JPS6324313B2 - - Google Patents

Info

Publication number
JPS6324313B2
JPS6324313B2 JP9018179A JP9018179A JPS6324313B2 JP S6324313 B2 JPS6324313 B2 JP S6324313B2 JP 9018179 A JP9018179 A JP 9018179A JP 9018179 A JP9018179 A JP 9018179A JP S6324313 B2 JPS6324313 B2 JP S6324313B2
Authority
JP
Japan
Prior art keywords
heater
resistance
temperature
electrode
comb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9018179A
Other languages
Japanese (ja)
Other versions
JPS5613689A (en
Inventor
Masayuki Terakado
Shigeharu Nakamoto
Takeo Nishida
Isao Nitsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9018179A priority Critical patent/JPS5613689A/en
Publication of JPS5613689A publication Critical patent/JPS5613689A/en
Publication of JPS6324313B2 publication Critical patent/JPS6324313B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は蓄電池を電源とする携帯用のヘアーカ
ラ等の器具に用いる面状発熱体に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a planar heating element used in portable hair dyes and other devices that use a storage battery as a power source.

従来の頭髪美容器具、例えばヘアーカーラは電
源がない所では使用できないタイプが殆んどで、
寸法的にも大きく、携帯用のものはなかつた。髪
のカール効果は時間の経過と共に減少していくた
め、外出先でカールをする必要に迫られることは
多くの女性が経験しているところである。このこ
とから、小型軽量で手軽にカールできる携帯用の
ヘアーカーラのニーズは極めて高いものであつ
た。携帯用のヘアーカーラがこれまで全くなかつ
た原因としては、電池とヒータと構成のそれぞれ
に問題点があつて、最適な組合せによるヘアーカ
ーラを構成することができなかつたためである。
電源が蓄電池という限られたパワーしか取り出せ
ない条件の下では、各部品間の最適なマツチング
による組合せが商品を設計する上での最も重要な
ポイントであり、その最適化を求める設計が必要
である。
Most conventional hair beauty devices, such as hair curlers, cannot be used where there is no power source.
It was large in size and there was no portable version. Many women experience the need to curl their hair on the go, as the curling effect of their hair diminishes over time. For this reason, there has been an extremely high need for a portable hair curler that is small and lightweight and can be easily curled. The reason why there have been no portable hair curlers is that there were problems with the battery, heater, and structure, and it was not possible to construct a hair curler with an optimal combination.
Under conditions where the power source is a storage battery and only limited power can be extracted, the most important point in product design is the optimal matching of each component, and a design that seeks to optimize this is necessary. .

蓄電池を電源とするヘアーカーラを構成する上
での最大の問題点は、電池の1回充電当りの使用
可能時間をいかに確保するかである。外出先の簡
単なくせ直しであると割切れば1カ所30〜60秒を
費し、計10カ所カールするとして5〜10分の電池
の容量が最低必要となる。この間に消費する電力
は、ヘアーカーラ自身の温度がカール可能な温度
に達するまでに必要な電力と、ヒータ自身から放
熱する熱量の和であるから、ヒータ部は熱容量を
少くし、速く温度が立上がることによつて余分な
放熱を抑える必要がある。またカール時の放熱を
抑えるために、必要最小限の寸法形状に構成する
こと、髪への熱伝達効率の良い直熱タイプのヒー
タ構成とすることが必要である。このような観点
から最適な構成に設計されたヒータ部に対し、電
池も最良のものを組み合せる必要がある。大きな
負荷に耐え得る一般的な電池としては、ニツケ
ル・カドミウム電池があり、現時点ではこれより
も優れたものはないため、この中から最適な寸法
形状と電気容量のものを選定して用いなければな
らない。電池の選択の基準は、スペースが限られ
ている場合には容量的には大型の電池を数個使用
するのが有利であるが、直列に接続した場合の電
圧は数に比例するので、数が少い程ヒータも低抵
抗化する必要が生じる。
The biggest problem in constructing a hair curler that uses a storage battery as a power source is how to ensure the usable time per charge of the battery. If you're just doing a simple hairstyle on the go, it will take 30 to 60 seconds to curl each curl, and if you curl 10 spots in total, you'll need at least a battery capacity of 5 to 10 minutes. The power consumed during this time is the sum of the power required for the hair curler's own temperature to reach a curling temperature and the amount of heat radiated from the heater itself, so the heater part has a small heat capacity and the temperature rises quickly. It is necessary to suppress excess heat dissipation due to the rise in the temperature. Furthermore, in order to suppress heat dissipation during curling, it is necessary to configure the hair to the minimum required size and shape, and to configure the heater to be a direct heating type that has good heat transfer efficiency to the hair. From this point of view, it is necessary to combine the best battery with a heater section designed to have an optimal configuration. Nickel-cadmium batteries are common batteries that can withstand large loads, and there are currently no better ones than these, so it is necessary to select and use the one with the optimal size, shape, and electrical capacity. It won't happen. The criteria for selecting batteries is that if space is limited, it is advantageous to use several large batteries in terms of capacity, but since the voltage when connected in series is proportional to the number, As the resistance decreases, the resistance of the heater also needs to be lowered.

