044755B2 (en)
JPH08162539A (en) Data output buffer
JP2584500B2 (en) BI-CMOS semiconductor device
JP3071819B2 (en) Insulated gate type semiconductor device
JPS6050062B2 (en) Semiconductor integrated circuit device
JPH0225237Y2 (en)
KR0127269B1 (en) Cmos transistor used band gap difference
JPH05206387A (en) Semiconductor integrated circuit
JPH0570941B2 (en)