JPS63243745A - Chemically response semiconductor sensor - Google Patents

Chemically response semiconductor sensor

Info

Publication number
JPS63243745A
JPS63243745A JP62076069A JP7606987A JPS63243745A JP S63243745 A JPS63243745 A JP S63243745A JP 62076069 A JP62076069 A JP 62076069A JP 7606987 A JP7606987 A JP 7606987A JP S63243745 A JPS63243745 A JP S63243745A
Authority
JP
Japan
Prior art keywords
film
films
insulating film
sensitive
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62076069A
Other languages
Japanese (ja)
Inventor
Akihiko Mochizuki
望月 明彦
Hideyo Iida
英世 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP62076069A priority Critical patent/JPS63243745A/en
Publication of JPS63243745A publication Critical patent/JPS63243745A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To prevent the adsorption of impurities on the interface of laminated films, by forming a semiconductor film, an insulating film and a chemically response film on an electrode in a closed system. CONSTITUTION:Comb-shaped source and drain electrodes 2 and 3 are formed on a glass substrate 1. These electrodes are covered, for example, with a hydrogenated amorphous semiconductor film 4 and a hydrogen-ion-response insulating film 5 of a silicon nitride membrane which are laminated by a glow discharge method. An epoxy resin film 6 is formed on the film 5. Since the films 4, 5 are continuously formed in a closed system by vapor-phase reaction and no photoetching technique is used, no harmful impurity is present on the surfaces of the films. Therefore, it is possible to provide a sensor which is free from decrease in withstand voltage and has a decreased drift of drain current.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、化学的感応性半導体センサーに係り、特に非
晶質半導体を用いた電界効果型の化学的感応性半導体セ
ンサーに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a chemically sensitive semiconductor sensor, and more particularly to a field effect type chemically sensitive semiconductor sensor using an amorphous semiconductor.

従来の技術 近年半導体の電界効果を利用した化学的感応性センサー
が溶液中のイオンを検知するために用いられている。こ
のようなセンサーは、半導体表面と溶液の界面に生じる
電界の変化に応じて半導体表面近傍の電導度が変化する
ことを利用したもので、イオン感応性電界効果トランジ
スタ(以下rsFETと記す)と呼ばれ、イオンセンサ
ー、バイオセンサーとして溶液中の化学成分測定用素子
に利用されている。
BACKGROUND OF THE INVENTION In recent years, chemically sensitive sensors that utilize the field effect of semiconductors have been used to detect ions in solutions. Such a sensor utilizes the fact that the conductivity near the semiconductor surface changes in response to changes in the electric field generated at the interface between the semiconductor surface and the solution, and is called an ion-sensitive field effect transistor (hereinafter referred to as rsFET). It is used as an element for measuring chemical components in solutions as an ion sensor or biosensor.

このl5FETには単結晶シリコン、アモルファスシリ
コンを用いたものがあり、単結晶シリコンを用いたl5
FETの構造は、第5図に示すように、シリコン単結晶
aに各種成分のドーピングによりチャンネル層すを挾ん
だ一対のソース電極C、ドレイン電極dを形成し、つい
でチャンネルlbO上にSiO2の絶縁体層e、及びS
ixNy 、 TazOs等の絶縁体層fを順次設け、
さらにこの上に特定イオンに悪名するイオン感応膜gを
設けたものである。
There are 15FETs using single crystal silicon and amorphous silicon, and 15FETs using single crystal silicon.
As shown in Fig. 5, the structure of the FET is to form a pair of source electrodes C and drain electrodes d with a channel layer in between by doping silicon single crystal a with various components, and then to form a pair of source electrodes C and drain electrodes d on the channel layer lbO. Insulator layers e and S
Insulator layers f such as ixNy and TazOs are sequentially provided,
Furthermore, an ion-sensitive membrane g, which is notorious for specific ions, is provided on top of this.

一方、アモルファスシリコンを用いたl5FETは、第
6図に示すようにポリアミド等の絶縁性フィルム基板り
上にプラズマCVD等の方法によって基板全面にP型又
はノンドープ型のアモルファスシリコン膜を形成し、通
常のフォトエンチング技法(フォトレジスト膜形成、マ
スク設置、露光、現像、エツチング又はドーピング、レ
ジスト膜剥離の一連の工程)によってパターンを形成し
、このパターンをアモルファスシリコン半導体79 i
とする。
On the other hand, 15FETs using amorphous silicon are manufactured by forming a P-type or non-doped amorphous silicon film on the entire surface of an insulating film substrate made of polyamide or the like using a method such as plasma CVD, as shown in Figure 6. A pattern is formed using the photo-etching technique (a series of steps of photoresist film formation, mask installation, exposure, development, etching or doping, and resist film peeling), and this pattern is applied to an amorphous silicon semiconductor 79i.
shall be.

