JPS6324336B2 - - Google Patents

Info

Publication number
JPS6324336B2
JPS6324336B2 JP7836479A JP7836479A JPS6324336B2 JP S6324336 B2 JPS6324336 B2 JP S6324336B2 JP 7836479 A JP7836479 A JP 7836479A JP 7836479 A JP7836479 A JP 7836479A JP S6324336 B2 JPS6324336 B2 JP S6324336B2
Authority
JP
Japan
Prior art keywords
signal
low frequency
phase
frequency signal
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7836479A
Other languages
Japanese (ja)
Other versions
JPS562760A (en
Inventor
Toshio Sato
Fumio Makita
Kazuhiro Fujiwara
Hiroshi Okano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK, Mitsubishi Electric Corp filed Critical Kokusai Denshin Denwa KK
Priority to JP7836479A priority Critical patent/JPS562760A/en
Publication of JPS562760A publication Critical patent/JPS562760A/en
Publication of JPS6324336B2 publication Critical patent/JPS6324336B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/002Reducing depolarization effects

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Relay Systems (AREA)

Description

【発明の詳細な説明】 この発明は、無線通信の分野において移動物体
と固定局との間における送信周波数帯の交差偏波
発生量を検出するときに、移動物体と固定局間の
距離が変動することにより検出精度が劣下するの
を自動補償することにより高精度に交差偏波発生
量を検出する交差偏波測定装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION This invention provides a method for detecting the amount of cross-polarized waves generated in a transmission frequency band between a moving object and a fixed station in the field of wireless communication, when the distance between the moving object and the fixed station changes. The present invention relates to a cross-polarized wave measuring device that detects the amount of cross-polarized wave generation with high accuracy by automatically compensating for the deterioration in detection accuracy caused by the above.

従来この種の装置としては、地上較正装置から
の電波を受信することによりアンテナ装置の交差
偏波特性を採取していた。しかし、この地上較正
装置からの電波による方法では地面反射等の測定
誤差を含み、近年直交偏波給電方式において要求
されている高精度交差偏波識別度を有するアンテ
ナ装置に対しては不適当である。このため、被測
定アンテナの給電装置の2つの直交する偏波入力
端子に無変調搬送波と第1の低周波信号により変
調した搬送波抑圧変調波を各々入力し、被測定ア
ンテナの偏波特性により互いに混入した偏波成分
を移動物体を折り返して再び受信し、交差偏波成
分の主偏波成分に対する位相・振幅成分を分離・
検出する。ところが、この交差偏波成分は送信側
にて発生後送受信間の遅延時間が経過した後受信
されることとなり、衛星の軌道状態により変化す
ることが明らかである。
Conventionally, this type of device has collected the cross-polarization characteristics of an antenna device by receiving radio waves from a ground calibration device. However, this method using radio waves from a ground calibration device includes measurement errors such as ground reflection, and is unsuitable for antenna devices that have high-accuracy cross-polarization discrimination, which is required in recent years in orthogonal polarization feeding systems. be. For this purpose, an unmodulated carrier wave and a carrier suppressed modulated wave modulated by the first low frequency signal are input to two orthogonal polarization input terminals of the power supply device of the antenna under test, and the polarization characteristics of the antenna under test are The mixed polarization components are returned to the moving object and received again, and the phase and amplitude components of the cross-polarization components relative to the main polarization components are separated.
To detect. However, this cross-polarized wave component is received on the transmitting side after a delay time between transmission and reception has elapsed after it is generated, and it is clear that it changes depending on the orbital state of the satellite.

従来の送信周波数帯における交差偏波測定装置
は送受信間の遅延時間の補償を行なわないので、
移動物体の軌道変化に対してその変化に応じて低
周波成分に含まれる交差偏波成分を同期検波する
回路の位相調整を必要としなければならず、精度
の良いかつ操作の簡単な測定ができないなどの欠
点を有していた。
Conventional cross-polarization measurement equipment in the transmission frequency band does not compensate for the delay time between transmission and reception.
It is necessary to adjust the phase of a circuit that synchronously detects cross-polarized components included in low-frequency components in response to changes in the trajectory of a moving object, making accurate and easy-to-operate measurements impossible. It had drawbacks such as.

