JPS6324343B2 - - Google Patents

Info

Publication number
JPS6324343B2
JPS6324343B2 JP55023139A JP2313980A JPS6324343B2 JP S6324343 B2 JPS6324343 B2 JP S6324343B2 JP 55023139 A JP55023139 A JP 55023139A JP 2313980 A JP2313980 A JP 2313980A JP S6324343 B2 JPS6324343 B2 JP S6324343B2
Authority
JP
Japan
Prior art keywords
signal
output
polarity
segment
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55023139A
Other languages
Japanese (ja)
Other versions
JPS56119562A (en
Inventor
Takashi Kako
Shigeyuki Umigami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2313980A priority Critical patent/JPS56119562A/en
Publication of JPS56119562A publication Critical patent/JPS56119562A/en
Publication of JPS6324343B2 publication Critical patent/JPS6324343B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/227Demodulator circuits; Receiver circuits using coherent demodulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、電話回線を利用した高速データ伝送
に用いられるトレーニング信号の同期検出方式に
関する。 電話回線を利用した例えば9600bit/secという
ような高速データ伝送では、AGC回路、キヤリ
ア再生回路、タイミング再生回路、自動等化器な
どの受信側の諸回路への信号の引込みのために、
データ信号の送信開始に先立つて特定のトレーニ
ング信号を送信する。このトレーニング信号の形
式には下記の表に示すものがある(CCITT資料
COM.SP.A−No.148による)。ここで「S」はセ
グメント、「全」は全トレーニング信号を意味す
る。
The present invention relates to a synchronization detection method for training signals used for high-speed data transmission using telephone lines. In high-speed data transmission, such as 9600 bit/sec, using telephone lines, in order to pull the signal into various circuits on the receiving side such as AGC circuit, carrier regeneration circuit, timing regeneration circuit, automatic equalizer, etc.
A specific training signal is transmitted prior to starting transmission of data signals. The format of this training signal is shown in the table below (CCITT document)
According to COM.SP.A−No.148). Here, "S" means a segment, and "total" means the entire training signal.

