JPS63243857A - Temperature sensor-incorporated type humidity sensing element - Google Patents

Temperature sensor-incorporated type humidity sensing element

Info

Publication number
JPS63243857A
JPS63243857A JP62078903A JP7890387A JPS63243857A JP S63243857 A JPS63243857 A JP S63243857A JP 62078903 A JP62078903 A JP 62078903A JP 7890387 A JP7890387 A JP 7890387A JP S63243857 A JPS63243857 A JP S63243857A
Authority
JP
Japan
Prior art keywords
humidity
comb
humidity sensing
film
sensing element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62078903A
Other languages
Japanese (ja)
Other versions
JPH0814556B2 (en
Inventor
Yasushi Sugiyama
靖 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP7890387A priority Critical patent/JPH0814556B2/en
Publication of JPS63243857A publication Critical patent/JPS63243857A/en
Publication of JPH0814556B2 publication Critical patent/JPH0814556B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/121Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid

Abstract

PURPOSE:To eliminate the need for temperature compensation and to improve the water resistance of a humidity sensing part by coating two conductive comb-line electrode parts with a humidity sensing film and a vapor permeable protection film and further forming a humidity shield film on only one electrode part. CONSTITUTION:Interdigital electrodes 3, 4, and 5 where two comb-line electrode parts 1 and 2 are formed provided on an insulating substrate. Those comb-line electrode parts 1 and 2 are masked and then the surfaces are coated with the humidity sensing films 6 and 7 consisting of plasma polymer films of a mixture of a nitrogen-containing organic silicate compound with superior humidity sensing characteristics and silane halide. Then the humidity sensing films 6 and 7 are coated sufficiently with room-temperature curing type silicone rubber to form the vapor-permeable protection films 8 and 9. Further, only the protection film of one comb-line electrode part 1 is coated completely with epoxy resin, polyethylene, polytetrafluoroetylene, etc., to form the humidity shield film 10 as a temperature detection part, and the other is used as a humidity detection part as it is.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、温度センサ内蔵型感湿素子に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a humidity sensing element with a built-in temperature sensor.

更に詳しくは、温度補償回路の簡略化を図った温度セン
サ内蔵型感湿素子に関する。
More specifically, the present invention relates to a humidity sensing element with a built-in temperature sensor that has a simplified temperature compensation circuit.

〔従来の技術〕[Conventional technology]

従来から、湿度を検知する手段として、高分子材料、金
属酸化物などの各種感湿材料を用いた湿度センサが開発
されているが、これらの感湿素子の検出原理は、抵抗変
化型および容量変化型の2つに大別される。
Hitherto, humidity sensors using various moisture-sensitive materials such as polymer materials and metal oxides have been developed as a means of detecting humidity. It is roughly divided into two types of change.

前者の抵抗変化型感湿素子は、感湿材料中に含まれるア
ルカリ金属イオンなどが雰囲気中の水蒸気分圧によって
そのイオン移動度を変えるため。
The former variable resistance type moisture sensing element changes the ion mobility of alkali metal ions, etc. contained in the humidity sensitive material depending on the partial pressure of water vapor in the atmosphere.

これが感湿材の抵抗変化となって検出される。ここで用
いられる高分子材料は、一般に高分子電解質膜と呼ばれ
るものであり、ポリスチレンスルホン酸ナトリウムなど
が主として用いられているが、これらの高分子電解質膜
は、高湿度かつ温度変化の大きい雰囲気、例えば結露水
が生じ易いような環境においては水に溶けて特性の劣化
を起し易く。
This is detected as a resistance change in the moisture sensitive material. The polymer material used here is generally called a polymer electrolyte membrane, and sodium polystyrene sulfonate is mainly used, but these polymer electrolyte membranes cannot be used in environments with high humidity and large temperature changes. For example, in environments where dew condensation is likely to occur, it is likely to dissolve in water and cause deterioration of properties.

信頼性に問題がみられた。There were problems with reliability.

