JPS6324378Y2 - - Google Patents

Info

Publication number
JPS6324378Y2
JPS6324378Y2 JP5818285U JP5818285U JPS6324378Y2 JP S6324378 Y2 JPS6324378 Y2 JP S6324378Y2 JP 5818285 U JP5818285 U JP 5818285U JP 5818285 U JP5818285 U JP 5818285U JP S6324378 Y2 JPS6324378 Y2 JP S6324378Y2
Authority
JP
Japan
Prior art keywords
solid
temperature
solids
cooling
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5818285U
Other languages
Japanese (ja)
Other versions
JPS60181579U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5818285U priority Critical patent/JPS60181579U/en
Publication of JPS60181579U publication Critical patent/JPS60181579U/en
Application granted granted Critical
Publication of JPS6324378Y2 publication Critical patent/JPS6324378Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Furnace Details (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、焼結鉱、灼熱コークスなどの高温固
体を閉ループで連続的に冷却する装置に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an apparatus for continuously cooling high-temperature solids such as sintered ore and scorching coke in a closed loop.

〔従来の技術〕[Conventional technology]

焼結鉱、灼熱コークスなどの高温固体の取扱い
を容易にするために、従来は高温固体を密閉容器
内に入れ不活性ガスなどの冷却用気体を通して冷
却する方式が一般に採用されている。
In order to facilitate the handling of high-temperature solids such as sintered ore and scorching coke, conventionally a method has been generally adopted in which the high-temperature solids are placed in a closed container and cooled by passing a cooling gas such as an inert gas.

また特開昭52−6153号公報には、溶融炉滓を対
象とした向流接触の熱交換器と、通常の熱交換器
および集じん器から構成されるクローズドシステ
ムの熱回収方法が記載されている。すなわち立塔
の上端部に設けられた炉滓鍋より細粒化装置に向
けて高温の溶融炉滓が流下すると、この溶融炉滓
は細粒化されて落下するとともに立塔の下部より
送風機により連続的に送入される冷却気体と向流
接触しながら冷却・固化し、一方、高温の冷却気
体は立塔上部より抜き出されて集塵機により除塵
された後、熱交換器へ送られ熱媒体を加熱して熱
を回収するとともに、高温になつた冷却気体を冷
却し、この冷却気体は送風機により再度立塔の下
部へ送入循環されることを特徴とする溶融炉滓よ
り熱を回収する方法が記載されている。
Furthermore, JP-A No. 52-6153 describes a heat recovery method for a closed system consisting of a countercurrent contact heat exchanger for melting furnace slag, a normal heat exchanger, and a dust collector. ing. In other words, when high-temperature melting furnace slag flows down from the furnace slag pan installed at the upper end of the tower toward the pulverizing device, the melting furnace slag is finely granulated and falls, and is then transported from the bottom of the tower by the blower. The cooling gas is cooled and solidified while being in countercurrent contact with the cooling gas that is continuously fed in. On the other hand, the high-temperature cooling gas is extracted from the top of the tower and removed by a dust collector, and then sent to the heat exchanger and used as a heat medium. This method is characterized in that the cooling gas which has reached a high temperature is cooled, and this cooling gas is sent back to the lower part of the tower and circulated by the blower.Heat is recovered from the melting furnace slag. The method is described.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかし前述の不活性ガスなどの冷却用気体を通
して冷却する従来方式においては、高温固体と接
触した後の高温含じん気体を高性能でかつ安価に
除じん処理できる高温用集じん装置が開発されて
いないので、高温気体の熱回収を行う場合は発熱
ボイラのチユーブやフアンなどを激しく摩耗さ
せ、さらに排ガス放出に伴い大気汚染などの公害
が発生するなどの不都合点があつた。
However, in the conventional method of cooling through a cooling gas such as an inert gas mentioned above, a high-temperature dust collector has not been developed that can efficiently and inexpensively remove high-temperature dust-containing gas after it has come into contact with a high-temperature solid. Therefore, when recovering heat from high-temperature gases, the tubes and fans of the heat-generating boiler are subject to severe wear, and the release of exhaust gas causes pollution such as air pollution.

また特開昭52−6153号公報記載の方法において
は、溶融炉滓を細粒化装置で細粒化して落下させ
るものであるから、細粒化炉滓の滞留時間を調節
するのが困難で、細粒化炉滓の温度制御を行うの
が難しいという不都合点がある。
In addition, in the method described in JP-A-52-6153, the melting furnace slag is finely granulated using a pulverizing device and then dropped, so it is difficult to adjust the residence time of the pulverizing furnace slag. However, there is a disadvantage that it is difficult to control the temperature of the refining furnace slag.

