JPS63243437A - Trouble discriminating method for cooling water temperature sensor in internal combustion engine air-fuel ratio controller - Google Patents

Trouble discriminating method for cooling water temperature sensor in internal combustion engine air-fuel ratio controller

Info

Publication number
JPS63243437A
JPS63243437A JP7798387A JP7798387A JPS63243437A JP S63243437 A JPS63243437 A JP S63243437A JP 7798387 A JP7798387 A JP 7798387A JP 7798387 A JP7798387 A JP 7798387A JP S63243437 A JPS63243437 A JP S63243437A
Authority
JP
Japan
Prior art keywords
water temperature
temperature sensor
fuel ratio
sensor
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7798387A
Other languages
Japanese (ja)
Inventor
Kozo Suzuki
幸三 鈴木
Toshio Sato
佐藤 登志雄
Hiroaki Iwasaki
岩崎 浩昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP7798387A priority Critical patent/JPS63243437A/en
Publication of JPS63243437A publication Critical patent/JPS63243437A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To prevent the misdiscrimination from occurring, by discriminating whether an output level of a water temperature sensor is out of the range of both upper and lower limit values or not, and making a control circuit perform trouble discrimination of the water temperature sensor, in case a fact that suction air temperature is other than a high suction air temperature state of more than the specified temperature is detected. CONSTITUTION:When an engine 5 is driven, a control circuit 20 controls a linear type solenoid valve 9 on the basis of each output of various driving state detecting devices including a water temperature sensor 12, and it also controls an air-fuel ratio of mixture. In this case, at a water temperature sensor trouble discriminating routine to be processed by the control circuit 20, first suction air temperature TA by a suction air temperature sensor 13 is compared with a high temperature state discriminating temperature TA1, and when TA<TA1 is the case, cooling water temperature TW by the water temperature sensor 12 is compared with upper limit temperature TWH and lower limit temperature TWL. And, when a state of TW>TWH, TW<TWL is continued as long as the specified time, it is so discriminated that the water temperature sensor 12 is out of order. On the other hand, when TA>=TA1 is the case, the said trouble discrimination is prohibited.

Description

【発明の詳細な説明】 炎丘且1 本発明は内燃エンジン冷却水温センサの異常判別方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for determining abnormality in an internal combustion engine cooling water temperature sensor.

九旦韮I 車載内燃エンジンの排気ガス浄化、燃費改善等のために
排気ガス中の酸素濃度等の排気成分濃度を排気成分濃度
センサによって検出し、エンジンに供給される混合気の
空気量、又は燃料饋を排気成分濃度センサによる検出値
に応じて調整することにより供給混合気の空燃比をフィ
ードバック制御する空燃比制御装置が例えば、特公昭5
5−3533号公報により知られている。
Kudan Nii I In order to purify the exhaust gas of in-vehicle internal combustion engines, improve fuel efficiency, etc., the concentration of exhaust components such as oxygen concentration in the exhaust gas is detected by an exhaust component concentration sensor, and the amount of air in the mixture supplied to the engine is measured. For example, an air-fuel ratio control device that feedback-controls the air-fuel ratio of a supplied air-fuel mixture by adjusting fuel according to a value detected by an exhaust component concentration sensor was developed in the 1970s.
It is known from Japanese Patent No. 5-3533.

このような空燃比制御装置においては、上記排気成分濃
度の他の複数のエンジン運転パラメータが各種のセンサ
によって各々検出されている。そのセンサの1つに内燃
エンジン冷却水温を検出する水温センサがある。例えば
、内燃エンジンの暖機完了前にはエンジン燃焼状態が不
安定であるため空燃比フィードバック制御を行なわす空
燃比オーブンループ制御をなすので暖機完了を水温セン
サの出力レベルから検出してがら空燃比フィードバック
制御を開始している。
In such an air-fuel ratio control device, a plurality of engine operating parameters other than the exhaust component concentration are detected by various sensors. One of the sensors is a water temperature sensor that detects the internal combustion engine cooling water temperature. For example, since the engine combustion state is unstable before the warm-up of the internal combustion engine is completed, air-fuel ratio oven loop control is performed that performs air-fuel ratio feedback control, so the completion of warm-up is detected from the output level of the water temperature sensor. Fuel ratio feedback control has started.