また、一般に高分子電解質膜を使用した感湿素子は、湿
度変化による抵抗変化は当然としても、温度によっても
抵抗変化を生ずる。このため、相対湿度を例えばO〜1
0vのリニアな関係で出力する場合には、サーミスタな
どで温度を同時に検知して、感湿素子の温度による抵抗
変化分を回路上で補償している。しかしながら、このよ
うな回路は複雑となり、また廉価なサーミスタでは湿度
係数にバラツキが多く、回路の調節が雛しいという欠点
がみられる。
Furthermore, in general, a humidity sensing element using a polymer electrolyte membrane causes a resistance change not only due to changes in humidity, but also due to temperature. For this reason, the relative humidity should be set to, for example, O~1
When outputting with a linear relationship of 0 V, the temperature is detected at the same time using a thermistor or the like, and the resistance change due to temperature of the humidity sensing element is compensated for on the circuit. However, such a circuit is complicated, and inexpensive thermistors have the disadvantage that the humidity coefficient varies widely and the circuit is difficult to adjust.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで本発明者は、抵抗変化検出型の感湿素子における
温度補償回路の簡略化を達成せしめるべく種々検討した
結果、絶縁性基板上に2組の導電性くし形電極部分を設
け、これらを温度検知部および湿度検知部とするため導
電性くし形電極部分に必要な被覆を施すことにより、か
かる課題が効果的に解決されることを見出した。
Therefore, as a result of various studies in order to simplify the temperature compensation circuit in a resistance change detection type humidity sensing element, the present inventor provided two sets of conductive comb-shaped electrodes on an insulating substrate, and the temperature It has been found that this problem can be effectively solved by providing the necessary coatings to the conductive comb-shaped electrode portions to serve as the sensing portion and the humidity sensing portion.

〔問題点を解決するための手段〕[Means for solving problems]

従って、本発明は温度センサ内蔵型感湿素子に係り、こ
の温度センサ内蔵型感湿素子は、絶縁性基板上に2組の
導電性くし形電極部分を設け、これらの導電性くし形電
極部分を感湿膜および水蒸気透過性保護膜で順次被覆し
た後、その一方にのみ更に湿度遮断膜を形成させて温度
検知部とし、他方はそのまま湿度検知部として構成され
る。
Therefore, the present invention relates to a humidity sensing element with a built-in temperature sensor, and this humidity sensing element with a built-in temperature sensor has two sets of conductive comb-shaped electrode parts provided on an insulating substrate, and these conductive comb-shaped electrode parts. After sequentially covering the substrate with a moisture-sensitive film and a water vapor permeable protective film, a humidity-blocking film is further formed on only one of them to form a temperature sensing portion, and the other is directly configured as a humidity sensing portion.

ガラス、石英、アルミナなどの絶縁性基板上に形成され
る2組の導電性くし形電極部分は、2組それぞれ独立に
設けることもできるが、好ましくは第1図に示される態
様の如く、2ケ所にくし層群1.2を形成させた1個の
くし形電極3とこれらのくし層群と噛み合う2個のくし
彫型W4.sとから形成される。
The two sets of conductive comb-shaped electrode portions formed on an insulating substrate such as glass, quartz, alumina, etc. can be provided independently, but preferably two sets are provided as shown in FIG. One comb-shaped electrode 3 on which comb layer groups 1.2 are formed, and two comb-shaped shapes W4. which engage with these comb layer groups. It is formed from s.

絶縁性基板上へ導電性くし形電極を形成させるに際して
は、まず絶縁性基板上に、ステンレススチール、ハステ
ロイC、インコネル、モネル、金などの耐食性金属や銀
、アルミニウムなどの電極形成材料金属をスパッタリン
グ法、イオンブレーティング法などにより、約0.1〜
0.5μm程度の厚さの薄膜が形成され、次にそこにフ
ォトレジスト、パターンを形成させる。
When forming conductive comb-shaped electrodes on an insulating substrate, first, a corrosion-resistant metal such as stainless steel, Hastelloy C, Inconel, Monel, or gold, or an electrode forming material metal such as silver or aluminum is sputtered onto the insulating substrate. Approximately 0.1~
A thin film with a thickness of about 0.5 μm is formed, and then a photoresist and a pattern are formed thereon.