なお特開昭49−59730号公報には、サーモスタ
ツトによつて調節モータのスライダを作動させて
砂温度を調節する構成が記載されているが、直交
接触の熱交換器に関するものであり、冷却用流体
は使い捨て(オープンサイクル)である。
Note that JP-A No. 49-59730 describes a configuration in which the sand temperature is adjusted by operating a slider of an adjustment motor using a thermostat, but this is related to a cross-contact heat exchanger and is not used for cooling. The fluid used is disposable (open cycle).

本考案の上記の問題点を解決するためになされ
たもので、熱回収部や循環フアンなどの材料を保
護し、かつ大気汚染などの二次公害の発生のない
高温固体の冷却装置の提供を目的とするものであ
る。
This invention was developed to solve the above-mentioned problems of the present invention, and aims to provide a cooling device for high-temperature solids that protects materials such as the heat recovery section and circulation fan, and does not cause secondary pollution such as air pollution. This is the purpose.

〔問題点を解決するための手段〕[Means for solving problems]

本考案の高温固体の冷却装置を、図面を参照し
て説明すれば、装置本体1内に、高温固体2の移
動充填層4を有しこの移動充填層内に冷却用気体
を通して冷却するようにした移動層式固体冷却部
5を設け、この固体冷却部5の下流側に、耐熱性
粒塊状ろ過材6からなる集じん層8を有する集じ
ん部10を同一装置本体内に設け、この集じん部
10の下流側の清浄気体ダクト11に熱回収部1
5を設け、さらにこの熱回収部15を循環フアン
16を備えた循環ダクト17を介して前記移動層
式固体冷却部5に接続し、前記移動充填層4の上
端に固体連続供給装置20を設け、移動充填層の
下端に固体連続排出装置21を設け、また集じん
層8の上端にろ過材供給装置22を設け、集じん
層の下端にろ過材排出装置23を設け、さらに前
記循環ダクト17内に回収固体温度制御装置25
を設けて、固体連続排出装置21内の固体温度に
より固体連続排出装置の回転数を調節して被冷却
固体の流量を調節し、かつ循環ダクト17内のダ
ンパを開閉・調節して冷却用気体循環量を調節す
るようにして構成されている。
The cooling device for high-temperature solids of the present invention will be described with reference to the drawings. The device body 1 includes a moving packed bed 4 of high-temperature solids 2, and cooling gas is passed through the moving packed bed. A moving bed type solid cooling section 5 is provided, and a dust collection section 10 having a dust collection layer 8 made of heat resistant granular filter material 6 is provided in the same apparatus main body on the downstream side of this solid cooling section 5. A heat recovery section 1 is installed in the clean gas duct 11 downstream of the dust section 10.
Further, this heat recovery section 15 is connected to the moving bed type solid cooling section 5 via a circulation duct 17 equipped with a circulation fan 16, and a solid continuous supply device 20 is provided at the upper end of the moving packed bed 4. , a solid continuous discharge device 21 is provided at the lower end of the moving packed bed, a filter material supply device 22 is provided at the upper end of the dust collection layer 8, a filter material discharge device 23 is provided at the lower end of the dust collection layer, and the circulation duct 17 Recovered solids temperature control device 25
The rotating speed of the solid continuous discharge device is adjusted according to the solid temperature in the solid continuous discharge device 21 to adjust the flow rate of the solid to be cooled, and the damper in the circulation duct 17 is opened/closed and adjusted to release the cooling gas. It is configured to adjust the amount of circulation.

〔作用〕[Effect]

高温の粒塊状固体2は冷却用気体により連続的
に冷却され、冷却用気体は加熱されるとともに、
高温固体の微粉からなるダストを同伴する。この
高温含じん気体は集じん部10に導入されて除じ
んされた後、高温清浄気体は熱回収部15で熱回
収されて冷却され、この冷却気体は循環フアン1
6により移動層式固体冷却部5に循環されて、再
び高温固体の冷却に使用される。
The high temperature granular solid 2 is continuously cooled by the cooling gas, and while the cooling gas is heated,
It entrains dust consisting of fine powder of hot solids. After this high-temperature dust-containing gas is introduced into the dust collection section 10 and removed, the high-temperature clean gas is cooled by recovering heat in the heat recovery section 15.
6, it is circulated to the moving bed type solid cooling section 5 and used again to cool the high temperature solid.