次いでこのアモルファスシリコン半導体層上にフォスフ
インをドープしたアモルファスシリコン膜からなるn型
アモルファスシリコン膜を全面に形成し、これを上記フ
ォトエツチング技法によってエンチングしてソースNj
3 ドレインNkを形成し、さらに金属を全面に蒸着し
て上記と同様のフォトエツチング法によりソース電極j
゛、ドレイン電極k”を形成する。そしてプラズマCV
D 、スバタリング等の手段によってSing膜12 
、 SixNy膜mの絶縁膜を順次形成する。このSi
xNy膜mは水素イオンに惑応することができるが、さ
らにその上に他の特定化学成分に惑応するイオン感応性
膜nを被覆してその該当する化学成分に感応させること
ができる。
Next, an n-type amorphous silicon film made of an amorphous silicon film doped with phosphine is formed on the entire surface of the amorphous silicon semiconductor layer, and this is etched using the photoetching technique described above to form the source Nj.
3 After forming the drain Nk, metal is further deposited on the entire surface and the source electrode j is formed using the same photo-etching method as above.
゛, drain electrode k'' is formed. Then, plasma CV
D, Sing film 12 by means of sputtering etc.
, and insulating films of SixNy film m are sequentially formed. This Si
The xNy membrane m can be sensitive to hydrogen ions, and can be further coated with an ion-sensitive membrane n sensitive to other specific chemical components to make it sensitive to the corresponding chemical component.

このような構成のrsFETを溶液中に浸漬し、ソース
電極j゛、ドレイン電極に°間に電圧を印加した状態で
さらに溶液中に設けた比較電極との間にゲート電圧を印
加し、このゲート電圧を変化させると、ソース、ドレイ
ン間のチャンネル層に誘起されるキャリア濃度が変化し
、ソース、ドレイン間に流れる電流、すなわちドレイン
電流が変化する。
The rsFET having such a configuration is immersed in a solution, and a voltage is applied between the source electrode and the drain electrode, and a gate voltage is further applied between the comparison electrode provided in the solution, and this gate voltage is applied between the source and drain electrodes. When the voltage is changed, the carrier concentration induced in the channel layer between the source and drain changes, and the current flowing between the source and drain, that is, the drain current changes.

また、上記比較電極との間に印加した電圧を一定にした
状態で溶液中の上記イオン感応性膜に感応する化学成分
濃度が変化すると、実効ゲート電位が変化し、ドレイン
電流が変化する。このような現象を利用して溶液中の化
学成分濃度を検知する素子としてl5FETが使用され
、これはイオンセンサー、バイオセンサーとして知られ
ている。このl5FETはイオン感応性膜の代わりに酵
素固定膜や抗体等の有機分子膜等を使用すると、酵素や
抗原等の特定の化学成分濃度を検知することもできる。
Further, when the concentration of a chemical component in the solution that is sensitive to the ion-sensitive membrane changes while the voltage applied between the reference electrode and the reference electrode is kept constant, the effective gate potential changes and the drain current changes. An 15FET is used as an element that detects the concentration of chemical components in a solution by utilizing such a phenomenon, and is known as an ion sensor or a biosensor. This 15FET can also detect the concentration of specific chemical components such as enzymes and antigens by using an enzyme-immobilized membrane or an organic molecular membrane such as an antibody membrane instead of an ion-sensitive membrane.