【表】 グパターン
SAD1……スクランブルドオールデータ1
トレーニング信号のセグメント1には信号は含
まれていないが、セグメント2との変換点がデー
タ受信開始の検出に用いられる。トレーニング信
号のセグメント2は二つの信号要素の繰返しから
なる。第1図に示すように、その第1の信号要素
Aは相対振幅3を持ちそして180゜の絶対位相基準
を定める。第2の信号要素Bはデータ速度で変
り、7200bit/secの時は(1−j)、9600bit/sec
の時は3(1−j)の各ベクトルである。セグメ
ント2は128シンボルインタバルの間ABAB…を
繰返す。トレーニング信号のセグメント3は、
PN符号とも呼ばれるイコーライザコンデイシヨ
ニングパターンに従つて変る二つの信号要素から
なる。その第1の信号要素Cは相対振幅3および
絶対位相0゜を持ち、第2の信号要素Dはデータ速
度で変り、7200bit/secの時は(−1+j)、
9600bit/secの時は3(−1+j)の各ベクトル
である。イコーライザコンデイシヨニングパター
ンは擬似ランダムシーケンスであり、このシーケ
ンスが0のときCが、1のときDが発生する。ま
たセグメント4の信号はデスクランブラ回路の引
込みに用いられる。 このセグメント2の信号には復調キヤリヤが含
まれている。即ちベクトルAおよびBはベクトル
A′とCARの和およびベクトルB′とCARの和と考
えることができ、セグメント2がA、B、A、B
を繰り返すとき不変成分はCAR、交番成分は
A′とB′であり、交番成分A′、B′の和は零、不変
成分のCARがキヤリヤ信号である。 セグメント3について同様に不変成分従つてキ
ヤリヤ成分を求めてみると、ベクトルCおよびD
はベクトルA′とCAR′およびベクトルB′と
CAR′の和であるから、キヤリヤ成分はCAR′と
なり、これはセグメント2のキヤリア成分CAR
と位相が180゜ずれている。 イコライザ(自動等化器)の引込みに当つて
は、送信側で上記セグメント3の信号を送出する
と共に受信側でも同じ信号を発生し、例えば両者
を比較して波形補正に必要な信号を求める。この
ような操作を行うにはセグメント3の開始時点を
検知し、受信側で上記信号の発生を開始せねばな
らない。 従来こうしたセグメント2と3との変換点を検
出するためにキヤリア信号CAR、CAR′を平滑化
し、これが極性反転した時点で同期信号を得るよ
うにされている。 しかしながらこうした従来の手法であると、回
線の位相特性により、位相回転等が生じ、更には
平滑化する際の遅延量により、正確に、セグメン
ト2、3間の変換点を検出できないという欠点を
有している。 本発明の目的は上述の欠点を取除き、精度よく
信号群間の変換点を検出し得る同期検出方式を提
供することにある。 上記目的を達成するために、本発明においては
トレーニング信号のセグメントS2は交互に極性が
変化する信号を持ち、かつセグメント3の最初の
シンボルと、セグメント2の最後のシンボルとは
同極性のシンボルである点に着目し、セグメント
2の各シンボル間の極性を乗算すれば負極性であ
り、これが変化点位置に移行すると正極性となる
事を検出して、変化点を同期信号として取出すよ
うにしたものである。 以下実施例につき詳述する。 第2図、第3図は本発明の実施例のブロツク図
及びタイムチヤートである。 図中PC1,PC2は位相比較器、LF1,LF2はロー
ルオフフイルタ、VCOは電圧制御発振器であり、
端子tの出力の位相を0゜とすれば端子t2には90゜位
相の異る出力を生ずるもの、OPは極性検出器、
RGはレジスタであり、1シンボルの極性を格納
するもの、Mは乗算器、Aはアンドゲート、FF
はフリツプフロツプである。VCOは電圧制御発
振器である。発振器VCOは端子t1の出力を0゜とす
れば端子t2の出力は90゜というように両端子から
90゜位相を異にする出力を生じる。発振器VCOの
端子t1は位相比較器PC1の一方の入力端子に接続
され、この位相比較器の他方の入力端子には入力
信号、本例ではトレーニング信号S0が加えられ、
位相比較器PC1は両信号の位相差の余弦に比例す
る出力を生じる。この出力は図示しないがロール
オフフイルタLF1を通された後公知の手法により
発振器VCOの入力端に加えられ、その発振周波
数(位相)を制御する。つまりPC1,LF1,VCO
は既知のPLL(フエースロツクドループ)回路を
構成し、発振器VCOの端子t1の出力は入力信号
S0と同期化される。入力信号S0が前述の如きトレ
ーニング信号であると、ロールオフフイルタLF1
を通過した位相比較器PC1の出力は同期化後は不
変成分つまりキヤリヤ信号CARまたはCAR′に対
応し、この出力で制御される発振器VCOの端子
t1からの出力はキヤリヤ信号CARを90゜移相した
ものに相当する。 電圧制御発振器VCOの第2の出力端子t2は第
2の位相比較器PC2の一方の入力端に加えられ、
この位相比較器の他方の入力端子には入力信号S0
が加えられ、これらの入力信号の位相角の余弦に
比例するその出力は、ロールオフフイルタLF2
通して出力される。この出力は図示されないが平
滑回路を通して比較器CPに加わる。 この回路ではPC1,LF1,VCOからなるPLL回
路で復調が行われ、ロールオフフイルタLF1から
第3図Xに示す如き信号Xが出力される。入力の
トレーニング信号S0は時点taでセグメント2(S2
からセグメント3(S3)に変り、キヤリヤ成分の
位相が180゜変るので信号Xもこの時点で位相が反
転する。位相比較器PC2は入力トレーニング信号
S0と、該信号に同期し(つまり90゜位相差になり)
かつ位相90゜ずれた(結局180゜ずれた)信号S2
の位相差の余弦に比例する出力を生じ、従つてロ
ールオフフイルタLF2からの出力Yは第3図Yに
示す如くなる。即ち入力信号S0がセグメント2
(S2)の間は負波であり、時点taでセグメント3
に入つてキヤリヤ成分が反転すると正波に変る。 極性検出器OPは、信号Xの極性を検出し、例
えば負の場合レベル“0”を、正の場合レベル
“1”の信号x1を出力する。この出力はレジスタ
RGに格納される。 次のシンボルの極性の信号x1を極性検出器OP
が出力すると、この極性を示す値とレジスタRG
に格納されている前のシンボルの極性の値とが乗
算器M、即ちイクスクルーシブオアゲートの出力
にインバータを付加した構成の乗算器Mに入力さ
れ乗算される。同図の構成の乗算器であると、イ
ンバータの出力から、乗算値が正極性の場合レベ
ル“1”の信号が出力される。 初期リセツトされており、その出力は常時レ
ベル“1”を出力する。 このため、変換点時刻taで、同極性のシンボル
が到来すると、乗算器Mからレベル“1”が出力
され、これがアンドゲートを介し出力x3、即ち同
期検出信号となる。 この同期検出信号x3によつてフリツプフロツプ
FFはセツトされ、そのQ出力をレベル“1”に、
Q出力をレベル“0”にする。このため、フリツ
プフロツプFFの出力が、入力されるアンドゲ
ートAは閉成され、以後の乗算値が正極性となる
信号を出力しない事となる。 以上説明した様に本発明によれば、従来の如く
第3図において、信号Yによつて変換点を検出す
れば零レベルのシンボルがセグメントS2とS3との
間に存在するから、少なくとも1シンボル分同期
検出ができないが、本発明では、信号Xの極性を
利用して行つているから正しく、同期検出ができ
る効果を奏する。
[Table] Pattern
SAD1……Scrambled all data 1
Segment 1 of the training signal does not contain any signal, but the transition point with segment 2 is used to detect the start of data reception. Segment 2 of the training signal consists of repetitions of two signal elements. As shown in FIG. 1, the first signal element A has a relative amplitude of 3 and defines an absolute phase reference of 180 degrees. The second signal element B changes with the data rate, (1-j) at 7200 bit/sec, 9600 bit/sec
When , there are 3 (1-j) vectors. Segment 2 repeats ABAB... for a 128 symbol interval. Segment 3 of the training signal is
It consists of two signal elements that vary according to an equalizer conditioning pattern, also called a PN code. The first signal element C has a relative amplitude of 3 and an absolute phase of 0°, and the second signal element D varies with the data rate, at 7200 bit/sec (-1 + j),
At 9600 bit/sec, there are 3 (-1+j) vectors. The equalizer conditioning pattern is a pseudo-random sequence, and when this sequence is 0, C occurs, and when this sequence is 1, D occurs. Furthermore, the signal of segment 4 is used to pull in the descrambler circuit. This segment 2 signal includes a demodulation carrier. That is, vectors A and B are vectors
It can be considered as the sum of A' and CAR and the sum of vector B' and CAR, and segment 2 is A, B, A, B
When iterating, the invariant component is CAR, and the alternating component is
A' and B', the sum of alternating components A' and B' is zero, and the constant component CAR is the carrier signal. Similarly, when calculating the invariant component and therefore the carrier component for segment 3, vectors C and D
are vector A′ and CAR′ and vector B′ and
Since it is the sum of CAR′, the carrier component is CAR′, which is the carrier component CAR of segment 2.
The phase is shifted by 180°. When pulling in the equalizer (automatic equalizer), the transmitting side sends out the signal of segment 3, and the receiving side also generates the same signal, and for example, compares the two to find the signal necessary for waveform correction. To carry out such an operation, it is necessary to detect the start point of segment 3 and to start generating the above-mentioned signal on the receiving side. Conventionally, in order to detect the transition point between segments 2 and 3, carrier signals CAR and CAR' are smoothed, and a synchronization signal is obtained when the polarity of these signals is reversed. However, these conventional methods have the disadvantage that phase rotation occurs due to the phase characteristics of the line, and furthermore, the conversion point between segments 2 and 3 cannot be accurately detected due to the amount of delay during smoothing. are doing. SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide a synchronization detection method that can accurately detect conversion points between signal groups. In order to achieve the above object, in the present invention, segment S 2 of the training signal has a signal whose polarity changes alternately, and the first symbol of segment 3 and the last symbol of segment 2 are symbols of the same polarity. Focusing on a certain point, multiplying the polarity between each symbol of segment 2 results in negative polarity, and detecting that it becomes positive polarity when it moves to the changing point position, and extracting the changing point as a synchronization signal. This is what I did. Examples will be described in detail below. FIGS. 2 and 3 are a block diagram and a time chart of an embodiment of the present invention. In the figure, PC 1 and PC 2 are phase comparators, LF 1 and LF 2 are roll-off filters, and VCO is a voltage controlled oscillator.