この発明は上記のような従来のものの欠点を除
去するためになされたもので、主偏波成分として
送信される信号に、従来の無変調搬送波だけでな
く第2の低周波信号により変調された搬送波残留
信号とし、この第2の低周波信号が送受信間の遅
延時間の変化により変動する送受信間位相差を検
出し、この位相差差信号によつて交差偏波成分を
同期検波する第1の低周波信号を自動調整するこ
とにより、位相調整不要とすることにより高精度
に送信周波数帯の交差偏波を測定することを目的
としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and it modulates the signal transmitted as the main polarization component not only with the conventional unmodulated carrier wave but also with a second low frequency signal. The second low-frequency signal is used as a carrier wave residual signal, and the second low-frequency signal detects the phase difference between transmitting and receiving that varies due to changes in the delay time between transmitting and receiving, and uses this phase difference signal to synchronously detect cross-polarized components. The objective is to measure cross-polarized waves in the transmission frequency band with high precision by automatically adjusting the low-frequency signal and eliminating the need for phase adjustment.

以下、この発明の一実施例を第1図について説
明する。第1図において、1は搬送波発生器であ
る。この搬送波発生器1により発生された搬送波
は、搬送波残留変調器2にて同期部24から発生
した第2の低周波信号30により変調され残留搬
送波27および側帯波28となり送信波帯給電部
4に入力される。一方、同じく搬送波発生器1に
より発生された搬送波は、搬送波抑圧変調器3に
て同期部24から発生した第1の低周波信号31
により変調され側帯波29となり、同じく送信波
帯給電部4に入力されて側帯波28に対し交差成
分となる。これらの残留搬送波27側帯波28,
29は送信アンテナ5を経由したとき残留搬送波
27側帯波28,29と、送信波帯給電部4、送
信アンテナ5の偏波特性による劣化分が混入して
送信波25として移動物体の受信アンテナ6、周
波数変換装置7、送信アンテナ8を経由して受信
波26として受信アンテナ9にて受信される。こ
こで、送信波25受信波26が移動物体の軌道変
化により伝播時間(ROUND TRIP TIME)の
変化をうけることが明らかである。受信アンテナ
9により受信された受信波26は受信波帯給電部
10、受信周波数変換装置11、第1中間周波増
幅器13、第2中間周波変換増幅器14により共
通増幅され残留搬送波27に関する成分のみが狭
帯域フイルター15にて分離後、基準信号検出部
16、ループフイルタ20、電圧制御発振器21
を通過し位相同期ループおよび自動利得制御ルー
プを構成し、交差偏波信号を規格化する。側帯波
28,29の交差偏波成分は第2中間周波変換増
幅器14から同一の第2中間周波信号を分配し、
各々、位相検波器17,18に入力し、位相検波
器17においては基準位相信号36を基準として
中間周波信号の同相成分を位相検波し、位相検波
器18においては基準位相信号36を基準として
中間周波信号の直交位相成分を検波し、同期部2
4からの位相補償され第1の低周波信号31と同
一周波数の第3の低周波信号32により同期検波
器22,23により同期検波し平滑されて主偏波
成分に同相なDC出力34と直交したDC出力35
を検出する。位相検波器17,18,19及び基
準信号検出部16には同一周波数で位相の調整さ
れた基準位相信号36が入力されている。ここ
で、送受信間の遅延時間を検出するために同じく
第2中間周波変換増幅器14から第2の低周波信
号30の成分を検出し位相検波器19にて位相検
波後、送受信間の遅延時間により移相された第2
の低周波信号30と同一周波数の第4の低周波信
号33として同期回路24に入力し第2の低周波
信号30と第4の低周波信号33の位相差を測定
する。この位相差に相当した遅延時間を同期回路
24にて第1の低周波信号31に付加し第3の低
周波信号32としている。送信アンテナ5と受信
アンテナ9、送信波帯給電部4と受信波帯給電部
10、受信アンテナ6と送信アンテナ8とは各々
送受信用に分けて構成しているが、共用アンテ
ナ、共用給電部として構成してもこの発明の要旨
を変更することはない。
An embodiment of the present invention will be described below with reference to FIG. In FIG. 1, 1 is a carrier wave generator. The carrier wave generated by the carrier wave generator 1 is modulated by the second low frequency signal 30 generated from the synchronization section 24 in the carrier wave residual modulator 2, and becomes a residual carrier wave 27 and a sideband wave 28, which are sent to the transmission wave band feeding section 4. is input. On the other hand, the carrier wave also generated by the carrier wave generator 1 is transmitted to the first low frequency signal 31 generated from the synchronization section 24 in the carrier wave suppression modulator 3.
The modulated signal becomes a sideband wave 29, which is also input to the transmission waveband feeder 4 and becomes a cross component with respect to the sideband wave 28. These residual carrier waves 27 sideband waves 28,