ところで、水温センサの劣化、故障等によって水温セン
サが冷却水温を正確に検出し得ない異常状態が生ずるこ
とが考えられる。水温センサの真空燃比オーブンループ
制御となったり、逆に空燃比オーブンループ制御すべき
ときに空燃比フィードバック制御を行なう等の不都合が
生ずる。従って、水温センサの出力レベルが所定の正常
動作範囲(例えば、−30℃〜120℃)以外の値にな
った場合を水温センサが異常であると判別する方法が通
常行なわれている。
Incidentally, an abnormal state may occur in which the water temperature sensor cannot accurately detect the cooling water temperature due to deterioration or failure of the water temperature sensor. Inconveniences arise, such as vacuum-fuel ratio oven loop control of the water temperature sensor or air-fuel ratio feedback control when air-fuel ratio oven loop control should be performed. Therefore, a method is generally used in which it is determined that the water temperature sensor is abnormal when the output level of the water temperature sensor becomes a value outside a predetermined normal operating range (for example, -30° C. to 120° C.).

しかしながら、例えば、長時間の高速走行直後のアイド
ル状態においては、内燃エンジンが高温状態にあり、こ
のような状態においては水温センサが正常であっても正
常動作範囲以上を表わす出力レベルが水温センサから得
られて水温センサが異常状態であると誤判別してしまう
ことがあり得る。
However, for example, in an idling state immediately after a long period of high-speed driving, the internal combustion engine is in a high temperature state, and in such a state, even if the water temperature sensor is normal, the output level from the water temperature sensor that is above the normal operating range may be exceeded. Therefore, it may be erroneously determined that the water temperature sensor is in an abnormal state.

R1目2JL皿 そこで、本発明の目的は、エンジン高温状態における水
温センサの異常誤判別を防止した内燃エンジン冷却水温
センサの異常判別方法を提供することて゛ある。
Therefore, it is an object of the present invention to provide a method for determining an abnormality in an internal combustion engine cooling water temperature sensor, which prevents erroneous determination of abnormality in the water temperature sensor when the engine is in a high temperature state.

本発明の内燃エンジン冷却水温センサの異常判別方法は
、内燃エンジンの吸気温が所定温度以上の高吸気温状態
以外であることを検出し、その高吸気温状態以外の時に
水濡センサの出力レベルが上限値及び下限値の範囲以外
であることを検出したときには水温センサが異常である
と判別することを特徴としている。
The abnormality determination method for an internal combustion engine cooling water temperature sensor according to the present invention detects that the intake temperature of the internal combustion engine is not in a high intake temperature state equal to or higher than a predetermined temperature, and when the intake temperature is not in the high intake temperature state, the output level of the water wetness sensor is The water temperature sensor is characterized in that it is determined that the water temperature sensor is abnormal when it is detected that the water temperature sensor is outside the range of the upper limit value and the lower limit value.

支−1御1 以下、本発明の実茄例につき添付図面を参照しつつ詳細
に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, practical examples of the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明の異常判別方法を適用した空燃比制御装
置を示している。この空燃比制御装置においては、気化
器1の絞り弁3より下流の吸気マニホールド4とエアク
リーナ2の空気吐出口近傍とは吸気2次空気供給通路8
によって連通されている。吸気2次空気供給通路8には
いわゆるリニア型電磁弁9が設けられている。N11弁
9の開度はそのソレノイド9aに供給される電流値に比
例して変化する。
FIG. 1 shows an air-fuel ratio control device to which the abnormality determination method of the present invention is applied. In this air-fuel ratio control device, the intake manifold 4 downstream of the throttle valve 3 of the carburetor 1 and the vicinity of the air discharge port of the air cleaner 2 are connected to the intake secondary air supply passage 8.
communicated by. A so-called linear solenoid valve 9 is provided in the intake secondary air supply passage 8 . The opening degree of the N11 valve 9 changes in proportion to the current value supplied to the solenoid 9a.