発明が解決しようとする問題点 しかしながら、このようなセンサーは、半導体層と絶縁
膜との界面がセンサーの電気特性に大きな影響を持つた
め、上記のようなエツチング技法により半導体表面にフ
ォトレジスト膜の形成、そのIJ離や金、属膜の蒸着、
その剥離を行うと、これらの剥離の際にエツチング液に
曝されることになり、この作業を注意深く行っても半導
体層とこの上に形成される絶縁膜との界面に異物が吸着
されて汚染されることがある。また、作業を大気中で行
うため酸化による汚染もある。これらの原因により界面
の準位が形成されてl5FETの溶液中における耐電圧
が低くなるのみならず、ドレイン電流のドリフトが大き
くなり電気特性の劣化を来すという問題点があった。
Problems to be Solved by the Invention However, in such a sensor, since the interface between the semiconductor layer and the insulating film has a large effect on the electrical characteristics of the sensor, a photoresist film is formed on the semiconductor surface using the etching technique described above. formation, IJ separation and vapor deposition of gold and metal films,
When these layers are peeled off, they will be exposed to the etching solution, and even if this work is done carefully, foreign matter will be adsorbed to the interface between the semiconductor layer and the insulating film formed on it, resulting in contamination. It may be done. In addition, since the work is carried out in the atmosphere, there is also contamination due to oxidation. Due to these causes, interface levels are formed, which not only lowers the withstand voltage of the 15FET in a solution, but also increases the drift of the drain current, resulting in deterioration of electrical characteristics.

本発明の目的は、溶液中で使用したときに耐電圧が低く
なるようなことがなく、電流のドリフトを抑制すること
ができる化学的感応性半導体センサーを提供することに
ある。
An object of the present invention is to provide a chemically sensitive semiconductor sensor that does not have a low withstand voltage when used in a solution and can suppress current drift.

問題点を解決するための手段 本発明は、上記問題点を解決するために、絶縁性基板上
に少なくとも一対の導電性電極を設け、この導電性電極
表面上に非晶質半導体膜を設け、この非晶質半導体膜の
上に絶縁膜を介した化学的感応性膜又は絶縁膜兼用の化
学的感応性膜を設けた構造を存する半導体センサーにお
いて、上記半導体膜、絶縁膜、化学的感応性膜及び絶縁
膜兼用の化学的感応性膜を閉鎖系においてそれぞれを生
成する原料ガスの気相処理による成膜化により形成した
ことを特徴とする化学的感応性半導体センサーを提供す
るものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides at least a pair of conductive electrodes on an insulating substrate, and provides an amorphous semiconductor film on the surface of the conductive electrodes. In a semiconductor sensor having a structure in which a chemically sensitive film is provided on the amorphous semiconductor film via an insulating film or a chemically sensitive film that also serves as an insulating film, the semiconductor film, the insulating film, and the chemically sensitive film are The present invention provides a chemically sensitive semiconductor sensor characterized in that a chemically sensitive film serving as both a film and an insulating film is formed by vapor phase processing of raw material gases that produce each in a closed system.

本発明においては、基板上にソース電極、ドレイン電極
を形成するが、この基板としてはガラス、セラミック等
が例示され、電極材料としてはCr、A l 、 Pt
、 Au、 Ag、 Ni等の金属やこれらの各金属を
成分にもつ合金等が用いられる。これらの金属はエレク
トロンビーム蒸着法等の従来知られている手段により成
膜化され、その厚さは500〜1000人が例示される
In the present invention, a source electrode and a drain electrode are formed on a substrate, and examples of this substrate include glass, ceramic, etc., and electrode materials include Cr, Al, and Pt.
, Au, Ag, Ni, and alloys containing these metals as components are used. These metals are formed into a film by conventionally known means such as electron beam evaporation, and the thickness thereof is exemplified as 500 to 1000.

また、半導体膜としてはアモルファスシリコン膜が挙げ
られるが、これには水素添加アモルファスシリコン膜、
フッ素添加アモルファスシリコン膜等が挙げられる。こ
れらは各種シラン化合物(例えばSiH4等)に水素を
混合したガス、フッ化珪素化合物(例えばSiF4等)
に水素を混合したガス等をクロー放電、プラズマCVD
等の各種CVD、スパッタリング、イオンブレーティン
グ等従来知られている成膜化法により気相処理すること
により得られる。これらのアモルファスシリコン膜の厚
さは700〜2500人が適当である。
In addition, examples of semiconductor films include amorphous silicon films, including hydrogenated amorphous silicon films,
Examples include a fluorine-doped amorphous silicon film. These include various silane compounds (e.g. SiH4, etc.) mixed with hydrogen, silicon fluoride compounds (e.g. SiF4, etc.)
Claw discharge, plasma CVD of gas mixed with hydrogen, etc.
It can be obtained by vapor phase treatment using conventionally known film forming methods such as CVD, sputtering, and ion blating. The appropriate thickness of these amorphous silicon films is 700 to 2,500.

