JPS63244002A - Fresnel zone plate - Google Patents
Fresnel zone plateInfo
- Publication number
- JPS63244002A JPS63244002A JP8024487A JP8024487A JPS63244002A JP S63244002 A JPS63244002 A JP S63244002A JP 8024487 A JP8024487 A JP 8024487A JP 8024487 A JP8024487 A JP 8024487A JP S63244002 A JPS63244002 A JP S63244002A
- Authority
- JP
- Japan
- Prior art keywords
- ring
- fzp
- diffraction
- exposing
- radii
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000004075 alteration Effects 0.000 abstract description 10
- 238000000034 method Methods 0.000 abstract description 10
- 230000015572 biosynthetic process Effects 0.000 abstract 2
- 101100391560 Oryza sativa subsp. japonica FZP gene Proteins 0.000 description 29
- 230000003287 optical effect Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000001015 X-ray lithography Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000003963 x-ray microscopy Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1876—Diffractive Fresnel lenses; Zone plates; Kinoforms
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
Description
【発明の詳細な説明】
イ、産業上の利用分野
本発明は、X線結像素子として用いられるフレネルゾー
ンプレートに関する。DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a Fresnel zone plate used as an X-ray imaging element.
口、従来の技術
近年軟X線領域の光源の開発は著しくSOR光を始め、
レーザープラズマX線源等強力な軟X線源が比較的手軽
に利用できるようになり、軟X線領域における分光学や
半導体産業におけるX線リソグラフィー、生物、医学の
分野におけるX線顕微鏡など新しい領域を拓くものとし
て種々の応用が試みられている。Conventional technology In recent years, light sources in the soft X-ray region have been significantly developed, including SOR light.
Powerful soft X-ray sources such as laser plasma X-ray sources have become relatively easy to use, opening up new fields such as spectroscopy in the soft X-ray region, X-ray lithography in the semiconductor industry, and X-ray microscopy in the biological and medical fields. Various applications are being attempted to open up new possibilities.
しかし、X線領域では通常の可視光線のように簡単には
コリメーションや結像はできず何れも超精密加工を要す
るX線用多層膜ミラーとフレネルゾーンプレート(以下
FZPと記す)が期待できるX線光学素子として注目さ
れている。従って、これらのX線光学素子の開発回加が
軟X線を用いた装置を実用化する上で重要な鍵となる。However, in the X-ray region, collimation and imaging cannot be performed as easily as with normal visible light, and both require ultra-precision machining. It is attracting attention as a line optical element. Therefore, repeated development of these X-ray optical elements is an important key to putting a device using soft X-rays into practical use.
本発明は、このFZPのパターンに関するものである。The present invention relates to this FZP pattern.
FZPは従来から主として2通りの方法で製作されてお
り、その一つは電子ビームによる直接t!if方法であ
り、他の一つはホログラフィック露光法と呼ばれる2つ
の球面光波による干渉縞を記録する方法である。FZP has traditionally been fabricated using two main methods, one of which is direct t! The other method is the holographic exposure method, which records interference fringes using two spherical light waves.
第3図でFZPの集光原理を説明する。第3図において
1はX線源、2はFZP、3が集束点、aはX線源1か
らFZP2までの距離、bはFZP2から集束点3まで
の距離、^8は使用X線波長、rlはn番目のリングの
半径、d、はn番目のリングの巾を示めす。The light focusing principle of FZP will be explained with reference to FIG. In Fig. 3, 1 is the X-ray source, 2 is the FZP, 3 is the focal point, a is the distance from the X-ray source 1 to FZP2, b is the distance from FZP2 to the focal point 3, ^8 is the X-ray wavelength used, rl represents the radius of the n-th ring, and d represents the width of the n-th ring.
X線源1から放射されたX線がFZP2で回折され、集
束点3に集光するためには、−次回弁を利用する場合、
各リングで回折するX線の集束点までの光路長と光軸上
の1−3間の光路長との光路差が波長λ8の0倍(nは
整数で内側から数えたリングの番号)となる必要がある
0例えば、第3図におけるn番目のリングの光路1−4
−3と光路1−2−3における光路差がnλ8、またリ
ング巾d、は1−4−3と1−5−3の光路差がλ、/
2になるように設定されることから電子ビームによる直
接描画方法では製作可能なリング巾の限度により小口径
のものしか作れない、またホログラフィック露光法は電
子ビームによる直接描画方法と比較して製作可能なリン
グ巾が゛狭いから比較的口径の大きなFZPをfjるこ
とが可能であるが、これもFZP製作時の露光波長と使
用波長の波長差による収差を許容できる範囲(許容収差
)内に収めるために、口径の大きさが限定され、使用で
きるX線量が限定されると云う問題があった。In order for the X-rays emitted from the X-ray source 1 to be diffracted by the FZP 2 and focused on the focusing point 3, - Next time when using a valve,
The optical path difference between the optical path length to the focal point of the X-ray diffracted by each ring and the optical path length between 1 and 3 on the optical axis is 0 times the wavelength λ8 (n is an integer and the ring number counted from the inside). For example, the optical path 1-4 of the nth ring in FIG.
