JPS63243840A - Scattered light detector - Google Patents

Scattered light detector

Info

Publication number
JPS63243840A
JPS63243840A JP62078861A JP7886187A JPS63243840A JP S63243840 A JPS63243840 A JP S63243840A JP 62078861 A JP62078861 A JP 62078861A JP 7886187 A JP7886187 A JP 7886187A JP S63243840 A JPS63243840 A JP S63243840A
Authority
JP
Japan
Prior art keywords
scattered light
light
ring
cylindrical
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62078861A
Other languages
Japanese (ja)
Other versions
JPH0810191B2 (en
Inventor
Takeshi Niwa
丹羽 猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP62078861A priority Critical patent/JPH0810191B2/en
Publication of JPS63243840A publication Critical patent/JPS63243840A/en
Publication of JPH0810191B2 publication Critical patent/JPH0810191B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/51Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To instantaneously detect the angular distribution of the intensity of scattered light with high accuracy and high sensitivity by allowing a ring-shaped sensor composed of many semiconductor photodetecting elements to detects the scattered light arriving from a direction perpendicular to its surface by discriminating its position. CONSTITUTION:A cylindrical sample cell 1 is formed of a transparent material and liquid or gas where a group of particles to be measured is suspended and dispersed is put or flows therein. Then homogeneous light of necessary wavelength from a light source 2 is collimated by a collimator 3 into thin parallel luminous flux L11, which is projected on the sample cell 1 and scattered by the particle group in the sample. A part of scattered light La1 emitted radially from the sample cell 1 strikes on the cylindrical incidence surface 4a of a ring-shaped prism 4 and is reflected totally by a cylindrical surface 4b and incident on detecting elements 5 through a projection surface 4c. The elements generate photoelectric outputs proportional to the intensity of the momentarily incident light at the same time by elements sectioned into sectorial planes. The respective outputs are amplified and A/D-converted by a signal processing part 6 and inputted to a data processing system 7 to calculate the momentary grain size distribution, which is displayed and recorded 8.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、光検出装置9例えば媒体中に分散された粒
子群に光を照射し1粒子群からの散乱光を測定して粒子
群の粒度分布t−測測定る場合などに用いる散乱角に対
する散乱光強度’elll出する光検出装置およびその
光学素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field This invention detects the particle group by irradiating light onto a group of particles dispersed in a medium and measuring the scattered light from one group of particles. The present invention relates to a photodetector and an optical element thereof that emit scattered light intensity with respect to a scattering angle, which is used for particle size distribution t-measurement.

(ロ)従来の技術 液体または気体中に懸濁分散された粒子群の粒子の大き
さ9粒子径の分布状態をより正確に。
(b) Prior art: Particle size of a group of particles suspended and dispersed in a liquid or gas 9 More accurate distribution of particle diameters.

かつ迅速に測定する要求が高まっている。There is also an increasing demand for rapid measurement.

粒度分布の測定には光散乱法がよく用いられる。Light scattering is often used to measure particle size distribution.

光散乱法では、被測定粒子群に単色光(レーザ光等)を
照射し9粒子からの散乱光の強度全いくつかの散乱角に
ついて測定し、この測定値からPraunhofer回
折法(平均粒径数μm〜数十μmの粗い粒子)、′!た
はMie散乱法(微小粒子)により統計的演算処理を施
し1粒度分布が求められる。
In the light scattering method, monochromatic light (laser light, etc.) is irradiated onto a group of particles to be measured, and the intensity of the scattered light from nine particles is measured at several scattering angles. Coarse particles of μm to several tens of μm),'! Alternatively, statistical calculation processing is performed using the Mie scattering method (microparticles) to obtain a single particle size distribution.

11JieJ4jA論による粒度分布測定でに、つぎの
工うな方法が行なわ°れているが、それぞれ問題がある
The following methods have been used to measure particle size distribution according to the 11JieJ4jA theory, but each method has its own problems.