また、イオン感応性膜は絶縁膜を兼用することもでき、
これには例えばSixNy、 SiOxNy、  A 
E 201、TazOs等の膜が挙げられ、これらは例
えばSixNyの場合、5iHaとN2の混合ガスをグ
ロー放電等による気相処理による成膜化により形成でき
、その厚さは2000〜4000人が例示される。これ
らは水素イオンに怒応し、これらを用いたl5FETは
溶液中のpHを検出することができる。
In addition, the ion-sensitive film can also be used as an insulating film.
This includes, for example, SixNy, SiOxNy, A
Films such as E 201 and TazOs can be mentioned. For example, in the case of SixNy, these can be formed by forming a film by vapor phase treatment using a glow discharge or the like using a mixed gas of 5iHa and N2, and the thickness is 2000 to 4000 people. be done. These react to hydrogen ions, and a 15FET using these can detect the pH in a solution.

また、これらの膜の上に下記左側の物質の膜を形成した
l5FETを用いると、対応する右側の特定化学成分の
濃度を検出することができる。
Furthermore, by using an 15FET in which a film of the substance shown on the left side below is formed on these films, it is possible to detect the concentration of the corresponding specific chemical component on the right side.

物質の塗料を塗布し、乾燥させる。Apply the paint of the substance and let it dry.

作用 半導体膜及びこの上に設けられる絶縁膜、化学的感応性
膜を閉鎖系、すなわち減圧あるいは真空を破らない状態
でこれらを生じる原料ガスの気相処理による成膜化によ
り形成したので、従来のフォトエツチング法による場合
のように形成した膜を剥離したり、エツチング液に浸漬
したりすることがないため、積層された膜の界面に特性
に悪影響を及ぼす不純物が吸着されて汚染されるような
ことを回避することができる。
The active semiconductor film, the insulating film provided thereon, and the chemically sensitive film are formed in a closed system, that is, by vapor phase processing of the raw material gases that generate them without breaking the reduced pressure or vacuum. Unlike the photo-etching method, the formed film is not peeled off or immersed in an etching solution, so there is no risk of contamination due to adsorption of impurities that adversely affect properties at the interface of the stacked films. This can be avoided.

実施例 次に本発明の実施例を第1図ないし第3図に基づいて説
明する。
Embodiment Next, an embodiment of the present invention will be explained based on FIGS. 1 to 3.

実施例1 第1図(イ)に示すように、絶縁性のガラス基板(コー
ニング社製)1の一生面にエレクトロンビーム薄着法に
よってCr(クロム)を約1000人の厚さに成膜し、
次いで従来用いられているフォトエンチング技法によっ
て線間隔10crm、長さ1flの櫛型状のソース電極
2、ドレイン電極3を互いに入り込むように形成し、さ
らにこれらの引き出し線2a、3aを形成し、その端部
にそれぞれ外部接点部2b、 3bを形成する。
Example 1 As shown in FIG. 1(A), a film of Cr (chromium) was formed to a thickness of about 1000 nm on the whole surface of an insulating glass substrate (manufactured by Corning Inc.) 1 by an electron beam thin deposition method.
Next, a comb-shaped source electrode 2 and a drain electrode 3 with a line spacing of 10 crm and a length of 1 fl are formed so as to penetrate into each other by a conventionally used photo-etching technique, and further, these lead lines 2a and 3a are formed. External contact portions 2b and 3b are formed at the ends thereof, respectively.

次いで第1図(ロ)に示すように斜線の部分、すなわち
上記ソース電極2、ドレイン電極3を覆う部分にSiH
4とN2とを体積比1:1に混合したガスを用いてグロ
ー放電法により厚さ1500人の水素添加アモルファス
膜からなるアモルファス半導体膜N4を形成する。
Next, as shown in FIG.
An amorphous semiconductor film N4 made of a hydrogenated amorphous film having a thickness of 1500 nm is formed by a glow discharge method using a gas containing a mixture of 4 and N2 at a volume ratio of 1:1.

次いで上記アモルファス半導体膜層4に重ねて、SiH
,を3体積%含むN2ガスを用いてグロー放電法により
3000人の厚さの窒化ケイ素膜からなる絶縁性膜兼用
水素イオン感応性膜5を形成する。
Next, the amorphous semiconductor film layer 4 is overlaid with SiH.
, is used to form an insulating and hydrogen ion sensitive film 5 made of a silicon nitride film with a thickness of 3,000 wafers by a glow discharge method using N2 gas containing 3% by volume of .