一方、ダストの付着した粒塊状ろ過材は集じん
部下部から連続的または断続的に抜き出され、ろ
過材・ダスト分離装置24でろ過材とダストとが
分離される。分離された粒塊状ろ過材はろ過材供
給装置22に高所移送されて循環再使用され、分
離されたダストはそのまま回収されるか、または
固体連続排出装置21から排出される冷却固体に
混合されて回収される。
On the other hand, the granular filter medium with dust attached thereto is continuously or intermittently extracted from the lower part of the dust collecting section, and the filter medium and dust are separated by the filter medium/dust separator 24. The separated granular filter media is transported to a high place to the filter media supply device 22 and recycled for reuse, and the separated dust is collected as is or mixed with the cooled solid discharged from the continuous solid discharge device 21. will be collected.

また固体連続排出装置21内の固体温度により
固体連続排出装置の回転数を調節して被冷却固体
の流量を調節し、かつ循環ダクト17内のダンパ
を開閉・調節して冷却用気体循環量を調節するこ
とにより、回収固体の温度が制御される。
In addition, the rotation speed of the solid continuous discharge device is adjusted according to the solid temperature in the solid continuous discharge device 21 to adjust the flow rate of the solid to be cooled, and the damper in the circulation duct 17 is opened/closed and adjusted to adjust the amount of cooling gas circulation. The adjustment controls the temperature of the recovered solids.

〔実施例〕〔Example〕

以下、本考案の実施例を図面に基づいて説明す
る。1は装置本体で、この装置本体1内に焼結
鉱、灼熱コークスなどからなる粒塊状の高温固体
2をルーバ、金網、多孔板などからなる支持体3
間に連続的に移動可能にパネル状または層状に充
填・保持させてなる移動充填層4を設けて移動層
式固体冷却部5を形成する。また装置本体1内に
おいて、移動層式固体冷却部5の下流側に砂、砂
利、セラミツクス、鉱石、耐火物などの粒塊状ろ
過材6をルーバ、金網、多孔板などからなる支持
体7間に連続的または断続的に移動可能にパネル
状または層状に充填・保持させてなる集じん層8
を設けて乾式のろ過集じん部(以下、単に集じん
部という)10を形成する。移動充填層4および
集じん層8はガス流に対して直角方向またはほぼ
直角方向に設けられる。なお集じん層は1層に限
ることなく、複数の集じん層を隣接して設ける場
合もある。前記集じん部10の下流側の清浄気体
ダクト11に、水供給管12および温水・蒸気発
生管13からなるチユーブ14を設けて熱回収部
15を形成し、さらにこの熱回収部15の出口を
循環フアン16を備えた循環ダクト17を介して
前記移動層式固体冷却部5の冷却用気体入口18
に接続して閉ループ、すなわちクローズドシステ
ムを構成する。
Hereinafter, embodiments of the present invention will be described based on the drawings. Reference numeral 1 denotes an apparatus main body, in which a granular high-temperature solid 2 made of sintered ore, scorching coke, etc. is supported by a support 3 made of a louver, a wire mesh, a perforated plate, etc.
A moving bed solid cooling unit 5 is formed by providing a moving packed bed 4 in between which is continuously movably filled and held in a panel or layered manner. In addition, in the device main body 1, a granular filter material 6 such as sand, gravel, ceramics, ore, or refractory material is placed between supports 7 made of louvers, wire mesh, perforated plates, etc. on the downstream side of the moving bed solid cooling section 5. A dust collection layer 8 that is continuously or intermittently movably filled and held in a panel or layered manner.
is provided to form a dry filtration and dust collection section (hereinafter simply referred to as a dust collection section) 10. The moving packed bed 4 and the dust collection layer 8 are arranged perpendicularly or substantially perpendicularly to the gas flow. Note that the number of dust collection layers is not limited to one layer, and a plurality of dust collection layers may be provided adjacently. A tube 14 consisting of a water supply pipe 12 and a hot water/steam generation pipe 13 is provided in the clean gas duct 11 on the downstream side of the dust collecting section 10 to form a heat recovery section 15, and an outlet of this heat recovery section 15 is further provided. A cooling gas inlet 18 of the moving bed solid cooling unit 5 is connected to the moving bed solid cooling unit 5 through a circulation duct 17 equipped with a circulation fan 16.
to form a closed loop, that is, a closed system.