例えばアルミニウムの場合は、このようにして形成され
た電極形成材料金属薄膜へのフォトレジストパターンの
形成は、周知のフォトリソグラフ工程を適用することに
よって行われる。即ち、金属薄膜上にフォトレジストコ
ーティングを行ない、そこにくし形電極のパターンの陰
画または陽画を焼付けたガラス乾板を重ね、光照射によ
る焼付けおよび現像によって行われる。この後、湿式化
学エツチングが行われるが、エツチング液としては、リ
ン酸−硫酸−無水クロム酸−水(重量比65:15:5
:15)混合液、 Bl(F(フッ酸系)、塩化第2鉄
水溶液、硝酸、リン酸−硝酸混合液などが用いられる。
For example, in the case of aluminum, a photoresist pattern is formed on the metal thin film of the electrode forming material thus formed by applying a well-known photolithography process. That is, a photoresist coating is applied to a metal thin film, a glass dry plate on which a negative or positive image of a comb-shaped electrode pattern is printed is placed on top of the photoresist coating, and the photoresist is printed by light irradiation and developed. After this, wet chemical etching is performed, and the etching solution is phosphoric acid-sulfuric acid-chromic anhydride-water (weight ratio 65:15:5).
:15) Mixed liquid, Bl(F (hydrofluoric acid), ferric chloride aqueous solution, nitric acid, phosphoric acid-nitric acid mixed liquid, etc.) are used.

絶縁性基板上に形成された2組の導電性くし形電極部分
は、必要なマスキングを施した後、更にその表面が感湿
特性にすぐれた含窒素有機けい素化合物とハロゲン化シ
ランとの混合物あるいは有機アミン化合物とハロゲン化
炭化水素またはハロゲン化シランとの混合物などのプラ
ズマ重合膜6゜7によって覆われる。
After the two sets of conductive comb-shaped electrodes formed on the insulating substrate are subjected to necessary masking, the surface is further coated with a mixture of a nitrogen-containing organosilicon compound and a halogenated silane having excellent moisture-sensitive properties. Alternatively, it is covered with a plasma polymerized film 6.7 of a mixture of an organic amine compound and a halogenated hydrocarbon or halogenated silane.

含窒素有機けい素化合物としては、例えば次の一般式で
表わされるような化合物が用いられる。
As the nitrogen-containing organosilicon compound, for example, a compound represented by the following general formula is used.

R,5i−NRt R,N−3iR2−NR。R,5i-NRt R,N-3iR2-NR.

(R,N)3−5iR (ここで、Rは水素原子、メチル基、エチル基、ビニル
基またはアセチレン基であり、R2またはR3は同一ま
たは互いに異なるR基であり、分子中に少なくとも2個
の水素原子以外の基が含まれる)かかる化合物を具体的
に挙げると、例えばトリメチルシリルジメチルアミン5
 トリエチルシラザン、ヘキサメチルジシラザン、ヘキ
サメチルシクロトリシラザン、ビス(ジメチルアミノ)
メチルビニルシラン、ビス(トリメチルシリル)アセト
アミド、トリス(ジメチルアミノ)シラン、トリス(ジ
メチルアミノ)メチルシラン、トリス(メチルアミノ)
メチルシラン、トリス(メチルアミノ)エチルシラン、
N、N−ジメチルアミノ−N′−メチルアミノ−N′−
二チルアミノシランなどが挙げられ、好ましくはトリメ
チルシリルジメチルアミンまたはビス(ジメチルアミノ
)メチルビニルシランまたはビス(ジメチルアミノ)ジ
メチルシランが用いられる。
(R,N)3-5iR (wherein, R is a hydrogen atom, methyl group, ethyl group, vinyl group, or acetylene group, R2 or R3 are the same or different R groups, and at least 2 Specific examples of such compounds include groups other than hydrogen atoms, such as trimethylsilyldimethylamine 5
Triethylsilazane, hexamethyldisilazane, hexamethylcyclotrisilazane, bis(dimethylamino)
Methylvinylsilane, bis(trimethylsilyl)acetamide, tris(dimethylamino)silane, tris(dimethylamino)methylsilane, tris(methylamino)
Methylsilane, tris(methylamino)ethylsilane,
N,N-dimethylamino-N'-methylamino-N'-
Examples include dithylaminosilane, and preferably trimethylsilyldimethylamine, bis(dimethylamino)methylvinylsilane, or bis(dimethylamino)dimethylsilane is used.