そして第1図(ハ)に示すように、上記ソース電極2、
ドレイン電極3の中央部及び上記外部接点部2b、3b
を除いてエポキシ樹脂塗料を塗布して樹脂膜6で覆い、
上記中央部に試料接触窓部7を形成する。
As shown in FIG. 1(c), the source electrode 2,
The central part of the drain electrode 3 and the external contact parts 2b, 3b
Apply epoxy resin paint except for and cover with resin film 6,
A sample contact window 7 is formed in the central portion.

このようにしてl5FET 8ができあがるが、これは
絶縁性膜兼用水素イオン感応性膜5を有するので、溶液
中の水素イオンに対して感応する、いわゆるpH惑応性
l5FETとして使用される。具体的には例えば第3図
に示すように、水槽9に収容した試料溶液10中に比較
電極11と上記で得られたl5FET8を相対して設け
、l5FET 8には第1図に示す外部接点部2b、3
bに電源12を接続してアモルファスシリコン半導体膜
層4に電流を流し、一方上記比較電極11と上記rsF
ET 8に電源13を接続し、ゲート電圧を印加できる
ようにする。なお、14はピコアンメータである。
In this way, the 15FET 8 is completed, and since it has the hydrogen ion-sensitive membrane 5 which also serves as an insulating film, it is used as a so-called pH-sensitive 15FET that is sensitive to hydrogen ions in a solution. Specifically, as shown in FIG. 3, for example, a reference electrode 11 and the above-obtained 15FET 8 are provided facing each other in a sample solution 10 housed in a water tank 9, and the 15FET 8 is provided with an external contact as shown in FIG. Part 2b, 3
A power supply 12 is connected to b, and a current is passed through the amorphous silicon semiconductor film layer 4, while the reference electrode 11 and the rsF
A power supply 13 is connected to the ET 8 so that a gate voltage can be applied. Note that 14 is a picoammeter.

このような回路構成で、電源13の電圧を変えるとアモ
ルファス半導体膜層4に流れるドレイン電流が変化する
が、この際試料溶液の水素イオン濃度、すなわちpl+
によりゲート電圧の電界が影響を受けこれを加味した実
効ゲート電圧とドレイン電流が相関関係にあるので、電
源13から印加する電圧を一定にすることによりpt+
と上記電流値の相関関係が得られ、これにより試料溶液
の任意のpHを測定することができる。
With such a circuit configuration, when the voltage of the power supply 13 is changed, the drain current flowing through the amorphous semiconductor film layer 4 changes, but at this time, the hydrogen ion concentration of the sample solution, that is, pl+
Since the electric field of the gate voltage is affected by , and there is a correlation between the effective gate voltage and the drain current that take this into account, by keeping the voltage applied from the power supply 13 constant, pt +
A correlation between the current value and the above current value is obtained, and thereby an arbitrary pH of the sample solution can be measured.

この際、本実施例のl5FETはアモルファス半導体膜
層及びその上に形成された絶縁膜兼用イオン恣応膜がい
ずれも閉鎖系、すなわち減圧あるいは真空を破らずに気
相反応により成膜され、不純物が混入されないので、チ
ャンネル層の半導体特性、絶縁膜兼用イオン感応膜の絶
縁特性が良く発揮され、ドレイン電流のドリフトが抑制
され、ゲート電圧の耐電圧の減少も抑制される。この耐
電圧を測定するために第3図において試料溶液をリン酸
緩衝液(p!! 6.8)ニし、電源13ノ電圧V+=
4ボルト、電源12の電圧v z =Oに設定してピコ
アンメータ14に流れる電流を測定した。この電流値が
10−Sアンペア流れたとき耐電圧不良とし、これを上
記と同様にして得られたl5FET 100個について
この耐電圧不良の個数を調べ、その不良率を表に示す。
At this time, in the 15FET of this example, both the amorphous semiconductor film layer and the insulating film/ion control film formed thereon are formed in a closed system, that is, by a gas phase reaction without breaking the reduced pressure or vacuum, and impurities are removed. is not mixed, the semiconductor properties of the channel layer and the insulating properties of the ion-sensitive film that also serves as an insulating film are well exhibited, the drift of the drain current is suppressed, and the decrease in the withstand voltage of the gate voltage is also suppressed. In order to measure this withstand voltage, in Fig. 3, the sample solution is diluted with phosphate buffer (p!! 6.8), and the voltage of the power supply 13 is V+ =
The current flowing through the picoammeter 14 was measured by setting the voltage v z =O of the power supply 12 to 4 volts. When this current value of 10-S amperes flows, it is determined that the voltage withstand voltage is defective.The number of defective withstand voltages is determined for 100 15FETs obtained in the same manner as above, and the defect rate is shown in the table.