A)散乱角と散乱光強度を測定する方法(たとえば日本
金属学会会報第24巻筒7号、第561−567頁「微
粒子の測定法とその応用」)では、散乱光の検出器全測
定セルI/、)1わりに順次一定角度ずつ回動させて各
散乱角における散乱光強度全測定する方式が行なわれて
いる。しかしこの方式では機構が複雑で製作費用が高価
となり、しかも測定にかなりの時fMlを要する。
A) In the method of measuring the scattering angle and scattered light intensity (for example, Bulletin of the Japan Institute of Metals, Vol. 24, No. 7, pp. 561-567, "Measurement method of fine particles and its applications"), all measurement cells of the scattered light detector are used. A method is used in which the entire scattered light intensity at each scattering angle is measured by sequentially rotating the light by a constant angle. However, in this method, the mechanism is complicated and the manufacturing cost is high, and moreover, the measurement requires a considerable amount of time fMl.

B)さらに所望の散乱角位置に光ファイバー等の受光端
を配置し入射光音それぞれ光検出素子に導入・検出する
方式(特開昭61−14543号)が提案されているが
、この方式では所望の散乱角における散乱光のごく一部
がサンプリングされるのみであり、測定の感度の点では
不利な条件が伴う。
B) Furthermore, a method has been proposed (Japanese Patent Application Laid-open No. 14543/1983) in which the light receiving end of an optical fiber or the like is placed at a desired scattering angle position and each incident light and sound is introduced into a photodetector element and detected. Only a small portion of the scattered light at a scattering angle of is sampled, which comes with disadvantages in terms of measurement sensitivity.

C)照射光の方向に対して一定の角度の散乱光検出器金
量き、照射光の波長を変化して固定角での散乱光全検出
する方式が提案されている。(たとえばWilay  
)Ieyden Ltd、 1982年発行の”Par
ticle 5ize Analysis 198]″
第385−391頁+Submicrometer t
o Millimeterparticle 5ize
 Measurement  usinglight 
 scattertng″)。LかLこの方式ft!波
長選択にフィルり全角いた場合に使用できる波長が限ら
れ、′!た分光器を用いた場合は光のエネルギーが小さ
くなるので、受光素子として高感度のホトマルチプライ
ヤ−が要求され、それぞれ装置が高価となるとともに波
長送りの時間だけ測定時間が長くなる。
C) A method has been proposed in which a scattered light detector is mounted at a fixed angle with respect to the direction of the irradiated light, and the wavelength of the irradiated light is changed to detect all of the scattered light at a fixed angle. (For example, Wilay
)Ieyden Ltd, published in 1982 “Par
5ize Analysis 198]
Pages 385-391 + Submicrometer t
o Millimeter particle 5ize
Measurement using light
scattertng''). L or L This method ft! If the wavelength selection is full-width, the wavelengths that can be used are limited, and if a spectrometer is used, the energy of the light will be small, so it is highly sensitive as a light receiving element. A photomultiplier is required, making each device expensive and increasing the measurement time by the time required to send the wavelength.

rN発明が解決しようとする問題点 上記のように、従来方式では囚、(C)の場合は一定時
間内の平均の粒度分布を測定しているので。
Problems to be Solved by the rN Invention As mentioned above, in the case of (C), the average particle size distribution within a certain period of time is measured.

粒度分布が時間とともに変化する場合には、これに正確
に追ぼ測定することは不可能であジ、 (BJの場合に
は測定感度の低下が避けられない。
If the particle size distribution changes over time, it is impossible to accurately track and measure it (in the case of BJ, a decrease in measurement sensitivity is unavoidable).

この発明に、散乱光強度の角度分重金瞬間的に高精度、
高感度に検出できる散乱光検出装置全提供することを目
的とする。
In this invention, the angle of the scattered light intensity is instantaneous with high precision,
The object of the present invention is to provide a complete scattered light detection device that can detect with high sensitivity.

轡問題点會解決するための手段 この発明の散乱光検出部置は、同−円周借上スゝ において等しい中心角!=4’E区画して配設された扇
形状ないし短冊状の多数の半導体光検出素子により構成
されたリング状±ンサで、その面に対して垂直方向から
来る散乱光を位置識別して検出する。
Means for Solving the Problems The scattered light detection device of the present invention has equal central angles at the same circumference. = 4'E A ring-shaped sensor consisting of a large number of fan-shaped or strip-shaped semiconductor photodetecting elements arranged in sections, and detects scattered light coming from a direction perpendicular to its surface by position identification. do.