前記移動充填層4の上端には固体連続供給装置
20が設けられ、移動充填層4の下端には固体連
続排出装置21が設けられる。また集じん層8の
上端にはろ過材供給装置22が設けられ、集じん
層8の下端にはろ過材排出装置23を介して振動
篩などのろ過材・ダスト分離装置24が接続さ
れ、このろ過材・ダスト分離装置24のろ過材出
口はバケツトエレベータまたは加圧気体により高
所移送する構造のものなどからなる移送機を介し
て前記ろ過材供給装置22に接続されて、連続的
または断続的に抜き出されたろ過材とダストとを
分離した後、ろ過材を高所移送して循環再使用で
きるように構成されている。また前記循環ダクト
内には回収固体温度制御装置25が設けられて、
固体連続排出装置21内の固体温度により固体連
続排出装置21の回転数などを調節して被冷却固
体の流量を調節し、かつ循環ダクト内のダンパな
どを開閉・調節して冷却用気体循環量を調節する
ことによつて、回収固体の温度を制御できるよう
に構成されている。26は温度計、27は空気取
入口、28はこの空気取入口内に設けられたダン
パで、冷却用空気を補給して冷却用温度調節およ
びリサイクルリーク量の補給を行うことができる
ようになつている。
A solid continuous supply device 20 is installed at the upper end of the moving packed bed 4, and a solid continuous discharge device 21 is installed at the lower end of the moving packed bed 4. Further, a filter material supply device 22 is provided at the upper end of the dust collection layer 8, and a filter material/dust separation device 24 such as a vibrating sieve is connected to the lower end of the dust collection layer 8 via a filter material discharge device 23. The filter media outlet of the filter media/dust separator 24 is connected to the filter media supply device 22 via a bucket elevator or a transfer device configured to transport high places using pressurized gas, and is connected to the filter media supply device 22 continuously or intermittently. After separating the filter material and dust that have been extracted, the filter material is transported to a high place and can be recycled and reused. Further, a recovered solid temperature control device 25 is provided in the circulation duct,
The rotation speed of the solid continuous discharge device 21 is adjusted according to the solid temperature in the solid continuous discharge device 21 to adjust the flow rate of the solid to be cooled, and the amount of cooling gas circulation is adjusted by opening/closing/adjusting the damper in the circulation duct. The structure is such that the temperature of the recovered solid can be controlled by adjusting the temperature. 26 is a thermometer, 27 is an air intake port, and 28 is a damper provided in this air intake port, which allows cooling air to be supplied to adjust the cooling temperature and replenish the amount of recycled leakage. ing.

上記のように構成された本考案の装置におい
て、高温(たとえば焼結鉱、灼熱コークスの場合
は600〜900℃前後)の粒塊状固体2は冷却用気体
により連続的に170℃前後に冷却され、冷却用気
体は120℃前後から600〜900℃前後に加熱される
とともに、高温固体の微粉からなるダストを同伴
する。この場合のダスト含有量は一例として数十
g/Nm3である。この高温含じん気体は集じん部
10に導入されてダスト濃度数十mg/Nm3に除じ
んされた後、高温清浄気体は熱回収部15で熱回
収されて120℃前後に冷却され、この冷却気体は
循環フアン16により移動層式固体冷却部5に循
環されて、再び高温固体の冷却に使用される。な
お各部の温度、ダスト濃度は一例として示したも
ので、取り扱う高温固体の種類などにより異な
る。
In the device of the present invention configured as described above, the granular solid 2 at a high temperature (for example, around 600 to 900°C in the case of sintered ore or scorching coke) is continuously cooled to around 170°C by the cooling gas. The cooling gas is heated from around 120°C to around 600-900°C, and entrains dust consisting of fine powder of high-temperature solids. The dust content in this case is, for example, several tens of g/Nm 3 . This high-temperature dust-containing gas is introduced into the dust collecting section 10 and removed to a dust concentration of several tens of mg/ Nm3 , and then the high-temperature clean gas is heat-recovered in the heat recovery section 15 and cooled to around 120°C. The cooling gas is circulated to the moving bed solid cooling section 5 by the circulation fan 16 and used again to cool the high temperature solid. Note that the temperature and dust concentration of each part are shown as an example, and will vary depending on the type of high-temperature solid being handled.