有機アミン化合物としては、第1〜3アミノ化合物を用
いることができるが、好ましくはアルキル基で置換され
た第2〜3アミノ化合物、例えばn−ブチルアミン、第
2ブチルアミン、イソプロピルアミン、ジメチルエチル
アミン、ジエチルアミン、ジメチルアリルアミンなどの
置換モノアミノ化合物、N、N−ジメチル−1,3−プ
ロパンジアミン、N、N。
As the organic amine compound, primary to tertiary amino compounds can be used, but preferably secondary to tertiary amino compounds substituted with an alkyl group, such as n-butylamine, sec-butylamine, isopropylamine, dimethylethylamine, diethylamine. , substituted monoamino compounds such as dimethylallylamine, N,N-dimethyl-1,3-propanediamine, N,N.

N ’ 、N ’−テトラメチルエチレンジアミンなど
の置換ジアミノ化合物、更にはペンタメチレンイミン、
ヘキサメチレンイミンなどのシクロアルキル置換モノア
ミノ化合物、N、N ’−ジメチルピペラジンなどのシ
クロアルキル置換ジアミノ化合物などが用いられ、これ
ら以外にもジメチルピラゾールなども用いることができ
る。
Substituted diamino compounds such as N',N'-tetramethylethylenediamine, and also pentamethyleneimine,
Cycloalkyl-substituted monoamino compounds such as hexamethyleneimine and cycloalkyl-substituted diamino compounds such as N,N'-dimethylpiperazine are used, and in addition to these, dimethylpyrazole and the like can also be used.

ハロゲン化炭化水素としては、好ましくはハロゲン化ア
ルキルが用いられ、ハロゲン置換基は1個またはそれ以
上であり得る。具体的には、臭化メチレン、臭化メタン
、トリ臭化メタン、臭化エチレン、ジ臭化エチレン、臭
化プロパン、ジ臭化プロパン、臭化ブタン、ジ臭化ブタ
ン、塩化メチレン、臭化塩化メチレン、ヨウ化エチルな
どが用いられる。また、ハロゲン化される炭化水素基は
、鎖状不飽和結合あるいは芳香核であってもよい。
As the halogenated hydrocarbon, preferably an alkyl halide is used, and the halogen substituent may be one or more. Specifically, methylene bromide, methane bromide, methane tribromide, ethylene bromide, ethylene dibromide, propane bromide, propane dibromide, butane bromide, butane dibromide, methylene chloride, bromide Methylene chloride, ethyl iodide, etc. are used. Further, the hydrocarbon group to be halogenated may be a chain unsaturated bond or an aromatic nucleus.

ハロゲン化シランとしては、一般式5iXLX2X、 
X4(ここで、X工〜X4はハロゲン原子、水素原子、
低級アルキル基、低級アルケニル基または低級アルキニ
ル基であり、これらの内の1〜3個はハロゲン原子であ
る)で表わされるものが用いられ、好ましくは低級アル
キル置換ハロゲン化シランが用いられる。かかるハロゲ
ン化シランのいくつかの例を挙げると1次の如くである
As the halogenated silane, general formula 5iXLX2X,
X4 (where X-X4 is a halogen atom, a hydrogen atom,
A lower alkyl group, a lower alkenyl group, or a lower alkynyl group, of which 1 to 3 are halogen atoms, is used, and a lower alkyl-substituted halogenated silane is preferably used. Some examples of such halogenated silanes are as follows.

CH,5LC13 C)I3SiH2Br%CH35iHBr。CH,5LC13 C) I3SiH2Br%CH35iHBr.

(CH3)25jBr2 プラズマ重合は、プラズマ重合装置の形状およびプラズ
マ発生方式などに応じて、含窒素有機けい素化合物また
は有機アミン化合物を数m〜数Torrの圧力で、また
ハロゲン化シランまたはハロゲン、化炭化水素をやはり
数m〜数Torrの圧力で用い、これらの混合物に放電
出力数〜数100vの電力を供給することにより行なわ
れる。
(CH3)25jBr2 Plasma polymerization is carried out using a nitrogen-containing organosilicon compound or an organic amine compound at a pressure of several meters to several Torr, or a halogenated silane, halogen, or This is carried out by using hydrocarbons at a pressure of several meters to several Torr and supplying the mixture with electric power of several to several 100 volts of discharge output.