さらに詳しくは、散乱光発生源、たとえば光源よりレー
ザ光束等の細い単色光が照射される円筒状試料セルの周
囲に1円筒内側面の光入射面と輪状の光出射面を有する
リング状プリズムが試料セルと同軸状に配置され、プリ
ズムの出力面には光検出素子たとえば半導体光検出素子
群が、密接配置される。
More specifically, a ring-shaped prism having a light entrance surface on the inner side of the cylinder and a ring-shaped light exit surface is placed around a cylindrical sample cell that is irradiated with narrow monochromatic light such as a laser beam from a scattered light generation source, for example, a light source. The prism is arranged coaxially with the sample cell, and on the output surface of the prism, a group of photodetecting elements, such as semiconductor photodetecting elements, are closely arranged.

リング状プリズムの中心角ハ180°あれば十分である
が測定対象粒子の粒度の範囲が狭い場合はさらに小さく
てもよい。またプリズムの全反射面は必要に応じ円錐面
より若干外側にふくらみ金与え光収束特性金与えてもよ
い。
It is sufficient if the central angle of the ring-shaped prism is 180°, but it may be smaller if the particle size range of the particles to be measured is narrow. Further, the total reflection surface of the prism may be bulged slightly outward from the conical surface to provide light convergence properties, if necessary.

(ホ)作 用 この発明によれば、散乱光測定面において発生源から各
角度方向から放射する散乱光全同時に検出することがで
き、散乱光強度の角度分布の経時変化?リアルタイムで
計測できる。
(e) Effect According to the present invention, it is possible to simultaneously detect all the scattered light emitted from the source from each angular direction on the scattered light measurement surface, and to detect changes over time in the angular distribution of the scattered light intensity. Can be measured in real time.

また各角度に配列された光検出素子扛受光面が点ではな
く散乱光測定平面において、角度方向に空間的な拡がv
k有しているから、散乱光の光量の多くが検出信号に寄
与し、測定感度金回、ヒさせる。
In addition, the light-receiving surfaces of the photodetecting elements arranged at each angle are not points, but the scattered light measurement plane, and the spatial spread in the angular direction is v.
Since there is a large amount of light, much of the amount of scattered light contributes to the detection signal, thereby increasing the measurement sensitivity.

さらに散乱光受光部として測定セ1vt−包囲する円筒
状入射面を持つリング状プリズムにより、セルから放射
状に出た散乱光はプリズムの外側の円錐面で全反射され
、平面状出射面に設は走光tgt出素子群に入射し各素
子毎にそれぞれの散乱角の散乱光強度に応じた光電出力
全発生する。従って種々の角度方向への散乱光に対し一
平面上に配設した検出素子群で対応できるので、検出素
子の製作。
Furthermore, a ring-shaped prism with a cylindrical incident surface surrounding the measurement cell serves as a scattered light receiving section, and the scattered light emitted radially from the cell is totally reflected by the conical surface on the outside of the prism. The light is incident on the phototactic TGT output element group, and each element generates a total photoelectric output according to the intensity of scattered light at its respective scattering angle. Therefore, since it is possible to deal with scattered light in various angular directions with a group of detection elements arranged on one plane, it is possible to manufacture the detection elements.

検出部の構成上好都合である。This is convenient in terms of the configuration of the detection section.