If the phase of the output of terminal t is 0°, terminal t2 produces an output with a phase difference of 90°, OP is a polarity detector,
RG is a register that stores the polarity of one symbol, M is a multiplier, A is an AND gate, FF
is a flip-flop. A VCO is a voltage controlled oscillator. The oscillator VCO outputs from both terminals such that if the output of terminal t 1 is 0°, the output of terminal t 2 is 90°.
Produces outputs that are 90° out of phase. The terminal t 1 of the oscillator VCO is connected to one input terminal of a phase comparator PC 1 , to the other input terminal of which an input signal, in this example a training signal S 0 , is applied,
The phase comparator PC 1 produces an output proportional to the cosine of the phase difference between the two signals. This output is passed through a roll-off filter LF1 (not shown) and then applied to the input terminal of the oscillator VCO by a known method to control its oscillation frequency (phase). In other words, PC 1 , LF 1 , VCO
constitutes a known PLL (phase-locked loop) circuit, and the output of terminal t1 of the oscillator VCO is the input signal.
Synchronized with S 0 . If the input signal S 0 is a training signal as described above, the roll-off filter LF 1
After synchronization, the output of the phase comparator PC 1 corresponds to the invariant component, that is, the carrier signal CAR or CAR′, and is connected to the terminals of the oscillator VCO controlled by this output.
The output from t 1 corresponds to the carrier signal CAR shifted by 90°. The second output terminal t 2 of the voltage controlled oscillator VCO is applied to one input terminal of the second phase comparator PC 2 ,
The other input terminal of this phase comparator has an input signal S 0
are added, and its output, which is proportional to the cosine of the phase angle of these input signals, is output through a roll-off filter LF 2 . Although this output is not shown, it is applied to the comparator CP through a smoothing circuit. In this circuit, demodulation is performed by a PLL circuit consisting of PC 1 , LF 1 and VCO, and a signal X as shown in FIG. 3X is output from the roll-off filter LF 1 . The input training signal S 0 is segment 2 (S 2 ) at time ta
to segment 3 (S 3 ), and the phase of the carrier component changes by 180°, so the phase of the signal X is also reversed at this point. Phase comparator PC 2 is the input training signal
S 0 and synchronize with the signal (that is, 90° phase difference)
and produces an output proportional to the cosine of the phase difference with the signal S 2 which is 90 DEG out of phase (eventually 180 DEG out of phase), so that the output Y from the roll-off filter LF 2 is as shown in FIG. 3Y. That is, input signal S 0 is segment 2
(S 2 ) is a negative wave, and at time ta, segment 3
When the signal enters , the carrier component is reversed and turns into a positive wave. The polarity detector OP detects the polarity of the signal X, and outputs a signal x1 of level "0" if it is negative, and "1" if it is positive, for example. This output is a register
Stored in RG. Next symbol polarity signal x 1 to polarity detector OP
outputs a value indicating this polarity and register RG
The polarity value of the previous symbol stored in is input to and multiplied by a multiplier M, that is, a multiplier M having an inverter added to the output of an exclusive OR gate. In the multiplier having the configuration shown in the figure, a signal of level "1" is output from the output of the inverter when the multiplied value has positive polarity. It is initially reset, and its output always outputs level "1". Therefore, when a symbol of the same polarity arrives at the conversion point time ta, a level "1" is output from the multiplier M, which becomes the output x 3 via the AND gate, that is, the synchronization detection signal. The flip-flop is activated by this synchronization detection signal x 3 .
FF is set and its Q output is set to level “1”.
Set the Q output to level “0”. Therefore, the AND gate A to which the output of the flip-flop FF is input is closed, and no signal whose polarity becomes positive will be output from the subsequent multiplied value. As explained above, according to the present invention, if the conversion point is detected by the signal Y in FIG . Although synchronization cannot be detected for one symbol, in the present invention, since the polarity of the signal X is used for detection, accurate synchronization can be detected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はトレーニング信号を説明するための
図、第2図、第3図は本発明の一実施例のブロツ
ク図及び要部タイムチヤートである。 図面でVCOは電圧制御発振器、PC1は位相比較
器、LF1はロールオフフイルタ、PC2およびLF1
は第2の位相比較器およびロールオフフイルタ、
OPは極性検出器、RGはレジスタ、Mは乗算器、
Aはアンドゲート、FFはフリツプフロツプであ
る。
FIG. 1 is a diagram for explaining a training signal, and FIGS. 2 and 3 are a block diagram and a main part time chart of an embodiment of the present invention. In the drawing, VCO is a voltage controlled oscillator, PC 1 is a phase comparator, LF 1 is a roll-off filter, PC 2 and LF 1
is a second phase comparator and a roll-off filter,
OP is a polarity detector, RG is a register, M is a multiplier,
A is an AND gate, and FF is a flip-flop.