具体的には、例えば放電出力が10すの場合、含窒素有
機けい素化合物が約0.15〜0.08Torrに対し
てハロゲン化シランが約0.06〜0.01Torrの
割合で用いられる。または、例えば放電出力が2011
!の場合、有機アミン化合物が約0.04〜0.2To
rrに対してハロゲン化炭化水素またはハロゲン化シラ
ンが約o、oos〜0.ITorrの割合で用いられる
。ハロゲン化シランまたはハロゲン化炭化水素の割合が
少なすぎると、プラズマ重合膜中のハロゲン含有量が減
少して感湿特性が悪くなり、一方この割合が多すぎると
、相対的にプラズマ重合膜中の窒素含有量が少なくなり
また重合膜も硬化するため、やはり感湿特性が低下する
Specifically, for example, when the discharge output is 10 Torr, the nitrogen-containing organosilicon compound is used in a ratio of about 0.15 to 0.08 Torr and the halogenated silane is used in a ratio of about 0.06 to 0.01 Torr. Or, for example, if the discharge output is 2011
! In this case, the organic amine compound is approximately 0.04 to 0.2 To
rr, the halogenated hydrocarbon or halogenated silane is about o, oos to 0. It is used at a rate of ITorr. If the proportion of halogenated silane or halogenated hydrocarbon is too small, the halogen content in the plasma polymerized film will decrease and the moisture sensitivity will deteriorate, while if this proportion is too large, the relative Since the nitrogen content is reduced and the polymer film is also hardened, the moisture sensitivity properties are also reduced.

次いで、これらの感湿膜が十分に被覆されるように、前
より若干露出部を大きくしたマスキングを施した後、室
温硬化型(RTV)シリコーンゴムをへらなどを用いて
コーティングし、そこに水蒸気透過性保護膜8,9を形
成させる。シリコーンゴムの硬化は、例えば30℃、5
0%RH12日間の条件下で行われ、約30μm前後の
膜厚で保護膜が形成される。この保護膜は、水蒸気透過
性ではあるものの、液状の水は透過させないので耐水性
を向上させながら、感湿特性は低下させない。
Next, in order to sufficiently cover these moisture-sensitive films, after masking the exposed area slightly larger than before, a room-temperature curable (RTV) silicone rubber is coated using a spatula, and water vapor is applied thereto. Permeable protective films 8 and 9 are formed. The curing of silicone rubber is, for example, 30°C, 5°C.
This is carried out under conditions of 0% RH for 12 days, and a protective film is formed with a thickness of about 30 μm. Although this protective film is permeable to water vapor, it does not allow liquid water to pass through, so it improves water resistance without degrading moisture sensitivity.

最後に、 30℃、40%RHの恒温恒湿槽中で条件を
整えた後、一方のくし形電極部分(符号1,4で形成さ
れる部分)の保護膜のみをエポキシ樹脂、ポリエチレン
、ポリテトラフルオロエチレンなどで完全に被覆し、湿
度遮断膜10を形成させる。そして、湿度遮断膜を形成
させたくし形電極部分を湿度感応性がなく、温度のみに
感応する温度検知部Aとし、形成させない方のくし形電
極部分を湿度検知部Bとする。
Finally, after adjusting the conditions in a constant temperature and humidity chamber at 30°C and 40% RH, only the protective film of one comb-shaped electrode part (the part formed by numbers 1 and 4) is coated with epoxy resin, polyethylene, or polyester. It is completely coated with tetrafluoroethylene or the like to form a humidity barrier film 10. The comb-shaped electrode portion on which the humidity shielding film is formed is defined as a temperature sensing portion A that is not sensitive to humidity and is sensitive only to temperature, and the comb-shaped electrode portion on which no humidity barrier film is formed is defined as a humidity sensing portion B.

〔作用〕[Effect]

このようにして構成される本発明の抵抗変化型6m素子
は、端子IIと12および端子11と13によって電気
特性が測定される。
The electrical characteristics of the variable resistance 6m element of the present invention constructed in this way are measured by terminals II and 12 and terminals 11 and 13.