また、ドレイン電流のドリフトを測定するために、v+
=4ボルト、v2=4ボルトとした直後のドレイン電流
と、1時間経過後のドレイン電流を測定してその変化率
を求め、これを上記と同様にして得られたl5FE71
00個について求め、その平均変化率(%)を表に示す
Also, in order to measure the drift of the drain current, v+
= 4 volts, the drain current immediately after setting v2 = 4 volts and the drain current after 1 hour were measured to determine the rate of change, and this was obtained in the same manner as above.
The average rate of change (%) is shown in the table.

実施例2 実施例1において、アモルファスシリコン半導体膜層の
形成に水素添加アモルファスシリコンを用いる代わりに
、SiF、とH2とを体積比1;1で混合したガスを用
いグロー放電法により1500人の厚さに成膜したフッ
素添加アモルファスシリコンを用いた以外は同様にして
l5FETを作成し、実施例1と同様にして耐電圧不良
率とドレイン電流変化率を求めた結果を表に示す。
Example 2 In Example 1, instead of using hydrogenated amorphous silicon to form an amorphous silicon semiconductor film layer, a gas containing SiF and H2 mixed at a volume ratio of 1:1 was used to form a 1,500-layer film using a glow discharge method. An 15FET was fabricated in the same manner as in Example 1, except that the fluorine-doped amorphous silicon film was used, and the withstand voltage failure rate and drain current change rate were determined in the same manner as in Example 1. The results are shown in the table.

実施例3 実施例1において、試料接触芯部7に塗料を塗布して絶
縁膜兼用イオン感応性膜5の上にポリ塩化ビニル樹脂中
にパリノマイシンを分散させた塗膜を形成した以外は同
様にしてl5FETを作成し、実施例1と同様にして耐
電圧不良率、ドレイン電流変化率を求め、その結果を表
に示す。
Example 3 The same procedure as in Example 1 was carried out except that a paint was applied to the sample contact core 7 and a coating film containing palinomycin dispersed in polyvinyl chloride resin was formed on the ion-sensitive film 5 that also served as an insulating film. A 15FET was prepared using the same method as in Example 1, and the withstand voltage failure rate and drain current change rate were determined, and the results are shown in the table.

本実施例においては、水素イオン感応性膜の上にカリウ
ムイオンに感応するカリウム感応性膜を設けたことにな
り、絶縁膜兼用イオン感応性膜は糸色縁膜としてのみ機
能することになる。
In this example, a potassium-sensitive film sensitive to potassium ions is provided on a hydrogen ion-sensitive film, and the ion-sensitive film that also serves as an insulating film functions only as a thread-colored border film.

比較例 実施例1で用いたと同様のガラス基板上に実施例1と同
様にして水素を含存するアモルファスシリコン層を形成
し、以下第6図に示すように従来のフォトエツチング技
法によりパターンを形成する。これにフォスフインをド
ープしたアモルファス半導体膜層を形成してからフォト
エツチング技法によりソース層j、ドレイン層kを形成
し、さらに金属を全面に蒸着してフォトエツチング技法
によりソース電極j゛、ドレイン電極に°を形成し、最
後に低温酸化法によりSiO□、プラズマCVDにより
SixNy膜を形成したrsFETを作成し、これにつ
いて実施例1と同様にして耐電圧不良率、電流変化率を
求めた結果を表に示す。
Comparative Example An amorphous silicon layer containing hydrogen is formed in the same manner as in Example 1 on a glass substrate similar to that used in Example 1, and a pattern is formed by a conventional photoetching technique as shown in FIG. 6 below. . After forming an amorphous semiconductor film layer doped with phosphine on this layer, a source layer j and a drain layer k are formed using a photo-etching technique, and then metal is deposited on the entire surface and a source electrode j and a drain electrode are formed using a photo-etching technique. Finally, an rsFET was fabricated by forming a SiO Shown below.