Claims (1)

【特許請求の範囲】[Claims] 1 受信信号の位相の直交するキヤリア信号成分
の内、一方のキヤリア信号成分の極性が、受信信
号の有する信号群内に互いに異る規則に従つて交
互に反転し、かつ、少なくとも各信号群間の変化
点位置のキヤリア信号成分が同一極性となるトレ
ーニング信号を受信し、各信号群の変化点を検知
して同期信号を得る同期検出方式において、隣り
合う受信信号の該一方のキヤリア信号成分を乗算
する手段を設け、該乗算値の極性が反転するのを
検知して同期信号を得ることを特徴とする同期検
出方式。
1 The polarity of one of the carrier signal components whose phases are orthogonal to each other in the received signal is alternately inverted according to different rules within the signal groups of the received signal, and at least between each signal group. In the synchronization detection method, a training signal in which the carrier signal components at the change point positions of the signals have the same polarity is received, and a synchronization signal is obtained by detecting the change points of each signal group. A synchronization detection method characterized in that a means for multiplying is provided, and a synchronization signal is obtained by detecting that the polarity of the multiplied value is reversed.
JP2313980A 1980-02-26 1980-02-26 Synchronizing detection system Granted JPS56119562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2313980A JPS56119562A (en) 1980-02-26 1980-02-26 Synchronizing detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2313980A JPS56119562A (en) 1980-02-26 1980-02-26 Synchronizing detection system