例えば、ガラス基板上にフォトリソグラフグラ、フ法に
より線幅400μm、線間隔200μmのくし形部分を
有する電極をAu/Cr(膜厚1000人1500人)
で第1図に示されるような形状で形成させ、形成された
2組の導電性くし形電極部分に、テトラメチルエチレン
ジアミン0.07Torr、臭化メチレン0.006T
orrの混合ガスを用い、放電出力20111、放電時
分30分の条件下でマスキングを行ないながらプラズマ
重合膜を膜厚0.3μmで形成させ、更にその上に室温
硬化型シリコーンゴム保護膜を膜厚30μmで形成させ
たものについて、30℃、40%RHの恒温恒湿槽中で
条件を整えた後、相対湿度に対する抵抗値を端子11−
12間で測定すると、第2図のグラフに示されるような
結果が得られた。
For example, an Au/Cr electrode (film thickness: 1,000 to 1,500) having a comb-shaped part with a line width of 400 μm and a line spacing of 200 μm is formed on a glass substrate using a photolithography method.
The two sets of conductive comb-shaped electrodes were formed in the shape shown in FIG.
A plasma polymerized film with a thickness of 0.3 μm was formed using masking under the conditions of a discharge output of 20111 and a discharge time of 30 minutes using a mixed gas of For the product formed with a thickness of 30 μm, after adjusting the conditions in a constant temperature and humidity chamber at 30°C and 40% RH, the resistance value with respect to relative humidity was measured at terminal 11-
When measuring between 12 and 12, the results shown in the graph of FIG. 2 were obtained.

この感湿素子を、30℃、40%RHの雰囲気中でエポ
キシ樹脂湿度遮断膜で密閉した感温検知部Aについて、
端子11−12間で抵抗を測定すると、その抵抗値はI
MΩに固定され、また温度変化に対して湿度検知部Bの
感温特性、即ちB係数が6500〜7500とほぼ一定
した値を示す温度検知部Aがそこに形成される。
Regarding the temperature sensing part A, this humidity sensing element is sealed with an epoxy resin humidity barrier film in an atmosphere of 30 ° C. and 40% RH.
When the resistance is measured between terminals 11 and 12, the resistance value is I
A temperature sensing portion A is formed therein, which is fixed at MΩ and exhibits a temperature-sensitive characteristic of the humidity sensing portion B, that is, a coefficient B, which is approximately constant from 6500 to 7500 with respect to temperature changes.

一般に、感湿素子は温度特性を有しており、そのB係数
は市販サーミスタ(B=2000〜5000)と比較し
て大きく、第3図の湿度出力回路図に例示されるように
、回路上で複雑な補償を行なっている。
Generally, a humidity sensing element has temperature characteristics, and its B coefficient is larger than that of a commercially available thermistor (B = 2000 to 5000). complex compensation is being carried out.

そして、この回路中の■−■における出力をみると、第
4図のグラフの結果に示されるように、相対湿度によっ
てその抵抗値は対数的に直線状に変化はしているものの
、ここでは未だ温度の影響が明らかにみられる。
Looking at the output at ■-■ in this circuit, as shown in the graph of Figure 4, the resistance value changes logarithmically and linearly depending on the relative humidity; The influence of temperature is still clearly visible.

これに対して、本発明に係る温度センサ内蔵型感湿素子
では、その回路が第5図に示される如く簡略となり、ま
た第3図の抵抗Rを温度センサに置き換え、■−〇にお
ける出力をみるに、第6図のグラブの結果に示されるよ
うに、温度の影響を受けず、従って簡単に温度補償がで
きるようになる。
On the other hand, in the humidity sensing element with a built-in temperature sensor according to the present invention, the circuit is simplified as shown in FIG. 5, and the resistor R in FIG. 3 is replaced with a temperature sensor, and the output at As shown in the graph result in FIG. 6, it is not affected by temperature, and therefore temperature compensation can be easily performed.

更に、湿度検知部Bの耐水性を測定するために、室温条
件下の水中に5日間浸漬する試験を行なったが、その感
湿特性値は初期値の±2%RH以内に収まっていた。
Furthermore, in order to measure the water resistance of the humidity sensing part B, a test was conducted in which it was immersed in water at room temperature for 5 days, and the humidity sensitivity characteristic value was within ±2% RH of the initial value.