29 indicates that when passing through the transmitting antenna 5, residual carrier waves 27, sideband waves 28, 29, and deterioration due to the polarization characteristics of the transmitting wave band feeding section 4 and the transmitting antenna 5 are mixed, and the transmitted wave 25 is sent to the receiving antenna of the moving object. 6, the frequency converter 7 and the transmitting antenna 8, and the received wave 26 is received by the receiving antenna 9. Here, it is clear that the transmitted wave 25 and the received wave 26 undergo a change in propagation time (ROUND TRIP TIME) due to a change in the orbit of the moving object. The received wave 26 received by the receiving antenna 9 is commonly amplified by the receiving waveband feeding unit 10, the receiving frequency converter 11, the first intermediate frequency amplifier 13, and the second intermediate frequency converting amplifier 14, and only the component related to the residual carrier wave 27 is narrowed. After separation by band filter 15, reference signal detection section 16, loop filter 20, voltage controlled oscillator 21
to form a phase-locked loop and an automatic gain control loop to normalize the cross-polarized signal. The cross-polarized components of the sidebands 28 and 29 distribute the same second intermediate frequency signal from the second intermediate frequency conversion amplifier 14;
The phase detector 17 phase-detects the in-phase component of the intermediate frequency signal using the reference phase signal 36 as a reference, and the phase detector 18 uses the reference phase signal 36 as a reference to detect the in-phase component of the intermediate frequency signal. The orthogonal phase components of the frequency signal are detected and the synchronization unit 2
A third low frequency signal 32 having the same frequency as the first low frequency signal 31 which has been phase compensated from 4 is synchronously detected by the synchronous detectors 22 and 23, smoothed, and orthogonal to the DC output 34 which is in phase with the main polarization component. DC output 35
Detect. A reference phase signal 36 having the same frequency and whose phase is adjusted is input to the phase detectors 17, 18, 19 and the reference signal detection section 16. Here, in order to detect the delay time between transmission and reception, the component of the second low frequency signal 30 is similarly detected from the second intermediate frequency conversion amplifier 14, and after phase detection by the phase detector 19, the delay time between transmission and reception is detected. phase shifted second
The fourth low frequency signal 33 having the same frequency as the low frequency signal 30 is input to the synchronization circuit 24, and the phase difference between the second low frequency signal 30 and the fourth low frequency signal 33 is measured. A delay time corresponding to this phase difference is added to the first low frequency signal 31 by the synchronization circuit 24 to form a third low frequency signal 32. The transmitting antenna 5 and the receiving antenna 9, the transmitting wave band feeding section 4 and the receiving wave band feeding section 10, and the receiving antenna 6 and the transmitting antenna 8 are configured separately for transmitting and receiving, respectively, but they can be used as a shared antenna or a shared feeding section. Even if the configuration is configured, the gist of the present invention will not be changed.