絞り弁3近傍の気化器1内壁面には負圧検出ボート6が
設けられている。負圧検出ボート6は絞り弁3が所定開
度以下のときに絞り弁3の上流に位置し、絞り弁3が所
定開度より大のときに較り弁3の下流に位置する。負圧
検出ボート6における負圧Pcは負圧通路6aを介して
負圧スイッチ7に供給される。負圧スイッチ7は絞り弁
3の閉弁状態を検出するために設けられており、負圧検
出ボート6における負圧が例えば、30a+mHり以下
のときオンとなる。
A negative pressure detection boat 6 is provided on the inner wall surface of the carburetor 1 near the throttle valve 3. The negative pressure detection boat 6 is located upstream of the throttle valve 3 when the opening of the throttle valve 3 is less than a predetermined opening, and is located downstream of the throttle valve 3 when the opening is larger than the predetermined opening. Negative pressure Pc in negative pressure detection boat 6 is supplied to negative pressure switch 7 via negative pressure passage 6a. The negative pressure switch 7 is provided to detect the closed state of the throttle valve 3, and is turned on when the negative pressure in the negative pressure detection boat 6 is, for example, 30a+mH or less.

一方、絶対圧センサ10は吸気マニホールド4に設けら
れ吸気マニホールド4内の絶対圧PEAに応じたレベル
の出力を発生し、クランク角センサ11は内燃エンジン
(以下、単にエンジンと称す)5のクランクシャフト(
図示せず)の回転に同期したパルス、例えば、TDCパ
ルスを発生し、冷却水温センサ12はエンジン5の冷却
水ITwに応じたレベルの出力を発生し、吸気温センサ
13は吸入空気の温度TAに応じた出力電圧を発生し、
酸素濃度センサ14は排気成分濃度センサとしてエンジ
ン5の排気マニホールド15に設けられ排気ガス中の酸
素濃度に応じた出力電圧を発生する。酸素濃度センサ1
4は例えば、理論空燃比において出力電圧が急変するλ
=1型のセンサである。この酸素濃度センサ14の配設
位置より下流の排気マニホールド15には排気ガス中の
有害成分の低減を促進させるために触媒コンバータ34
が設けられている。負圧スイッチ7、絶対圧センサ10
、クランク角センサ11、水温センサ12、吸気温セン
サ13、及び酸素濃度センサ14の各出力は制御回路2
0に供給される。制御回路20には更に車両の速度Vに
応じたレベルの出力を発生する車速センサ16と、大気
圧PAに応じて出力を発生する大気圧センサ17と、ク
ラッチペダル(図示せず)が踏み込まれるとオフとなる
クラッチスイッチ18とが接続されている。負圧スイッ
チ7及びクラッチスイッチ18はオフ時に低レベル出力
を発生し、オン時に電圧■8の高レベル出力を発生する
On the other hand, the absolute pressure sensor 10 is installed in the intake manifold 4 and generates an output at a level corresponding to the absolute pressure PEA in the intake manifold 4, and the crank angle sensor 11 is connected to the crankshaft of the internal combustion engine (hereinafter simply referred to as the engine) 5. (
The cooling water temperature sensor 12 generates an output at a level corresponding to the cooling water ITw of the engine 5, and the intake air temperature sensor 13 generates a pulse synchronized with the rotation of the engine 5 (not shown), for example, a TDC pulse. Generates an output voltage according to
The oxygen concentration sensor 14 is provided as an exhaust component concentration sensor in the exhaust manifold 15 of the engine 5, and generates an output voltage according to the oxygen concentration in the exhaust gas. Oxygen concentration sensor 1
4 is, for example, λ where the output voltage suddenly changes at the stoichiometric air-fuel ratio.
=1 type sensor. A catalytic converter 34 is installed in the exhaust manifold 15 downstream of the oxygen concentration sensor 14 in order to promote the reduction of harmful components in the exhaust gas.
is provided. Negative pressure switch 7, absolute pressure sensor 10
, the crank angle sensor 11, the water temperature sensor 12, the intake temperature sensor 13, and the oxygen concentration sensor 14.
0. The control circuit 20 further includes a vehicle speed sensor 16 that generates an output at a level corresponding to the speed V of the vehicle, an atmospheric pressure sensor 17 that generates an output according to the atmospheric pressure PA, and a clutch pedal (not shown) that is depressed. and a clutch switch 18 that is turned off. The negative pressure switch 7 and the clutch switch 18 generate a low level output when turned off, and generate a high level output of voltage 8 when turned on.