〔発明の効果〕〔Effect of the invention〕

本発明に係る温度センサ内蔵型感湿素子は、温度検知部
と湿度検知部とが同じ材質の材料で形成されているため
温度係数が等しく、温度補償用の回路を不要としている
。また、感湿部の耐水性も良好である。
In the humidity sensing element with a built-in temperature sensor according to the present invention, since the temperature sensing part and the humidity sensing part are made of the same material, the temperature coefficients are equal, and a temperature compensation circuit is not required. Moreover, the water resistance of the moisture sensitive part is also good.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る温度センサ内蔵型感湿素子の一
態様の平面図である。第2図は、湿度遮断膜を設けない
感湿素子の相対湿度と抵抗との関係を示すグラフである
。第3図は従来例の、また第5図は本発明に係る感温素
子をそれぞれ用いた湿度出力回路の一例である。第4図
は第3図の、また第6図は第5図の湿度出力回路をそれ
ぞれ用いた場合の相対湿度と回路途中の交流電圧との関
係を示すグラフである。 (符号の説明) 1.2・・・・・・くし層群
FIG. 1 is a plan view of one embodiment of a humidity sensing element with a built-in temperature sensor according to the present invention. FIG. 2 is a graph showing the relationship between relative humidity and resistance of a humidity sensing element without a humidity barrier film. FIG. 3 shows an example of a humidity output circuit using a conventional temperature sensing element, and FIG. 5 shows an example of a humidity output circuit using a temperature sensing element according to the present invention. FIG. 4 is a graph showing the relationship between relative humidity and AC voltage in the circuit when the humidity output circuit shown in FIG. 3 and FIG. 6 are used, respectively. (Explanation of symbols) 1.2... Kushi layer group

Claims (5)

【特許請求の範囲】[Claims] 1.絶縁性基板上に2組の導電性くし形電極部分を設け
、これらの導電性くし形電極部分を感湿膜および水蒸気
透過性保護膜で順次被覆した後、その一方にのみ更に湿
度遮断膜を形成させて温度検知部とし、他方はそのまま
湿度検知部とした温度センサ内蔵型感湿素子。
1. Two sets of conductive comb-shaped electrode portions are provided on an insulating substrate, and after these conductive comb-shaped electrode portions are sequentially coated with a moisture-sensitive film and a water vapor permeable protective film, only one of them is further covered with a humidity-blocking film. A humidity sensing element with a built-in temperature sensor, with one formed as a temperature sensing part and the other as a humidity sensing part.
2.2ケ所にくし形群を形成させた1個の導電性くし形
電極とこれらのくし形群と噛み合う2個の導電性くし形
電極とから2組の導電性くし形電極部分を形成させた特
許請求の範囲第1項記載の温度センサ内蔵型感湿素子。
2. Two sets of conductive comb-shaped electrode parts are formed from one conductive comb-shaped electrode with comb-shaped groups formed at two places and two conductive comb-shaped electrodes that mesh with these comb-shaped groups. A humidity sensing element with a built-in temperature sensor according to claim 1.
3.感湿膜がプラズマ重合膜である特許請求の範囲第1
項記載の温度センサ内蔵型感湿素子。
3. Claim 1, wherein the moisture-sensitive membrane is a plasma polymerized membrane.
Moisture sensing element with a built-in temperature sensor as described in .
4.水蒸気透過性保護膜が室温硬化型シリコーンゴムの
硬化膜である特許請求の範囲第1項記載の温度センサ内
蔵型感湿素子。
4. 2. The temperature sensor built-in moisture sensing element according to claim 1, wherein the water vapor permeable protective film is a cured film of room temperature curing silicone rubber.
5.湿度遮断膜がエポキシ樹脂膜である特許請求の範囲
第1項記載の温度センサ内蔵型感湿素子。
5. The temperature sensor built-in humidity sensing element according to claim 1, wherein the humidity blocking film is an epoxy resin film.
JP7890387A 1987-03-31 1987-03-31 Humidity sensor with built-in temperature sensor Expired - Lifetime JPH0814556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7890387A JPH0814556B2 (en) 1987-03-31 1987-03-31 Humidity sensor with built-in temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7890387A JPH0814556B2 (en) 1987-03-31 1987-03-31 Humidity sensor with built-in temperature sensor

Publications (2)

Publication Number Publication Date
JPS63243857A true JPS63243857A (en) 1988-10-11
JPH0814556B2 JPH0814556B2 (en) 1996-02-14

Family

ID=13674788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7890387A Expired - Lifetime JPH0814556B2 (en) 1987-03-31 1987-03-31 Humidity sensor with built-in temperature sensor

Country Status (1)