ここで第1の低周波信号31と第2の低周波信
号30は互いに位相同期した周波数の異なる信号
であり、第1の低周波信号31の周波数をce周
波数とすれば、第2の低周波信号30の周波数は
N/M・ce周波数となつている。ここでM、Nは互 いに素数となる整数である。
Here, the first low frequency signal 31 and the second low frequency signal 30 are signals with different frequencies that are phase synchronized with each other, and if the frequency of the first low frequency signal 31 is the ce frequency, then the second low frequency signal 30 is The frequency of the signal 30 is N/M·ce frequency. Here, M and N are integers that are mutually prime numbers.

本願における交差偏波発生量の検出の原理につ
いて第3図ないし第8図を参照して説明する。
The principle of detecting the amount of cross polarization generated in the present application will be explained with reference to FIGS. 3 to 8.

第3図は第2中間周波数変換増幅器14の入力
信号の周波数スペクトラム図、第4図はフイルタ
15の出力の周波数スペクトラム図である。
3 is a frequency spectrum diagram of the input signal of the second intermediate frequency conversion amplifier 14, and FIG. 4 is a frequency spectrum diagram of the output of the filter 15.

第2中間周波数変換増幅器14、フイルタ1
5、基準信号検出部16、ループフイルタ20、
電圧制御発振器21で構成される位相同期ループ
により、第3図に示す入力信号は、第2中間周波
数変換増幅器14により周波数変換され、フイル
タ15によつて第1と第2の低周波成分が抑圧さ
れ、第4図に示す搬送波は基準位相信号36に位
相同期している。位相検波器17,18は第6図
の基準位相信号36を基準位相として第5図の第
1低周波信号を位相検波する。基準位相信号36
は位相同期ループによつて入力信号の搬送波中心
に位相同期している。位相検波器17または18
により位相検波した出力の時間軸波形を第7図に
示す。基準位相信号36と第1低周波信号とは、
周波数および位相がずれているので、検波出力は
第7図に示す如くビート波形となる。この第7図
の検波出力を第8図bの第3低周波成分32を基
準として同期検波すると第8図aに示す同期検波
出力が得られる。
Second intermediate frequency conversion amplifier 14, filter 1
5, reference signal detection section 16, loop filter 20,
The input signal shown in FIG. 3 is frequency-converted by the second intermediate frequency conversion amplifier 14 by the phase-locked loop composed of the voltage-controlled oscillator 21, and the first and second low frequency components are suppressed by the filter 15. The carrier wave shown in FIG. 4 is phase-locked to the reference phase signal 36. The phase detectors 17 and 18 phase-detect the first low frequency signal shown in FIG. 5 using the reference phase signal 36 shown in FIG. 6 as a reference phase. Reference phase signal 36
is phase-locked to the carrier center of the input signal by a phase-locked loop. Phase detector 17 or 18
FIG. 7 shows the time-domain waveform of the phase-detected output. The reference phase signal 36 and the first low frequency signal are:
Since the frequencies and phases are shifted, the detected output has a beat waveform as shown in FIG. When the detection output of FIG. 7 is synchronously detected using the third low frequency component 32 of FIG. 8b as a reference, the synchronous detection output shown in FIG. 8a is obtained.

第2図を用いて同期回路の説明をする。第1の
低周波信号31の周波数を持つ交差偏波成分の直
交成分・同相成分のうち、一方のみについて説明
する。第1図の同期検波器22,23の検波の様
子をスイツチングによるON/OFFの半波整流を
例にとつて第2図に示した。aは検波感度が最大
となる正しい同期検波の位相状態、bはaの状態
から移動物体が移動し同期回路24にて位相補償
がなかつたときすなわち従来の測定装置の様子。
cは同期検波のタイミングを、同期回路24によ
りaとb間における送受信間の遅延時間の変化分
Trだけ移相して同期検波した状態を示す。した
がつてbでは、検波感度が100・COSθeに低下し
ている。ここでは、変調信号が正弦波としたが、
変調信号が矩形波となるパルス波でもよい。ただ
しそのときはbのときの感度低下は100・(1−
θr/90)となる。この検波感度の低下は、周波数ce を非常に低い周波数とすれば小さくできるが、受
信の位相同期ループの帯域幅との関係から制限さ
れて困難である。
The synchronous circuit will be explained using FIG. Only one of the orthogonal component and the in-phase component of the cross-polarized wave component having the frequency of the first low-frequency signal 31 will be explained. The state of detection by the synchronous detectors 22 and 23 shown in FIG. 1 is shown in FIG. 2 by taking ON/OFF half-wave rectification by switching as an example. A shows the correct phase state of synchronous detection where the detection sensitivity is maximum, and b shows the situation when the moving object moves from the state of a and there is no phase compensation in the synchronization circuit 24, that is, the state of the conventional measuring device.
c is the timing of synchronous detection, which is calculated by the synchronization circuit 24 by the change in delay time between transmission and reception between a and b.
This shows a state in which synchronous detection is performed with a phase shift of Tr. Therefore, in b, the detection sensitivity has decreased to 100·COSθe. Here, the modulation signal is a sine wave, but
The modulation signal may be a pulse wave that is a rectangular wave. However, in that case, the sensitivity decrease at b is 100・(1−
θr/90). This decrease in detection sensitivity can be reduced by setting the frequency ce to a very low frequency, but this is difficult because it is limited by the bandwidth of the receiving phase-locked loop.