一方、ダストの付着した粒塊状ろ過材は集じん
部下部から連続的または断続的に抜き出され、ろ
過材・ダスト分離装置24でろ過材とダストとが
分離される。分離された粒塊状ろ過材はろ過材供
給装置22に高所移送されて循環再使用され、分
離されたダストはそのまま回収されるか、または
固体連続排出装置21から排出される冷却固体に
混合されて回収される。
On the other hand, the granular filter medium with dust attached thereto is continuously or intermittently extracted from the lower part of the dust collecting section, and the filter medium and dust are separated by the filter medium/dust separator 24. The separated granular filter media are transferred to a high place to the filter media supply device 22 and recycled and reused, and the separated dust is collected as is or mixed with the cooled solid discharged from the continuous solid discharge device 21. will be collected.

〔考案の効果〕[Effect of idea]

本考案の高温固体の冷却装置は上記のように、
集じん部でダストを捕集して回収するようにして
系全体を閉ループに構成されているから、二次公
害の発生のおそれはなく、しかも集じん部下流の
熱回収部、循環フアンなどのダストによる摩耗を
防止して材料を保護することができる。また高温
固体は連続的に冷却されるので作業性がよい上
に、層厚、滞留時間を適当に設計することがで
き、ダンパコントロールにより冷却固体の温度制
御を容易に行うことができる。また加熱された気
体の顕熱を回収することができ、高温下で高性能
集じんができるので、廃熱ボイラの効率を高くす
ることができ、ボイラがコンパクトになり、さら
に固体冷却部と集じん部を同一ケーシング内に納
めることによつて、装置全体をコンパクトにする
ことができるなどの効果を有している。また前述
の特開昭52−6153号公報、特開昭49−59730号公
報記載の装置と比較して、本考案の装置において
は、熱交換器が直交接触であるので、熱交換用流
体量を少なくすることができ、このため流体の回
収温度を高くすることができ、また熱交換器と集
じん器を一体化しているので、装置がコンパクト
であるという効果がある。
As mentioned above, the high-temperature solid cooling device of the present invention has the following features:
The entire system is constructed in a closed loop, with the dust collected and recovered in the dust collection section, so there is no risk of secondary pollution. It is possible to protect the material by preventing wear caused by dust. In addition, since the high-temperature solid is continuously cooled, workability is good, and the layer thickness and residence time can be appropriately designed, and the temperature of the cooled solid can be easily controlled by damper control. In addition, the sensible heat of the heated gas can be recovered and high-performance dust collection can be performed at high temperatures, making it possible to increase the efficiency of the waste heat boiler, making the boiler more compact, and further integrating the solid cooling section and collector. By housing the dust part in the same casing, the entire device can be made more compact. Furthermore, compared to the devices described in JP-A No. 52-6153 and JP-A-49-59730, the heat exchanger of the present invention is of orthogonal contact, so the amount of heat exchange fluid is Since the heat exchanger and the dust collector are integrated, the apparatus has the advantage of being compact.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の高温固体の冷却装置の一実施例
を示す系統的説明図である。 1……装置本体、2……高温固体、3……支持
体、4……移動充填層、5……移動層式固体冷却
部、6……粒塊状ろ過材、7……支持体、8……
集じん層、10……集じん部、11……清浄気体
ダクト、15……熱回収部、16……循環フア
ン、17……循環ダクト、20……固体連続供給
装置、21……固体連続排出装置、22……ろ過
材供給装置、23……ろ過材排出装置、24……
ろ過材・ダスト分離装置、25……回収固体温度
制御装置、27……空気取入口。
The drawing is a systematic explanatory diagram showing an embodiment of the high-temperature solid cooling device of the present invention. DESCRIPTION OF SYMBOLS 1... Apparatus body, 2... High-temperature solid, 3... Support, 4... Moving packed bed, 5... Moving bed type solid cooling section, 6... Granular filter medium, 7... Support, 8 ……
Dust collection layer, 10...Dust collection section, 11...Clean gas duct, 15...Heat recovery section, 16...Circulation fan, 17...Circulation duct, 20...Solid continuous supply device, 21...Solid continuous Discharging device, 22...Filtering material supplying device, 23...Filtering material discharging device, 24...
Filter material/dust separation device, 25...Recovery solid temperature control device, 27...Air intake port.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 装置本体内に、高温固体の移動充填層を有しこ
の移動充填層内に冷却用気体を通して冷却するよ
うにした移動層式固体冷却部を設け、この固体冷
却部の下流側に、耐熱性粒塊状ろ過材からなる集
じん層を有する集じん部を同一装置本体内に設
け、この集じん部の下流側の清浄気体ダクトに熱
回収部を設け、さらにこの熱回収部を循環フアン
を備えた循環ダクトを介して前記移動層式固体冷
却部に接続し、前記移動充填層の上端に固体連続
供給装置を設け、移動充填層の下端に固体連続排
出装置を設け、また集じん層の上端にろ過材供給
装置を設け、集じん層の下端にろ過材排出装置を
設け、さらに前記循環ダクト内に回収固体温度制
御装置を設けて、固体連続排出装置内の固体温度
により固体連続排出装置の回転数を調節して被冷
却固体の流量を調節し、かつ循環ダクト内のダン
パを開閉・調節して冷却用気体循環量を調節する
ようにしたことを特徴とする高温固体の冷却装
置。
A moving bed type solid cooling section is provided in the main body of the device, which has a moving packed bed of high-temperature solids, and cooling gas is passed through the moving packed bed. A dust collection section having a dust collection layer made of bulk filter material is provided in the same device main body, a heat recovery section is provided in the clean gas duct downstream of this dust collection section, and this heat recovery section is further equipped with a circulation fan. It is connected to the moving bed type solid cooling section through a circulation duct, a solid continuous supply device is provided at the upper end of the moving packed bed, a solid continuous discharge device is provided at the lower end of the moving packed bed, and a solid continuous discharge device is provided at the lower end of the moving packed bed. A filter material supply device is provided, a filter material discharge device is provided at the lower end of the dust collection layer, and a recovered solids temperature control device is provided in the circulation duct to control the rotation of the solids continuous discharge device depending on the solid temperature in the solids continuous discharge device. 1. A cooling device for high-temperature solids, characterized in that the flow rate of the solid to be cooled is adjusted by adjusting the number of solids to be cooled, and the amount of circulating cooling gas is adjusted by opening, closing, and adjusting a damper in a circulation duct.
JP5818285U 1985-04-18 1985-04-18 High temperature solid cooling equipment Granted JPS60181579U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5818285U JPS60181579U (en) 1985-04-18 1985-04-18 High temperature solid cooling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5818285U JPS60181579U (en) 1985-04-18 1985-04-18 High temperature solid cooling equipment