不良率、ドレイン電流変化率がそれぞれ2.5%以下、
4.5%以下であるのに対し、比較例のものは2桁で数
倍大きいことがわかる。
Defective rate and drain current change rate are each 2.5% or less,
It can be seen that while it is 4.5% or less, that of the comparative example is two digits and several times larger.

実施例4 上記は試料接触窓部が1つであったが、第4図に示すよ
うに、試料接触窓部7a、7b、7c、・・を複数設け
、例えば試料接触窓部7aには実施例1のようなpH惑
応性膜、試料接触窓部7bにはさらにbis−12−ク
ラウン−4をポリ塩化ビニルに分散させた膜5a、試料
接触窓部7cにはグルコースオキシターゼ膜5bを設け
、以下同様にして特定物質に感応する膜を設け、それぞ
れpH、ナトリウムイオン、グルコース、その他の特定
物質の濃度を測定できるようにしても良い。なお、地図
と同符号部は同一構成部分を示す。
Example 4 In the above case, there was one sample contact window, but as shown in FIG. 4, a plurality of sample contact windows 7a, 7b, 7c, etc. A pH-sensitive membrane as in Example 1, a membrane 5a in which bis-12-crown-4 is further dispersed in polyvinyl chloride is provided in the sample contact window 7b, and a glucose oxidase membrane 5b is provided in the sample contact window 7c. Similarly, membranes sensitive to specific substances may be provided so that pH, sodium ion, glucose, and other specific substance concentrations can be measured. Note that the same reference numerals as those on the map indicate the same components.

発明の効果 本発明によれば、閉鎖系、すなわち減圧あるいは真空を
破らない状態で気相反応による成膜により半導体膜、絶
縁膜、化学的感応性膜を形成するようにしたので、これ
らの膜は連続的に形成されることができ・従来のように
フオトエ・ノチグ技法を使用することなく、乾式でしか
も一旦形成した膜は剥離することなくそのまま使用する
ので、できあがった例えばl5FETの半導体膜の上に
設けられる膜との間あるいは他の膜相互の界面に不純物
を混入することがなく、耐電圧の低下を抑制できるのみ
ならず、ドレイン電流のドリフトを抑制することができ
る。
Effects of the Invention According to the present invention, semiconductor films, insulating films, and chemically sensitive films are formed by vapor phase reaction in a closed system, that is, without breaking pressure or vacuum. can be formed continuously, without using the conventional photo-notig technique, and the film once formed can be used as it is without peeling, so the finished semiconductor film of, for example, 15FET Impurities are not mixed into the interface with the film provided above or between other films, and it is possible not only to suppress a decrease in withstand voltage but also to suppress the drift of drain current.

これによりイオンセンサー、バイオセンサー等のセンサ
ーとしての安定動作を可能にし、試料の特定化学成分を
正確に測定することができる。
This enables stable operation as a sensor such as an ion sensor or biosensor, and enables accurate measurement of specific chemical components of a sample.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)、(ロ)、(ハ)は本発明の化学的感応性
半導体センサーの一実施例のTSFETの一例の製造工
程を示す図、第2図はこのl5FETの第1図(ハ)I
t−n断面図、第3図はこの・l5FETの使用状態説
明図、第4図は他の実施例のl5FETの第2図に相当
する一部を示した断面図、第5図は従来の単結晶l5F
ETの一例を示す断面図、第6図は従来のアモルファス
l5FETの例を示す断面図である。 図中、1は絶縁性基板としてのガラス板、2はソース電
極、3はドレイン電極、4はアモルファス半導体膜層、
5は絶縁性膜兼用水素イオン惑応性膜、5a、5bはそ
れぞれ化学的感応性膜としてのbis−12−クラウン
−4をポリ塩化ビニルに分散させた膜、グレコースオキ
シターゼ膜である。 昭和62年03月31日
FIGS. 1(a), (b), and (c) are diagrams showing the manufacturing process of an example of a TSFET that is an embodiment of the chemically sensitive semiconductor sensor of the present invention, and FIG. c)I
tn sectional view, FIG. 3 is an explanatory diagram of the usage state of this 15FET, FIG. 4 is a sectional view showing a part of the 15FET of another embodiment corresponding to FIG. 2, and FIG. 5 is a conventional Single crystal l5F
FIG. 6 is a sectional view showing an example of a conventional amorphous 15FET. In the figure, 1 is a glass plate as an insulating substrate, 2 is a source electrode, 3 is a drain electrode, 4 is an amorphous semiconductor film layer,
Reference numeral 5 is a hydrogen ion permeable membrane that also serves as an insulating film, and 5a and 5b are a membrane in which bis-12-crown-4 is dispersed in polyvinyl chloride as a chemically sensitive membrane, and a glucose oxidase membrane, respectively. March 31, 1985