なお、上記実施例では、アンテナの送信波帯交
差偏波測定について述べたが、送信波帯で発生す
る降雨等による交差偏波補償装置の制御電圧検出
に用いてもよい。
In the above embodiment, the measurement of cross-polarization in the transmission waveband of the antenna was described, but it may also be used to detect the control voltage of the cross-polarization compensator due to rain or the like occurring in the transmission waveband.

この交信偏波補償装置は、同期検波器22,2
3から得られるDC出力34,35で送信波帯給
電部4内の位相差板を制御するものである。
This communication polarization compensator includes synchronous detectors 22, 2
The DC outputs 34 and 35 obtained from the transmitter 3 control the retardation plate in the transmission waveband power supply unit 4.

また、第1の低周波信号31と第2の低周波信
号30の周波数比M:Nは必らずしも素数比であ
る必要はなく、実用上、相互に干渉しないもので
あればよい。また第1、第2の低周波信号31,
30に同一周波数を使用し、異なつたPNコード
変調を行なうことにより相互の干渉を防止する方
法により同一目的を達成することができる。
Further, the frequency ratio M:N between the first low frequency signal 31 and the second low frequency signal 30 does not necessarily have to be a prime number ratio, and may be one that does not interfere with each other in practical terms. In addition, the first and second low frequency signals 31,
The same purpose can be achieved by using the same frequency for 30 and performing different PN code modulation to prevent mutual interference.

以上のように、この発明によれば、同期回路を
付加したことにより精度の良い操作不要の送信波
帯交差偏波測定が可能となる効果がある。
As described above, according to the present invention, by adding a synchronization circuit, it is possible to perform highly accurate transmission waveband cross-polarization measurement without requiring any operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による一実施例を示すブロツク
構成図、第2図は第1図を説明するための波形
図、第3図は第2中間周波数変換増幅器14の入
力信号の周波数スペクトラム図、第4図は第2図
のフイルタ15の出力信号の周波数スペクトラム
図、第5図は位相検波器の入力信号の周波数スペ
クトラム図、第6図は位相検波の基準位相信号の
周波数スペクトラム図、第7図は位相検波器の出
力波形図、第8図は同期検波の波形説明図であ
る。 図中、1は搬送波発生器、2は搬送波残留変調
器、3は搬送波抑圧変調器、4は送信波帯給電
部、5は送信アンテナ、6は移動物体の受信アン
テナ、7は移動物体の周波数変換装置、8は移動
物体の送信アンテナ、9は受信アンテナ、10は
受信波帯給電部、11は受信周波数変換装置、1
2は局部信号発振器、13は第1中間周波数増幅
器、14は第2中間周波数変換増幅器、15は狭
帯域フイルタ、16は基準信号検出部、17,1
8,19は位相検波器、20はループフイルタ、
21は電圧制御発振器、22,23は同期検波
器、24は同期回路である。尚、30は第2の低
周波信号、31は第1の低周波信号、32は第3
の低周波信号、33は第4の低周波信号である。
FIG. 1 is a block configuration diagram showing an embodiment according to the present invention, FIG. 2 is a waveform diagram for explaining FIG. 1, and FIG. 3 is a frequency spectrum diagram of the input signal of the second intermediate frequency conversion amplifier 14. 4 is a frequency spectrum diagram of the output signal of the filter 15 in FIG. 2, FIG. 5 is a frequency spectrum diagram of the input signal of the phase detector, FIG. 6 is a frequency spectrum diagram of the reference phase signal of phase detection, and FIG. The figure is an output waveform diagram of the phase detector, and FIG. 8 is a waveform explanatory diagram of synchronous detection. In the figure, 1 is a carrier wave generator, 2 is a carrier wave residual modulator, 3 is a carrier wave suppression modulator, 4 is a transmission band feeding section, 5 is a transmission antenna, 6 is a receiving antenna of a moving object, and 7 is a frequency of a moving object Converter, 8 is a transmitting antenna of a moving object, 9 is a receiving antenna, 10 is a receiving waveband feeding section, 11 is a receiving frequency converter, 1
2 is a local signal oscillator, 13 is a first intermediate frequency amplifier, 14 is a second intermediate frequency conversion amplifier, 15 is a narrow band filter, 16 is a reference signal detection section, 17, 1
8 and 19 are phase detectors, 20 is a loop filter,
21 is a voltage controlled oscillator, 22 and 23 are synchronous detectors, and 24 is a synchronous circuit. In addition, 30 is a second low frequency signal, 31 is a first low frequency signal, and 32 is a third low frequency signal.
33 is a fourth low frequency signal.