(へ)実施例 第1Wはこの発明を粒度分布測定に応用した場合の一実
施例を示すもので、 (1)は透明な材料で形成された
円筒形の試料上〜で被測定粒子群?懸濁分散させた液体
または気体が納められ、または流通する。(2)はレー
ザ、分光器等の単色光源、(3)はコリメータ用集光レ
ンズである。(4) 、 (5)に本発明を直接構成す
る散乱光検出部である5(4)はリング状プリズムで散
乱光入射面となる円筒面(4aハ全反射面となる円錐面
(4b)、出射面となる平面(4りとを有し9円筒面(
4a) 、円錐面(4b)は試料上〜(1)の円筒面と
同軸になるよう配置され、出射面(4C)はこの円筒面
(4a)に直交する。なお(5)ハブリズムの出射面(
4C)上にその入射面を出射面(4C)に密接して設け
られた光検出素子群であり、たとえば半導体フォトセン
サが円筒面(4a)の軸を中心とする一定の中心角度毎
に扇形状或いは短冊状(以下短冊状と総称する)に区画
された多数の素子群全形成して設けられる。第2図にこ
の光検出素子群を示し、セ/l’(1)の入る空間(G
lt−中心部に設けたSiリング状プリズム(4)の材
質は光透過性であればよいが、製作上はアクリル樹脂等
のプラスチック材料が適当であり、たとえば第3図のよ
うに所要厚さの円板の円縁全図のように45°の角度で
切除した後中心部を切除するか或いは厚肉の円筒の外縁
部全45°に切除する等の機械加工により第4図のよう
に製作してもよいが、また成形加工後所要の精度に仕上
げてもよい。
(v) Example No. 1 W shows an example in which the present invention is applied to particle size distribution measurement. A suspended or dispersed liquid or gas is contained or distributed. (2) is a monochromatic light source such as a laser or a spectroscope, and (3) is a condensing lens for a collimator. (4) and (5) 5 (4), which is a scattered light detection unit that directly constitutes the present invention, is a ring-shaped prism with a cylindrical surface (4a) and a conical surface (4b) that becomes a total reflection surface. , a plane (9 cylindrical surface with 4 holes (
4a), the conical surface (4b) is arranged coaxially with the cylindrical surface of (1) on the sample, and the output surface (4C) is orthogonal to this cylindrical surface (4a). (5) The exit surface of the hub rhythm (
4C) is a group of photodetecting elements whose entrance surface is placed in close proximity to the exit surface (4C). A large number of element groups partitioned into shapes or strips (hereinafter collectively referred to as strips) are provided. Figure 2 shows this photodetecting element group, and shows the space (G
The material of the Si ring-shaped prism (4) provided at the center may be any light transmissive material, but plastic materials such as acrylic resin are suitable for manufacturing. After cutting off the entire circular edge of the disk at an angle of 45°, the central part is cut off, or the entire outer edge of a thick cylinder is cut off at 45°, as shown in Figure 4, by machining. It may be manufactured, or it may be finished to the required precision after molding.

第1図において(6)〜(8)は散乱光検出後の信号の
処理を行う部分で、(6)H光検出素子(5)の各エレ
メントの光We出倍信号増巾・性変換等を行う信号処理
部、(7)は各角度の散乱光強度の計測値から公知の方
法により粒度分布等の演算を行うデータ処理システム、
(8)はCRT・記録計・プリンタ等t−含む表示・記
録装置である。
In Fig. 1, (6) to (8) are parts that process the signal after detecting the scattered light, including (6) optical We output signal amplification, gender conversion, etc. of each element of the H light detection element (5). (7) is a data processing system that calculates particle size distribution, etc. using a known method from the measured values of scattered light intensity at each angle;
(8) is a display/recording device including a CRT, recorder, printer, etc.

以上の装置の動作について説明すると、光源2ノから出
た所要の波長の単色光はコリメータ(3)により細い平
行光束(LIJとされ、試料上/L’ (1)に照射さ
れ、試料中の粒子群により散乱される。試料セルから放
射状に出た散乱光(L2)の一部はリング状プリズム(
4](第3図a−b参照ンの円筒形入射面(4a)に入
ジ1円錐面(4b)で全反射され、出射面(4c)を経
て検出素子(5)に入る。検出素子(5)に扇形平面に
区画された各エレメント(51J 、 (52)・・−
・−<5n)ごとに、各々に刻々に入射する光の強度に
比例した充電出力全同時に発生する。各出力は信号処理
部(6)でそれぞれ増巾・ん4〕変換等の処理部された
後、 7データ処理システム(7〕に導入され、公知の
統計演算により刻々の粒度分布が算出され9表示・記録
装置(8]により1粒度分布全表わすグラフ・表等が。
To explain the operation of the above device, the monochromatic light of the required wavelength emitted from the light source 2 is converted into a narrow parallel beam (LIJ) by the collimator (3), and is irradiated onto the sample /L' (1). A part of the scattered light (L2) radially emitted from the sample cell is scattered by a ring-shaped prism (
4] (See Figures 3 a-b) It is totally reflected by the conical surface (4b) of the cylindrical entrance surface (4a) of the lens, and enters the detection element (5) via the output surface (4c).Detection element Each element (51J, (52)...-
-<5n), charging outputs proportional to the intensity of the incident light are generated simultaneously. Each output is subjected to processing such as amplification and conversion in the signal processing unit (6), and then introduced into the data processing system (7), where the particle size distribution is calculated from moment to moment using known statistical calculations. The display/recording device (8) produces graphs, tables, etc. showing the entire particle size distribution.