-3 and the optical path 1-2-3 is nλ8, and the ring width d is the optical path difference between 1-4-3 and 1-5-3 is λ, /
2, the direct writing method using an electron beam can only produce small-diameter rings due to the limit of the ring width that can be manufactured, and the holographic exposure method has a smaller diameter than the direct writing method using an electron beam. Since the possible ring width is narrow, it is possible to create an FZP with a relatively large diameter, but this also requires that the aberration due to the wavelength difference between the exposure wavelength and the wavelength used during FZP production be within the allowable range (tolerable aberration). There was a problem in that the size of the aperture was limited in order to accommodate the X-rays, and the amount of X-rays that could be used was limited.
ハ1発明が解決しようとする問題点
本発明は、ホログラフィック露光によるX線用フレネル
ゾーンプレートの製作において、露光波長と使用波長の
波長差による収差が発生するために、FZPの口径を大
きくすることができないと云う問題を解消し、大きな口
径のFZPの製作ができるようにすることを目的とする
。C1 Problems to be Solved by the Invention The present invention aims to increase the aperture of the FZP because aberrations occur due to the wavelength difference between the exposure wavelength and the used wavelength when producing a Fresnel zone plate for X-rays using holographic exposure. The purpose is to solve the problem of not being able to produce large-diameter FZPs.
二0問題点解決のための手段
ホログラフィック露光法で形成される干渉リングを回折
リングとするフレネルゾーンプレートで、回折リングを
内側から順に複数の群に分け、各群毎に適宜代表回折リ
ングの使用波長において所定の集光特性を与えるリング
半径と、露光時における中心から同じ順位の干渉リング
の半径とが一致するように露光時の2光源位置を設定し
て、各群の回折リングを形成した。20 Means for Solving Problems A Fresnel zone plate uses an interference ring formed by a holographic exposure method as a diffraction ring.The diffraction ring is divided into a plurality of groups sequentially from the inside, and a representative diffraction ring is appropriately selected for each group. Diffraction rings for each group are formed by setting the two light source positions during exposure so that the ring radius that provides a predetermined light condensing characteristic at the wavelength used matches the radius of the interference ring in the same order from the center during exposure. did.
ホ1作用
ホログラフィック露光法によるFZPの大きさの制限因
子の一つは、使用波長と露光波長との波長差によって起
きる収差の影響である。即ち、近軸領域のみを考えると
きは波長λでのFZPと波長λ/にで光源および集束点
距離をに倍にしたFZPとは夫々のリングが一致するが
口径が大きくなると同者のリングはズレが生じ、波長λ
用のFZPを波長λ/に用に転用すると収差が生じる。One of the limiting factors for the size of the FZP produced by the Holographic holographic exposure method is the influence of aberrations caused by the wavelength difference between the used wavelength and the exposure wavelength. That is, when only the paraxial region is considered, the rings of FZP at wavelength λ and FZP with the light source and focal point distance doubled at wavelength λ/ are the same, but as the aperture increases, the rings of the same A shift occurs, and the wavelength λ
If the FZP for wavelength λ/ is used for other purposes, aberrations will occur.
従って、同一次数の回折リング群であっても、回折パタ
ーンを焼付けるときの露光条件(光源配置)はFZPパ
ターンの内側と外とで少し異ならせるのが望ましい、近
軸領域の回折リング群を露光するときの2光源とFZP
との距離を基準にして、外側回折リング群の露光をする
ときの光源距離は近似的には上記基準距離と等しいが、
上述した所によってこの近似位置からの修正が必要であ
る、実際にはFZPパターンを内側、中側、外側等の回
折リング群に分け、各群について夫々代表的リングを選
び、FZP使用条件からリング半径を計算し、露光時同
じ番号の回折リングについて上記計算された半径と同じ
回折リング半径を与える2光源の位置を逆算決定するこ
とで、各群毎に露光時の干渉パターンと使用時に要求さ
れる回折リングパターンは夫々充分な近似で一致させる
ことができ、収差補正されたFZPが得られることにな
る。Therefore, even if the diffraction ring group is of the same order, it is desirable that the exposure conditions (light source arrangement) when printing the diffraction pattern be slightly different between the inside and outside of the FZP pattern. Two light sources and FZP when exposing
The light source distance when exposing the outer diffraction ring group is approximately equal to the above reference distance, but
It is necessary to modify this approximate position due to the above-mentioned points.In reality, the FZP pattern is divided into diffraction ring groups such as inner, middle, and outer, and a representative ring is selected for each group, and the ring is adjusted based on the FZP usage conditions. By calculating the radius and back calculating the positions of the two light sources that give the same diffraction ring radius as the radius calculated above for the diffraction ring with the same number at the time of exposure, the interference pattern at the time of exposure and the required during use are determined for each group. The diffraction ring patterns can be matched with each other with sufficient approximation, and an aberration-corrected FZP can be obtained.