Claims (1)

【特許請求の範囲】[Claims] 1 搬送波信号を第1の低周波信号で抑圧変調し
て得られる第1の側帯波信号と上記搬送波信号を
第2の低周波信号で残留変調して得られる第2の
側帯波信号を交差偏波信号として送信する送信機
と、上記交差偏波信号が目標物を経由して受信さ
れる受信信号から上記第2の低周波信号と同一周
波数の成分信号を検出する受信機と、上記第1及
び第2の低周波信号を発生すると共に、上記第2
の低周波信号と上記第2の低周波信号と同一周波
数の成分信号の位相差を測定し、この位相差に相
当する遅延時間で上記第1の低周波信号を遅延さ
せた第3の低周波信号を発生する同期回路と、上
記第3の低周波信号で上記受信信号から上記第1
及び第2の側帯波信号を同期検波する同期検波器
とを備えた交差偏波測定装置。
1 A first sideband signal obtained by suppression modulating a carrier signal with a first low frequency signal and a second sideband signal obtained by residual modulating the carrier signal with a second low frequency signal are cross-polarized. a transmitter that transmits the cross-polarized wave signal as a wave signal; a receiver that detects a component signal having the same frequency as the second low-frequency signal from a received signal in which the cross-polarized signal is received via a target; and a second low frequency signal, and the second low frequency signal.
and a component signal having the same frequency as the second low frequency signal, and a third low frequency signal that is obtained by delaying the first low frequency signal by a delay time corresponding to this phase difference. a synchronous circuit that generates a signal, and a synchronous circuit that generates a signal from the received signal using the third low frequency signal.
and a synchronous detector that synchronously detects a second sideband signal.
JP7836479A 1979-06-21 1979-06-21 Cross polarization measuring unit Granted JPS562760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7836479A JPS562760A (en) 1979-06-21 1979-06-21 Cross polarization measuring unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7836479A JPS562760A (en) 1979-06-21 1979-06-21 Cross polarization measuring unit

Publications (2)

Publication Number Publication Date
JPS562760A JPS562760A (en) 1981-01-13
JPS6324336B2 true JPS6324336B2 (en) 1988-05-20

Family

ID=13659939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7836479A Granted JPS562760A (en) 1979-06-21 1979-06-21 Cross polarization measuring unit

Country Status (1)

Country Link
JP (1) JPS562760A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184403A (en) 1985-02-12 1986-08-18 Sotsukishiya:Kk Magnetic head apparatus for magnetic scale

Also Published As

Publication number Publication date
JPS562760A (en) 1981-01-13

Similar Documents

Publication Publication Date Title
EP0395682B1 (en) Closed loop velocity/altitude sensor for fm-cw doppler radars
US4825214A (en) Frequency-modulated continuous wave radar for range measuring
US4107679A (en) Frequency modulator for high-precision range measurements
US3128465A (en) Timing synchronization by radio frequency communication
US5055849A (en) Method and device for measuring velocity of target by utilizing doppler shift of electromagnetic radiation
US4186397A (en) Short range precision navigation and tracking system and method therefor
US4532516A (en) Calibrator for distance measuring equipment
JPH025344B2 (en)
US2528119A (en) Frequency modulation range finder
GB1483236A (en) Device for indicating changes in the position of an object
US3339202A (en) Radiolocation system transmitting sideband signals
US4295140A (en) Faraday rotation measurement method and apparatus
US3648177A (en) Transmitter for distance-measuring system
US3778830A (en) Vibration compensation for range direction finder
JPH06102349A (en) Method and apparatus for measuring speed of moving target by using doppler shift of electromagnetic radiation
GB2545041A (en) Receiver with automatic gain control by an alternating current closed loop for radar applications
US2654884A (en) Radio distance measuring system
JPS6324336B2 (en)
US3800231A (en) Doppler tracker receiver
US3790940A (en) Communication apparatus having a ranging capability
US3263228A (en) Automatic frequency lock-on control system
US5073784A (en) Transmitter location system for frequencies below HF
KR100291559B1 (en) Phase difference measurement apparatus for tuned oneself
US5532701A (en) Arrangement for comparing two temporally separated bursts of signal at two different frequencies
US3337872A (en) Radio navigation system