Publications (2)

Publication Number Publication Date
JPS56119562A JPS56119562A (en) 1981-09-19
JPS6324343B2 true JPS6324343B2 (en) 1988-05-20

Family

ID=12102214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2313980A Granted JPS56119562A (en) 1980-02-26 1980-02-26 Synchronizing detection system

Country Status (1)

Country Link
JP (1) JPS56119562A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014557A (en) * 1983-07-06 1985-01-25 Nec Corp Orthogonal amplitude modulation system transmitter
JPH07105820B2 (en) * 1985-10-09 1995-11-13 富士通株式会社 Modulation unit number measurement method

Also Published As

Publication number Publication date
JPS56119562A (en) 1981-09-19

Similar Documents

Publication Publication Date Title
CA2061524C (en) Phase/frequency comparator for timing recovering circuit
US5574754A (en) Sliding correlator
US4371974A (en) NRZ Data phase detector
US4715047A (en) Digital differential phase shift keyed demodulator
US4262360A (en) Method and device for detecting a pseudo-random sequence of carrier phase changes of 0° and 180° in a data receiver
US5093848A (en) Method of controlling the frequency of a coherent radio receiver and apparatus for carrying out the method
US4518922A (en) Decision-directed, automatic frequency control technique for non-coherently demodulated M-ARY frequency shift keying
US4918709A (en) Data demodulator baud clock phase locking
JPS6024614B2 (en) timing recovery circuit
EP0578489B1 (en) Clock recovery phase detector
US5247543A (en) Carrier aquisition apparatus for digital satellite communication system
EP0053939B1 (en) Digital phase locked loop pull-in circuitry
US5949829A (en) Central error detecting circuit for FSK receiver
JPS6324343B2 (en)
EP0484914A2 (en) Demodulator and method for demodulating digital signals modulated by a minimum shift keying
US5999577A (en) Clock reproducing circuit for packet FSK signal receiver
US4859959A (en) Data demodulator carrier phase error detector
JP3132043B2 (en) Clock extraction circuit
US4760344A (en) Phase shift keying signal demodulation method and apparatus
JP2885052B2 (en) Automatic frequency control device
CA1167118A (en) Means for subdividing a baud period into multiple integration intervals to enhance digital message detection
JPS61137446A (en) Demodulating device
JPS6362931B2 (en)
JP2841935B2 (en) Phase demodulator
EP0649233B1 (en) Method for recovering symbol synchronism in receivers of digitally modulated signals and circuit derived therefrom