Publications (2)

Publication Number Publication Date
JPS60181579U JPS60181579U (en) 1985-12-02
JPS6324378Y2 true JPS6324378Y2 (en) 1988-07-04

Family

ID=30583444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5818285U Granted JPS60181579U (en) 1985-04-18 1985-04-18 High temperature solid cooling equipment

Country Status (1)

Country Link
JP (1) JPS60181579U (en)

Also Published As

Publication number Publication date
JPS60181579U (en) 1985-12-02

Similar Documents

Publication Publication Date Title
SU1314951A3 (en) Device for sand recovery from casting cores and moulds
JPS63233204A (en) Fluidized bed device
JPS6324378Y2 (en)
JPS593677B2 (en) You can't help it.
JPS6214754B2 (en)
FI93143B (en) Method and apparatus for equalizing the temperature of hot gases
JP3218395B2 (en) Apparatus and method for separating solid matter from gas
JP3764578B2 (en) Waste carbonization pyrolysis melting combustion equipment
JPS58170515A (en) Apparatus for collecting dust and recovering heat from converter waste gas
JP3977509B2 (en) Char cooling device recovered by solid-gas separator
SU1083925A3 (en) Apparatus for heat treatment of solid aggregate material with gas flow
JPH0111289Y2 (en)
US4788917A (en) Shaft furnace bypass system
JPS6040574Y2 (en) Dry dust collection and heat recovery equipment for converter exhaust gas
JPH0739909B2 (en) Dust cooling system for melting furnace
JPS6241555B2 (en)
JPS61122141A (en) Cement waste heat collecting apparatus
JPS5719011A (en) Dusting apparatus for waste gas of incineration of heavy oil ash
JP2019123641A (en) Exhaust gas-treating device
JP2001129338A (en) Dust collector of exhaust gas
KR940005048Y1 (en) Apparatus for recovering disabled heat using solid particle
JP2002066237A (en) Fly ash collector
JPS59105817A (en) Dust collection apparatus for waste heat recovery
JPS6150649B2 (en)
JPS6029658B2 (en) Burnt ingot heat recovery equipment