へ、実施例
第1図に本発明の一実施例を示す。第1図において、1
は光源、2はFZP、3は集束点、L。Embodiment FIG. 1 shows an embodiment of the present invention. In Figure 1, 1
is the light source, 2 is the FZP, 3 is the focal point, L.
(i=1.2.・・・)は同一光源位置の露光によって
形成されるリング群、aはX線源1からFZP2までの
距離、bはFZP2から集束点3までの距離、λ。は使
用X線波長を示す。(i=1.2...) is a ring group formed by exposure at the same light source position, a is the distance from the X-ray source 1 to FZP2, b is the distance from FZP2 to the focal point 3, and λ. indicates the X-ray wavelength used.
この構成にて、使用波長としてλ、=5.4人、露光波
長としてHe−CdレーザーのλH−4416人を用い
、X線集光素子として使用時の光源距離a=150mm
、集束点距離b=680mmとする。ポジ型レジストの
AZシリーズでは現像条件によって0.1μm程度まで
の線巾を作り出すことが可能である。収差の許容値を第
2図においてC□)l=0.181111にとる。In this configuration, the wavelength used is λ = 5.4, the exposure wavelength is λH-4416 of He-Cd laser, and the light source distance a = 150 mm when used as an X-ray focusing element.
, the focal point distance b=680 mm. With the AZ series of positive resists, it is possible to create line widths of up to about 0.1 μm depending on development conditions. In FIG. 2, the allowable value of aberration is set to C□)l=0.181111.
第2図において、k番目のリングρk (kは中心リン
グからの通し番号)を形成するための露光用の2つの球
面波の集束点距離ξに、ηk、そのリングの半径をrk
とし、今、ξに=η5とした場合リング半径r、は上記
使用条件から前記(2式にとなる。In Figure 2, the focal point distance ξ of two spherical waves for exposure to form the k-th ring ρk (k is a serial number from the center ring) is ηk, and the radius of that ring is rk.
Now, when ξ is set to = η5, the ring radius r is given by the above-mentioned equation (2) from the above usage conditions.
このようにして求めた露光位置11.12からの球面波
によって、第1図に示したように、最初内側回折リング
群Lklの外側リング、!2に工を、許容収差C,,8
を越えない限度まで形成する。この時リング、、12k
lより外側にはマスクをかけておく0次、は光源位置を
(4)式により調整して、中間回折リング群L2を形成
し、順次外側の回折リング群L+を形成していく。As shown in FIG. 1, the spherical waves from the exposure positions 11 and 12 obtained in this way cause the first outer ring of the inner diffraction ring group Lkl to be ! 2, allowable aberration C,,8
formed to the extent that it does not exceed. At this time, the ring, 12k
For the 0th order, which is masked outside l, the light source position is adjusted according to equation (4) to form an intermediate diffraction ring group L2, and then an outer diffraction ring group L+ is successively formed.
このようにして、基板両側のマスクを変えなから、順次
内側、中間、外側回折リング群と各回折リング群の焼付
けを行う、この場合上の説明では簡単のため露光時の2
光源はFZP基板から等距離としたが、一方の光源は固
定しておき、他の一つだけを内側、中間、外側回折リン
グ群と露光して行くに従い、動かして行くようにしても
良い。In this way, without changing the masks on both sides of the substrate, the inner, middle, and outer diffraction ring groups and each diffraction ring group are printed in sequence.
Although the light sources were set at equal distances from the FZP substrate, one light source may be fixed and only the other one may be moved as the inner, middle, and outer diffraction ring groups are exposed.
ト、効果
本発明によれば、ホログラフィック露光法によるFZP
の製作で収差が除去されるので、口径の大きなFZPの
作成が可能となり、FZPの集光能力が大幅に向上する
と共に応用範囲も広くなった。G. Effects According to the present invention, FZP by holographic exposure method
Since aberrations are removed in the production of FZPs, it becomes possible to create FZPs with large apertures, which greatly improves the light-gathering ability of FZPs and widens the range of applications.