制御回路20は第2図に示すように絶対圧センサ10、
水温センサ12、吸気温センサ13、酸素濃度センサ1
4、車速センサ16、大気圧センサ17の各出力レベル
を変換するレベル変換回路21と、レベル変換回路21
を経た各センサ出力の1つを選択的に出力するマルチプ
レクサ22と、このマルチプレクサ22から出力される
信号をディジタル信号に変換するA/D変換器23と、
クランク角センサ11の出力信号を波形整形する波形整
形回路24と、波形整形回路24の出力パルスの発生間
隔をクロックパルス発生回路(図示せず)から出力され
るクロックパルス数によって計測してエンジン回転数N
eデータを出力するカウンタ25と、負圧スイッチ7及
びクラッチスイッチ18の出力レベルを変換するレベル
変換回路26と、その変換出力をディジタルデータとす
るディジタル入カモシュレータ27と、電磁弁9を開弁
駆動する駆動回路28と、警報用の発光ダイオード19
を点灯駆動する駆動回路33と、プログラムに従ってデ
ィジタル演算を行なうcpu <中央処理装置)29と
、各種の処理プログラム及びデータが予め書き込まれた
ROM30と、RAM31とからなっている。電磁弁9
のソレノイド9aは駆動回路28の駆動トランジスタ及
びN流検出用抵抗(共に図示せず)に直列に接続されて
その直列回路の両端間に電源電圧が供給される。マルチ
プレクサ22、A/D変換器23、カウンタ25、ディ
ジタル入カモシュレータ27、駆動回路28,33、C
PU29、ROM30及びRAM31は入出力バス32
によって互いに接続されている。なお、CPU29はタ
イマA(図示せず)を内蔵し、またRAM31は不揮発
性である。
The control circuit 20 includes an absolute pressure sensor 10, as shown in FIG.
Water temperature sensor 12, intake temperature sensor 13, oxygen concentration sensor 1
4. A level conversion circuit 21 that converts each output level of the vehicle speed sensor 16 and the atmospheric pressure sensor 17; and a level conversion circuit 21.
A multiplexer 22 that selectively outputs one of the sensor outputs that have passed through the multiplexer 22, and an A/D converter 23 that converts the signal output from the multiplexer 22 into a digital signal.
A waveform shaping circuit 24 shapes the output signal of the crank angle sensor 11, and the generation interval of the output pulses of the waveform shaping circuit 24 is measured by the number of clock pulses output from a clock pulse generation circuit (not shown) to rotate the engine. Number N
A counter 25 that outputs e data, a level conversion circuit 26 that converts the output levels of the negative pressure switch 7 and clutch switch 18, a digital input camosulator 27 that converts the converted output into digital data, and an opening drive for the solenoid valve 9. a driving circuit 28 and a light emitting diode 19 for alarm.
It consists of a drive circuit 33 for lighting and driving, a CPU (central processing unit) 29 for performing digital calculations according to a program, a ROM 30 in which various processing programs and data are written in advance, and a RAM 31. Solenoid valve 9
The solenoid 9a is connected in series with a drive transistor and an N-flow detection resistor (both not shown) of the drive circuit 28, and a power supply voltage is supplied across the series circuit. Multiplexer 22, A/D converter 23, counter 25, digital input camosulator 27, drive circuits 28, 33, C
PU29, ROM30 and RAM31 are input/output bus 32
are connected to each other by. Note that the CPU 29 has a built-in timer A (not shown), and the RAM 31 is nonvolatile.