Country Link
JP (1) JPH0814556B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218465A (en) * 1993-08-23 1995-08-18 Vaisala Oy Detector and method for observing presence of liquid or change in phase in liquid or both
KR100351810B1 (en) * 1999-12-13 2002-09-11 엘지전자 주식회사 absolute humidity sensor
JP2003004685A (en) * 2001-06-22 2003-01-08 Hokuriku Electric Ind Co Ltd Humidity sensor
JP2006133191A (en) * 2004-11-09 2006-05-25 Nippon Soken Inc Capacitance humidity sensor
JP2006234576A (en) * 2005-02-24 2006-09-07 Denso Corp Humidity sensor device and self-diagnostic method thereof
JP2010025808A (en) * 2008-07-22 2010-02-04 Espec Corp Environmental testing apparatus capable of controlling amount of dew condensation and control method of amount of dew condensation
EP2376910A4 (en) * 2008-12-23 2015-07-01 3M Innovative Properties Co Organic chemical sensor with microporous organosilicate material
CN111076856A (en) * 2011-11-23 2020-04-28 无锡芯感智半导体有限公司 Float self-compensating SOI pressure sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI110287B (en) * 1999-06-17 2002-12-31 Vaisala Oyj Method and apparatus for measuring the water content of a liquid
JP6536059B2 (en) * 2015-02-09 2019-07-03 三菱マテリアル株式会社 Humidity sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218465A (en) * 1993-08-23 1995-08-18 Vaisala Oy Detector and method for observing presence of liquid or change in phase in liquid or both
KR100351810B1 (en) * 1999-12-13 2002-09-11 엘지전자 주식회사 absolute humidity sensor
JP2003004685A (en) * 2001-06-22 2003-01-08 Hokuriku Electric Ind Co Ltd Humidity sensor
JP2006133191A (en) * 2004-11-09 2006-05-25 Nippon Soken Inc Capacitance humidity sensor
JP2006234576A (en) * 2005-02-24 2006-09-07 Denso Corp Humidity sensor device and self-diagnostic method thereof
JP4566784B2 (en) * 2005-02-24 2010-10-20 株式会社デンソー Humidity sensor device
JP2010025808A (en) * 2008-07-22 2010-02-04 Espec Corp Environmental testing apparatus capable of controlling amount of dew condensation and control method of amount of dew condensation
EP2376910A4 (en) * 2008-12-23 2015-07-01 3M Innovative Properties Co Organic chemical sensor with microporous organosilicate material
CN111076856A (en) * 2011-11-23 2020-04-28 无锡芯感智半导体有限公司 Float self-compensating SOI pressure sensor
CN111076856B (en) * 2011-11-23 2021-09-21 无锡芯感智半导体有限公司 Temperature drift self-compensating SOI pressure sensor

Also Published As

Publication number Publication date
JPH0814556B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
JPS63243857A (en) Temperature sensor-incorporated type humidity sensing element
GB2064126A (en) Method of making humidity sensors
JP2541246B2 (en) Thin film moisture sensitive element
JP2518282B2 (en) Moisture sensitive element
JP2962337B2 (en) Moisture sensitive element
US3676188A (en) Method for preparing sensors for detecting reducing vapors
JPH01287453A (en) Moisture sensitive element
JP2508143B2 (en) Thin film moisture sensitive element
JPS61256601A (en) High molecular thin film thermosensitive element
JPS6395347A (en) Moisture sensor
JPS62255860A (en) Thin film moisture sensitive element
JPS62145128A (en) Temperature sensor
JPS6347646A (en) Humidity-sensitive element
JPH0533741B2 (en)
JPS62282255A (en) Membrane humidity-sensitive element
JPH0528340B2 (en)
JPH07104311B2 (en) Thin film moisture sensitive element
JPS61290351A (en) High molecular thin film moisture-sensitive element
KR101301983B1 (en) Trimethylamine Gas sensor and manufacturing method of the same
JPS63307347A (en) Absolute humidity sensor
JPS61237044A (en) Moisture detection element and manufacture thereof
JPS6280543A (en) Thin film moisture sensitive element
JP2536064B2 (en) Thin film moisture sensitive element
SU851143A1 (en) Device for measuring oxygen partial pressure in vacuum
JPH0419553A (en) Electrostatic capacity type humidity sensor