第1図は本発明の一実施例の断面図、第2図は第2実施
例の説明図、第3図はFZPの集光原理説明図である。
1・・・線源、2・・・フレネルゾーンプレート(FZ
P)、3・・・集束点、Ll・・・回折リング群。FIG. 1 is a sectional view of one embodiment of the present invention, FIG. 2 is an explanatory diagram of the second embodiment, and FIG. 3 is an explanatory diagram of the principle of condensing FZP. 1...Radiation source, 2...Fresnel zone plate (FZ
P), 3... Focus point, Ll... Diffraction ring group.
Claims (1)
リングとするフレネルゾーンプレートで、回折リングを
内側から順に複数の群に分け、各群毎に適宜代表回折リ
ングの使用波長において所定の集光特性を与えるリング
半径と、露光時における中心から同じ順位の干渉リング
の半径とが一致するように露光時の2光源位置を設定し
て、各群の回折リングを形成したことを特徴とするフレ
ネルゾーンプレート。This is a Fresnel zone plate whose diffraction ring is an interference ring formed by holographic exposure.The diffraction ring is divided into a plurality of groups from the inside, and each group has a predetermined light focusing characteristic at the wavelength used by the representative diffraction ring. A Fresnel zone plate characterized in that two light source positions during exposure are set so that the given ring radius matches the radius of an interference ring in the same order from the center during exposure to form each group of diffraction rings. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8024487A JPS63244002A (en) | 1987-03-31 | 1987-03-31 | Fresnel zone plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8024487A JPS63244002A (en) | 1987-03-31 | 1987-03-31 | Fresnel zone plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63244002A true JPS63244002A (en) | 1988-10-11 |
Family
ID=13712909
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8024487A Pending JPS63244002A (en) | 1987-03-31 | 1987-03-31 | Fresnel zone plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63244002A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4948983A (en) * | 1987-05-13 | 1990-08-14 | Fujitsu Limited | Alignment of mask and semiconductor wafer using linear fresnel zone plate |
US5486951A (en) * | 1993-12-16 | 1996-01-23 | Eastman Kodak Company | Gradial zone lens and method of fabrication |
-
1987
- 1987-03-31 JP JP8024487A patent/JPS63244002A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4948983A (en) * | 1987-05-13 | 1990-08-14 | Fujitsu Limited | Alignment of mask and semiconductor wafer using linear fresnel zone plate |
US4999487A (en) * | 1988-05-13 | 1991-03-12 | Fujitsu Limited | Alignment of mask and semiconductor wafer using linear Fresnel zone plate |
US5486951A (en) * | 1993-12-16 | 1996-01-23 | Eastman Kodak Company | Gradial zone lens and method of fabrication |
US5629800A (en) * | 1993-12-16 | 1997-05-13 | Eastman Kodak Company | Gradial zone lens and method of fabrication |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5418598A (en) | Projection exposure apparatus | |
US4895790A (en) | High-efficiency, multilevel, diffractive optical elements | |
KR100538362B1 (en) | Exposure method and apparatus | |
KR910007220B1 (en) | Resolution doubling lithography technique | |
JP4749332B2 (en) | Lithographic system and method with increased depth of focus | |
US3776633A (en) | Method of exposure for ghost line suppression | |
JPH08316125A (en) | Method and apparatus for projection exposing | |
JPH021109A (en) | System and method of high resolution image focusing | |
US3547546A (en) | Multiple image forming device | |
JP2005157375A (en) | Photomask including shadowing element, and related method and system | |
KR100275835B1 (en) | Sub-micron device fabrication using multiple aperture filter | |
US6061188A (en) | Projecting printing apparatus, projection printing method, mask pattern for estimating amplitude aberrations, method of estimating the quantity of amplitude aberration, and amplitude-aberration estimating filter | |
US3545854A (en) | Semiconductor mask making | |
JPH04221954A (en) | Photomask | |
US3584948A (en) | Apparatus and method for producing multiple images | |
US4023904A (en) | Optical microcircuit printing process | |
US5650632A (en) | Focal plane phase-shifting lithography | |
JPS63244002A (en) | Fresnel zone plate | |
Solak et al. | Patterning of circular structure arrays with interference lithography | |
KR20050012031A (en) | Diffractive optical element, illumination system comprising same, and method for fabricating semiconductor device using same | |
JPH0373954A (en) | Method of manufacturing product having structure with numerous thin lines | |
JP3458549B2 (en) | Pattern forming method and semiconductor device manufacturing method and apparatus using the method | |
US8345219B2 (en) | Method and apparatus for setting an illumination optical unit | |
KR100377206B1 (en) | Pattern formation method and semiconductor device manufacturing method using this method | |
JP3491336B2 (en) | Exposure method and exposure apparatus |