かかる構成においては、A/D変換器23から吸気マニ
ホールド4内の絶対圧Pa A %冷却水温TW、吸気
温TA、排気ガス中の酸素濃度、車速V、及び大気圧P
Aの情報が択一的に、カウンタ25かへエンジン回転数
Neを表わす情報が、またディジタル入カモシュレータ
27から負圧スイッチ7及びクラッチスイッチ18のオ
ンオフ情報がCPU29に入出力バス32を介して各々
供給される。CPU29はイグニッションスイッチ(図
示せず)がオンされるとクロックパルスに応じてプログ
ラムの1つの空燃比制御ルーチンを繰り返し処理するこ
とにより上記した各情報を読み込み、それらの情報を基
にして空燃比フィードバック制御、又は空燃比オーブン
ループ61110すべきかを判別する。空燃比フィード
バック制御の場合には例えば、エンジン回転数Neと絶
対圧PBAとから空燃比制御基準値を定め、その空燃比
制御基準値を酸素濃度センサ14の出力に応じて補正し
て電磁弁9のソレノイド9aへの供給電流値を表わす空
燃比制御出力値AFOUTをデータとして算出し、その
算出した出力値AFOUTを駆動回路28に供給する。
In this configuration, the A/D converter 23 inputs the absolute pressure Pa A % in the intake manifold 4, the cooling water temperature TW, the intake air temperature TA, the oxygen concentration in the exhaust gas, the vehicle speed V, and the atmospheric pressure P.
Alternatively, the information A is sent to the counter 25, information representing the engine speed Ne, and the digital input camosulator 27 sends on/off information of the negative pressure switch 7 and clutch switch 18 to the CPU 29 via the input/output bus 32. Supplied. When the ignition switch (not shown) is turned on, the CPU 29 repeatedly processes one air-fuel ratio control routine of the program in response to clock pulses, reads the above-mentioned information, and performs air-fuel ratio feedback based on the information. Determine whether to control or air/fuel ratio oven loop 61110. In the case of air-fuel ratio feedback control, for example, an air-fuel ratio control reference value is determined from the engine speed Ne and absolute pressure PBA, and the air-fuel ratio control reference value is corrected according to the output of the oxygen concentration sensor 14 and the electromagnetic valve 9 The air-fuel ratio control output value AFOUT representing the current value supplied to the solenoid 9a is calculated as data, and the calculated output value AFOUT is supplied to the drive circuit 28.

駆動回路28はソレノイド9aに流れる電流値が出力値
AFOUTになるようにソレノイド9aに流れる電流値
を閉ループ制御する。電磁弁9はソレノイド9aに流れ
る電流値に比例した開度となるので出力1i!1AFo
uvに応じた量の吸気2次空気が吸気マニホールド4内
に供給され、供給混合気の空燃比が理論空燃比に向けて
フィードバック制御される。また、オープンループ制御
の場合には酸素濃度センサ14の出力に無関係に出力値
AFOU丁が設定されるので電磁弁9は排気ガス中の酸
素濃度以外のエンジンパラメータに応じた開度に定めら
れるか、或いは閉弁して吸気2次空気の供給が停止され
る。
The drive circuit 28 performs closed loop control on the current value flowing through the solenoid 9a so that the current value flowing through the solenoid 9a becomes the output value AFOUT. The solenoid valve 9 opens in proportion to the current value flowing through the solenoid 9a, so the output is 1i! 1AFo
An amount of intake secondary air corresponding to UV is supplied into the intake manifold 4, and the air-fuel ratio of the supplied air-fuel mixture is feedback-controlled toward the stoichiometric air-fuel ratio. In addition, in the case of open loop control, the output value AFOU is set regardless of the output of the oxygen concentration sensor 14, so the opening degree of the solenoid valve 9 is determined according to engine parameters other than the oxygen concentration in the exhaust gas. , or the valve is closed and the supply of intake secondary air is stopped.