必要に応じてCRT・記録計・プリンタに表示・記憶さ
れ、またメモリに記憶される、 (トン発明の効果 この発明によれば、下記のような効果が得られる。
The information is displayed and stored on a CRT, a recorder, a printer, and stored in a memory as necessary.

1)散乱光発生源の周囲に本発明の光検出素子を多数配
置することによって各角度方向への散乱光強度を同時に
検出できるので、光検出素子群〜のまわりに回動して各
角度における散乱光全検出する方法に比べて迅速な測定
が可能であり、また険出器回動機構を要しないので散乱
光計測が単純簡単となる。さらに刻々の散乱光強度分布
を観測できるので、散乱光発生源の状態、たとえば粒度
分布が時間的に変化している場合、(粒、子の沈降の過
程等)に対しても精度よくこれを測定することができる
1) By arranging a large number of light detection elements of the present invention around the scattered light generation source, the scattered light intensity in each angular direction can be detected simultaneously. Compared to a method that detects all of the scattered light, this method allows for faster measurement, and since it does not require a mechanism for rotating the protrusion device, the scattered light measurement becomes simple and simple. Furthermore, since it is possible to observe the scattered light intensity distribution moment by moment, it is possible to accurately monitor the state of the scattered light source, for example, when the particle size distribution changes over time (the process of sedimentation of particles and particles, etc.). can be measured.

2)散乱光発生源を中心とする測定平面上で所定の中心
角毎に配置した光検出素子がそれぞれの中心角をほぼカ
バーする受光面の拡がり金持っているので、より多くの
散乱光が測定に有効に利用され、測定感度が著しく向上
する。
2) Since the photodetecting elements arranged at predetermined central angles on the measurement plane with the scattered light source as the center have a light-receiving surface spread that almost covers each central angle, more scattered light can be detected. It is effectively used in measurements, and measurement sensitivity is significantly improved.

;り散乱光全党検出素子で直接受光せずに、リング状プ
リズムの円筒面で受光し平面の出射面で光検出素子に導
入しているので、多数の検出素子は一平面上に配@する
ことができる。従ってたとえば1枚のSI基板上に短冊
状に分割形成した半導体フ浦トセンサ等勿用いることが
できるので、fgt出素子の製作費用が低減できる。さ
らに各扇形状検出ニレメンl−H共通の基板の上に同時
に同一条件で製作できるので、そろった特性のものが得
易り、(!ルの円周角方向の散乱光の強度分布全検出す
る目的上非常に好筐しく9粒度分布測定の精度向上にも
役立つ。
The scattered light is not directly received by the all-part detection element, but is received by the cylindrical surface of the ring-shaped prism and introduced into the photodetection element by the flat exit surface, so many detection elements are arranged on one plane. can do. Therefore, it is possible to use, for example, a semiconductor photo sensor that is divided into strips on a single SI substrate, and the manufacturing cost of the fgt output element can be reduced. Furthermore, since each fan-shaped detection element can be manufactured simultaneously on the same substrate and under the same conditions, it is easy to obtain products with uniform characteristics. It is very useful for this purpose and is also useful for improving the accuracy of particle size distribution measurements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の散乱光構出装置!!ta?応用した
実施例を示す図、第2図は第1図の装置に用いられる光
険出素子群、第3図・第4図はリング状プリズムの実施
例図で第4図(a)は平面図、(b)に側断面図である
Figure 1 shows the scattered light composition device of this invention! ! Ta? A diagram showing an applied example, FIG. 2 is a group of light emitting elements used in the device of FIG. 1, FIGS. 3 and 4 are examples of a ring-shaped prism, and FIG. 4(a) is a plane view. Figure, (b) is a side sectional view.