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁性基板上に少なくとも一対の導電性電極を設
け、この導電性電極表面上に非晶質半導体膜を設け、こ
の非晶質半導体膜の上に絶縁膜を介した化学的感応性膜
又は絶縁膜兼用の化学的感応性膜を設けた構造を有する
半導体センサーにおいて、上記半導体膜、絶縁膜、化学
的感応性膜及び絶縁膜兼用の化学的感応性膜を閉鎖系に
おいてそれぞれを生成する原料ガスの気相処理による成
膜化により形成したことを特徴とする化学的感応性半導
体センサー。
(1) At least one pair of conductive electrodes is provided on an insulating substrate, an amorphous semiconductor film is provided on the surface of the conductive electrode, and chemical sensitivity is applied to the amorphous semiconductor film via the insulating film. In a semiconductor sensor having a structure provided with a film or a chemically sensitive film that also serves as an insulating film, each of the semiconductor film, insulating film, chemically sensitive film, and chemically sensitive film that also serves as an insulating film is produced in a closed system. A chemically sensitive semiconductor sensor characterized in that it is formed by forming a film by vapor phase processing of a raw material gas.
JP62076069A 1987-03-31 1987-03-31 Chemically response semiconductor sensor Pending JPS63243745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62076069A JPS63243745A (en) 1987-03-31 1987-03-31 Chemically response semiconductor sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62076069A JPS63243745A (en) 1987-03-31 1987-03-31 Chemically response semiconductor sensor

Publications (1)

Publication Number Publication Date
JPS63243745A true JPS63243745A (en) 1988-10-11

Family

ID=13594495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62076069A Pending JPS63243745A (en) 1987-03-31 1987-03-31 Chemically response semiconductor sensor

Country Status (1)

Country Link
JP (1) JPS63243745A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6885005B2 (en) * 2001-10-22 2005-04-26 Shimadzu Corporation Radiation detector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165748A (en) * 1986-12-26 1988-07-09 Kanegafuchi Chem Ind Co Ltd Amorphous semiconductor ion sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63165748A (en) * 1986-12-26 1988-07-09 Kanegafuchi Chem Ind Co Ltd Amorphous semiconductor ion sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6885005B2 (en) * 2001-10-22 2005-04-26 Shimadzu Corporation Radiation detector

Similar Documents

Publication Publication Date Title
US4062750A (en) Thin film electrochemical electrode and cell
Gernet et al. Fabrication and characterization of a planar electrochemical cell and its application as a glucose sensor
US5389215A (en) Electrochemical detection method and apparatus therefor
US4218298A (en) Selective chemical sensitive FET transducer
Buck et al. Field effect potentiometric sensors
EP0569908A2 (en) Electrochemical detection method and apparatus therefor
EP0366566B1 (en) Reference electrodes
US4909921A (en) Electrochemical sensor facilitating repeated measurement
Song et al. pH-sensitive diamond field-effect transistors (FETs) with directly aminated channel surface
Chou et al. Fabrication and application of ruthenium-doped titanium dioxide films as electrode material for ion-sensitive extended-gate FETs
Taillades et al. ISE and ISFET microsensors based on a sensitive chalcogenide glass for copper ion detection in solution
Domanský et al. Selective doping of chemically sensitive layers on a multisensing chip
EP0966675A1 (en) Gas sensor
JPS63243745A (en) Chemically response semiconductor sensor
WO2002077632A1 (en) Field-effect transistor
JPH05188036A (en) Capacitance-measuring chamical sensor device
Covington et al. Recent advances in microelectronic ion-sensitive devices (ISFETs). The operational transducer
JPH0518935A (en) Diamond thin-film ion sensor
JP2546340B2 (en) Moisture sensitive element and its operating circuit
JP2564030B2 (en) Method for producing carbon thin film electrode for electrochemical measurement
KR100439645B1 (en) Process for producing standard electrode coated with silver/silver chloride thin layer using a porous
JPH03246460A (en) Electrochemical detector
TWM305339U (en) pH-ISFET device and system for measuring pH value in a solution using the same
Tsukada et al. Platinum-platinum oxide gate pH ISFET
JPH02249962A (en) Fet sensor