次に、本発明の内燃エンジンの冷却水温センサの異常判
別方法の手順を第3図にCPU29の動作フロー図とし
て示した水温センサ異常判別ルーチンに従って説明する
。なお、この異常判別ルーチンは上記した空燃比制御ル
ーチンの処理毎に、又は所定時間毎の割り込みで処理さ
れる。
Next, the procedure of the method for determining an abnormality in a cooling water temperature sensor for an internal combustion engine according to the present invention will be explained according to the water temperature sensor abnormality determining routine shown in FIG. 3 as an operation flow diagram of the CPU 29. Note that this abnormality determination routine is processed every time the above-described air-fuel ratio control routine is processed or by interruption at every predetermined time.

本手順においては、先ず、異常判別フラグnFSが6に
等しいか否かを判別する(ステップ51)。フラグ77
FSは水濡センサ12を含む各種センサが正常か、又は
異常かを表わすためのフラグであり、72FS−6の場
合にはこの水温センサ異常判別ルーチンにおいて水温セ
ンサ12を異常と判別したことを表わす。ステップ51
においてnFs46ならば、フラグnFsが初期化され
た後に水温センサ12が異常であると判別されていない
ので吸気21TA、を読み込みその吸気ITAが高温状
態判別温度TAI(例えば、60℃)より小であるか否
かを判別する(ステップ52)。TA<TAIの場合に
は高吸気温状態でないので冷却水温Twを読み込みその
冷却水ITwが上限温度Tw+(例えば、140℃)よ
り大であるか否かを判別しくステップ53)、Tw≦T
w+−+ならば、冷却水温Twが下限温度TwL(例え
ば、−60℃)より小であるか否かを判別する(ステッ
プ54)。Tw≧TWLならば、水温センサ12は正常
に動作していると判断してタイマAに所定時間t^(例
えば、30SeC)をセットしてダウン計測を開始させ
る(ステップ55)。一方、Tw>Tw+1又はTw 
<TwLならば、水温Twは水温センサ12によって検
出される正常動作範囲外の温度であるのでタイマAの計
測値TTWが0に達したかが否かを判別する(ステップ
56)。水温センサ12の正常動作範囲外の温度が検出
されてからその状態が所定時間tA継続するまでの間、
すなわちTTW>Oならばノイズ等の影響により瞬間的
に正常動作範囲外の温度となったことも考えられるので
水温センサ12が異常であるとは見なさない。しかしな
がら、TT w−0ならば、水温センサ12の正常動作
範囲外の温度が検出されてからその状態が所定時間tA
以上継続したので水温センサ12が異常であると判別し
て異常判別フラグnFsを6に等しくする(ステップ5
7)。
In this procedure, first, it is determined whether the abnormality determination flag nFS is equal to 6 (step 51). flag 77
FS is a flag to indicate whether various sensors including the water wetness sensor 12 are normal or abnormal, and in the case of 72FS-6, it indicates that the water temperature sensor 12 has been determined to be abnormal in this water temperature sensor abnormality determination routine. . Step 51
If nFs is 46, the water temperature sensor 12 is not determined to be abnormal after the flag nFs is initialized, so the intake air 21TA is read and the intake air ITA is smaller than the high temperature state determination temperature TAI (for example, 60°C). It is determined whether or not (step 52). If TA<TAI, it is not a high intake temperature state, so the coolant temperature Tw is read and it is determined whether or not the coolant ITw is higher than the upper limit temperature Tw+ (for example, 140°C) (step 53), Tw≦T.
If w+-+, it is determined whether the cooling water temperature Tw is lower than the lower limit temperature TwL (for example, -60° C.) (step 54). If Tw≧TWL, it is determined that the water temperature sensor 12 is operating normally, and a predetermined time t^ (for example, 30 SeC) is set in the timer A to start down measurement (step 55). On the other hand, Tw>Tw+1 or Tw
If TwL, the water temperature Tw is outside the normal operating range detected by the water temperature sensor 12, so it is determined whether the measured value TTW of timer A has reached 0 (step 56). After the temperature outside the normal operating range of the water temperature sensor 12 is detected until this state continues for a predetermined time tA,
That is, if TTW>O, the water temperature sensor 12 is not considered to be abnormal because it is possible that the temperature momentarily became outside the normal operating range due to the influence of noise or the like. However, if TT w-0, the state remains for a predetermined time tA after the temperature outside the normal operating range of the water temperature sensor 12 is detected.
Since the above continues, it is determined that the water temperature sensor 12 is abnormal and the abnormality determination flag nFs is set equal to 6 (step 5).
7).