Claims (3)

【特許請求の範囲】[Claims] (1)2つの同心円に囲まれた区域を等しい中心角で区
画した多数の短冊状の半導体光電変換素子より構成され
ていることを特徴とする散乱光検出装置。
(1) A scattered light detection device comprising a large number of strip-shaped semiconductor photoelectric conversion elements each having an area surrounded by two concentric circles divided at equal central angles.
(2)特許請求の範囲第1項において、円筒状内側面よ
り成る入射面と円錐状全反射面とを有するリング状プリ
ズムの出射面に前記半導体光電変換素子を配設したこと
を特徴とする散乱光検出装置。
(2) According to claim 1, the semiconductor photoelectric conversion element is arranged on the output surface of a ring-shaped prism having an entrance surface consisting of a cylindrical inner surface and a conical total reflection surface. Scattered light detection device.
(3)円筒状の光入射面と円錐状の全反射面と輪状の出
射面とを有するリング状プリズムより成る光検出用光学
素子。
(3) A photodetecting optical element comprising a ring-shaped prism having a cylindrical light entrance surface, a conical total reflection surface, and a ring-shaped exit surface.
JP62078861A 1987-03-31 1987-03-31 Scattered light detector Expired - Lifetime JPH0810191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62078861A JPH0810191B2 (en) 1987-03-31 1987-03-31 Scattered light detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62078861A JPH0810191B2 (en) 1987-03-31 1987-03-31 Scattered light detector

Publications (2)

Publication Number Publication Date
JPS63243840A true JPS63243840A (en) 1988-10-11
JPH0810191B2 JPH0810191B2 (en) 1996-01-31

Family

ID=13673608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62078861A Expired - Lifetime JPH0810191B2 (en) 1987-03-31 1987-03-31 Scattered light detector

Country Status (1)

Country Link
JP (1) JPH0810191B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636308B1 (en) 1997-11-19 2003-10-21 Otsuka Electronics Co., Ltd. Apparatus for measuring characteristics of optical angle
JP2005279328A (en) * 2004-03-26 2005-10-13 Hamamatsu Photonics Kk Determination method for finely pulverizing condition, determination device, production method for particulate and production device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196605A (en) * 1984-03-19 1985-10-05 Nippon Kogaku Kk <Nikon> Scattering-light detecting optical device
JPS6169144U (en) * 1984-10-11 1986-05-12

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196605A (en) * 1984-03-19 1985-10-05 Nippon Kogaku Kk <Nikon> Scattering-light detecting optical device
JPS6169144U (en) * 1984-10-11 1986-05-12

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636308B1 (en) 1997-11-19 2003-10-21 Otsuka Electronics Co., Ltd. Apparatus for measuring characteristics of optical angle
JP2005279328A (en) * 2004-03-26 2005-10-13 Hamamatsu Photonics Kk Determination method for finely pulverizing condition, determination device, production method for particulate and production device

Also Published As

Publication number Publication date
JPH0810191B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
Gayet et al. A new airborne polar Nephelometer for the measurements of optical and microphysical cloud properties. Part I: Theoretical design
US3822098A (en) Multispectral sensor means measuring depolarized radiation
US3835315A (en) System for determining parameters of a particle by radiant energy scattering techniques
US3770351A (en) Optical analyzer for microparticles
EP0485817B1 (en) Apparatus for measuring a particle size distribution
US4140395A (en) Electro-optical method and system for in situ measurements of particle size and distribution
JP4455730B2 (en) Method and apparatus for particle evaluation using multi-scan beam reflectivity
US4081215A (en) Stable two-channel, single-filter spectrometer
US4606636A (en) Optical apparatus for identifying the individual multiparametric properties of particles or bodies in a continuous flow
US3873204A (en) Optical extinction photoanalysis apparatus for small particles
JP2825644B2 (en) Particle size analysis method and apparatus
US3975098A (en) Spectrofluorimeter
US6252658B1 (en) Particle size distribution measuring apparatus
Szymanski et al. A new method for the simultaneous measurement of aerosol particle size, complex refractive index and particle density
US5229839A (en) Method and apparatus for measuring the size of a single fine particle and the size distribution of fine particles
JPH038686B2 (en)
US4575244A (en) Detector system for measuring the intensity of a radiation scattered at a predetermined angle from a sample irradiated at a specified angle of incidence
JP2000230901A (en) Optical unit
JPH09189653A (en) Optical axis adjusting method for use in scattering type particle size distribution measuring device
JP2005062192A (en) Method for obtaining angle spectrum, gonio spectrophotometer and method for inspecting product during machining
JPS63243840A (en) Scattered light detector
JPS6151569A (en) Cell identifying device
JP2626009B2 (en) Particle size distribution analyzer
JP2879798B2 (en) Particle detector for use in particle size detector
JP2749387B2 (en) High-sensitivity micro-multi-wavelength spectrometer