よって、フラグ77FSに6がセットされると、次回の
処理サイクルにおいてステップ51の判別後、発光ダイ
オード19を点灯させるために駆動回路33に対する点
灯指令の発生、空燃比フィードバック制御の禁止等のセ
ンサ異常処理を行なう(ステップ58)。
Therefore, when the flag 77FS is set to 6, in the next processing cycle, after the determination in step 51, a lighting command is issued to the drive circuit 33 to light the light emitting diode 19, and sensor abnormalities such as prohibition of air-fuel ratio feedback control are detected. Processing is performed (step 58).

一方、ステップ52において、T^≧TA+の場合には
高吸気温状態であるのでエンジン5の温度が実際に水温
センサ12の正常動作範囲以上、すなわち上限温度Tv
z−+以上になっていて水温センサ12が正常であって
もその出力は正常動作範囲外になる可能性があるのでス
テップ53.54による冷却水mTwの上限及び下限温
度判別を行なわず、直ちにステップ55を実行して今回
の水濡センサ異常判別ルーチン処理を終了する。
On the other hand, in step 52, if T^≧TA+, it is a high intake temperature state, so the temperature of the engine 5 is actually higher than the normal operating range of the water temperature sensor 12, that is, the upper limit temperature Tv.
z-+ and the water temperature sensor 12 is normal, its output may be outside the normal operating range. Step 55 is executed to end the current water wetness sensor abnormality determination routine processing.

11立1皿 以上の如く、本発明の内燃エンジン冷却水温センサの異
常判別方法においては、エンジンの高吸気温状態には水
温センサの出力レベルに拘らず水温センサの異常判別を
禁止するのでエンジン高温状態により水温センサ出力が
正常動作範囲を越えていても水温センサが異常であると
誤判別することが防止される。
As described above, in the internal combustion engine cooling water temperature sensor abnormality determination method of the present invention, the abnormality determination of the water temperature sensor is prohibited when the engine intake temperature is high, regardless of the output level of the water temperature sensor. Even if the water temperature sensor output exceeds the normal operating range depending on the state, it is possible to prevent the water temperature sensor from erroneously determining that it is abnormal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の異常判別方法を適用した空燃比制御装
置の概略を示す構成図、第2図は第1図の装置中の制御
回路の具体的構成を示すブロック図、第3図は本発明の
異常判別方法の手順を示す動作フロー図である。 主要部分の符号の説明 1・・・・・・気化器 2・・・・・・エアクリーナ 3・・・・・・絞り弁 4・・・・・・吸気マニホールド 7・・・・・・負圧スイッチ 8・・・・・・吸気2次空気供給通路 9・・・・・・リニア型電磁弁 10・・・・・・絶対圧センサ 11・・・・・・クランク角センサ 12・・・・・・冷却水温センサ 14・・・・・・酸素濃度センサ 15・・・・・・排気マニホールド 16・・・・・・車速センサ 17・・・・・・大気圧センサ
FIG. 1 is a block diagram showing an outline of an air-fuel ratio control device to which the abnormality determination method of the present invention is applied, FIG. 2 is a block diagram showing a specific configuration of a control circuit in the device in FIG. 1, and FIG. FIG. 3 is an operation flow diagram showing the procedure of the abnormality determination method of the present invention. Explanation of symbols for main parts 1... Carburetor 2... Air cleaner 3... Throttle valve 4... Intake manifold 7... Negative pressure Switch 8...Intake secondary air supply passage 9...Linear type solenoid valve 10...Absolute pressure sensor 11...Crank angle sensor 12... ... Cooling water temperature sensor 14 ... Oxygen concentration sensor 15 ... Exhaust manifold 16 ... Vehicle speed sensor 17 ... Atmospheric pressure sensor

Claims (1)

【特許請求の範囲】[Claims]  内燃エンジンの冷却水温を含むエンジン運転パラメー
タに基づいて供給混合気の空燃比を制御する空燃比制御
装置の冷却水温センサの異常判別方法であって、前記内
燃エンジンの吸気温が所定温度以上の高吸気温状態以外
であることを検出し、その高吸気温状態以外の時に前記
水温センサの出力レベルが上限値及び下限値の範囲以外
であることを検出したときには前記水温センサが異常で
あると判別することを特徴とする異常判別方法。
A method for determining an abnormality in a cooling water temperature sensor of an air-fuel ratio control device that controls an air-fuel ratio of a supplied air-fuel mixture based on engine operating parameters including a cooling water temperature of the internal combustion engine, the method comprising: When detecting that the intake temperature is other than the high intake temperature state and detecting that the output level of the water temperature sensor is outside the range of the upper limit value and the lower limit value when the intake temperature state is other than the high intake temperature state, it is determined that the water temperature sensor is abnormal. An abnormality determination method characterized by:
JP7798387A 1987-03-31 1987-03-31 Trouble discriminating method for cooling water temperature sensor in internal combustion engine air-fuel ratio controller Pending JPS63243437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7798387A JPS63243437A (en) 1987-03-31 1987-03-31 Trouble discriminating method for cooling water temperature sensor in internal combustion engine air-fuel ratio controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7798387A JPS63243437A (en) 1987-03-31 1987-03-31 Trouble discriminating method for cooling water temperature sensor in internal combustion engine air-fuel ratio controller

Publications (1)

Publication Number Publication Date
JPS63243437A true JPS63243437A (en) 1988-10-11

Family

ID=13649102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7798387A Pending JPS63243437A (en) 1987-03-31 1987-03-31 Trouble discriminating method for cooling water temperature sensor in internal combustion engine air-fuel ratio controller

Country Status (1)

Country Link
JP (1) JPS63243437A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100588495B1 (en) * 1999-12-30 2006-06-13 현대자동차주식회사 An Detection method at Coolant Temperature Sensor Error

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100588495B1 (en) * 1999-12-30 2006-06-13 현대자동차주식회사 An Detection method at Coolant Temperature Sensor Error

Similar Documents

Publication Publication Date Title
US5715676A (en) Method and apparatus for monitoring the starting behavior of a catalytic conversion system in an automotive vehicle
US7934420B2 (en) Test method for an exhaust gas probe of an internal combustion engine, in particular for a lambda probe
JP2007077969A (en) Knock determining device for internal combustion engine
JP3879368B2 (en) Engine system abnormality determination device
WO2007091457A1 (en) Operation control method based on ion current of internal combustion engine
US7093430B2 (en) Method and device for implementing a method for ascertaining the load condition of a component arranged in an exhaust-gas region of an internal combustion engine
JPS63243437A (en) Trouble discriminating method for cooling water temperature sensor in internal combustion engine air-fuel ratio controller
US4512313A (en) Engine control system having exhaust gas sensor
JP2005248825A (en) Abnormality diagnostic device for internal combustion engine
WO2007091458A1 (en) Combustion state judging method for internal combustion engine
JPH07293315A (en) Air-fuel ratio detecting method
JP2000045851A (en) Failure determination device for water temperature sensor
JP2000291485A (en) Misfire detecting device for engine
JP2009299485A (en) Abnormality diagnostic device for air flow meter
JP2003293842A (en) Failure determining device for water temperature sensor
KR100380070B1 (en) A method for detecting leakage of exhaust gas
JP2531157B2 (en) Fuel supply amount control device for electronic fuel injection engine
JPH07293310A (en) Engine error control inhibiting method
JPS63113171A (en) Air-fuel ratio control method for internal combustion engine for vehicle
US20050060988A1 (en) Controller for an internal combustion engine
JPS63246447A (en) Abnormality judging method for negative pressure switch
JPH0674031A (en) Secondary air supplying control device for internal combustion engine and automobile provided therewith
JPS5934438A (en) Air-fuel ratio feedback control method
JP2002317686A (en) Suction pressure detecting method for internal combustion engine
JP2550796B2 (en) Exhaust gas recirculation control device failure diagnosis device