設計上の2番目の課題はヒータの温度の設定の
温度制御である。カールに最低必要な温度は60℃
以上であり、髪を傷めない最高温度は80℃である
と言われているが、この温度の範囲にヒータの温
度を正確に制御する技術手段が必要である。使い
勝手から言えば、60℃に瞬時に達し、飽和温度は
80℃以下で、カール時においても、髪の接触、非
接触にかかわらず60〜80℃を維持する能力が要求
される。このような用途に適用できる応答の速い
温度制御を構成することは容易なことではない
が、ヒータ自身にこのような温度制御性を有する
正抵抗温度係数面状発熱体を用いれば上記の温度
範囲であれば十分な性能を得ることができる。正
抵抗温度係数面状ヒータは結晶性樹脂と導電材料
微粉末との混練物から作ることが可能で、この原
理は結晶性樹脂の結晶変態点における急激な膨張
により導電材料微粉末間の電気的結合が失なわ
れ、抵抗値が急激に増加するものと考えられてい
る。混練物自体は均熱効果と剛性が不十分なの
と、量産時の抵抗値の微調整が容易でないことか
ら、この混練物を適当な結合剤と溶剤を用いてペ
ースト化し、これを均熱効果の良い基板上に塗布
あるいは印刷、乾燥して構成する方法が必要であ
る。結晶性樹脂としてはエチレン酢酸ビニル共重
合体で、結晶変態点が90℃前後の材料を用いれば
80℃付近で急激に抵抗値が増大する特性が得られ
る。なおポリエチレンまたはナイロン等も用いる
ことができる。
The second design issue is temperature control of heater temperature settings. The minimum temperature required for curling is 60℃
The maximum temperature without damaging hair is said to be 80°C, but a technical means is needed to accurately control the temperature of the heater within this temperature range. In terms of ease of use, it reaches 60℃ instantly, and the saturation temperature is
It is required to have the ability to maintain a temperature of 60 to 80°C at 80°C or lower, even during curling, regardless of whether the hair is in contact or not. It is not easy to configure temperature control with a quick response that can be applied to such applications, but if a positive resistance temperature coefficient sheet heating element that has such temperature controllability is used in the heater itself, the above temperature range can be achieved. If so, sufficient performance can be obtained. Positive resistance temperature coefficient sheet heaters can be made from a mixture of crystalline resin and conductive material fine powder, and this principle is based on the rapid expansion of the crystalline resin at its crystal transformation point, which causes the electric current between the conductive material fine powders to increase. It is believed that the bond is lost and the resistance value increases rapidly. The kneaded material itself has insufficient heat soaking effect and rigidity, and fine adjustment of the resistance value during mass production is not easy. Therefore, this kneaded material is made into a paste using an appropriate binder and solvent, and this is made into a paste with a heat soaking effect. A method of coating or printing and drying on a substrate with good quality is required. The crystalline resin is ethylene-vinyl acetate copolymer, which has a crystal transformation point of around 90°C.
A characteristic is obtained in which the resistance value increases rapidly at around 80°C. Note that polyethylene, nylon, etc. can also be used.

構成上の3番目の課題は、電池の出力電圧で発
熱することのできる正抵抗温度係数面状ヒータを
製作することである。
The third structural issue is to manufacture a positive resistance temperature coefficient sheet heater that can generate heat using the output voltage of the battery.

電池の出力電圧は既に述べたように、大型を用
いて数を少くした方が容量の点で有利なために、
なるべく低電圧に設定したい。しかし、ヒータは
その原理から明らかな通り、高温時には高抵抗に
変化できるような導電材料微粉末の配合比率に抑
える必要があるので極端な低抵抗化は不可能であ
る。抵抗値を低減させる検討を行つた結果、エチ
レン酢酸ビニル共重合体とフアーネス系カーボン
ブラツクの配合比を40:60、35:65、30:70と変
化させると抵抗温度係数が減少し、最低必要と考
えられる70〜80℃の抵抗温度係数0.05℃-1を満足
するのは35:65が限界であることがわかつた。こ
の場合の常温の抵抗値は塗布厚さを300μとした
にもかかわらず200Ω/□が下限であつた。200
Ω/□は電池1個当りの出力電圧が1.2Vである
こと考えると、相当に高抵抗である。ヒータ通電
開始直後10W程度の出力を得るためには1.2Vで
あれば0.14Ω、2.4Vであれば0.58Ωでなければな
らず、ヒータ材料の面積抵抗値に対し3〜4桁の
低抵抗化が必要となる。3〜4桁もの低抵抗化を
実現するためには通常の考え方の範囲では不可能
で思い切つた対策が必要である。
Regarding the output voltage of batteries, as mentioned above, it is advantageous in terms of capacity to use large batteries and a small number of batteries.
I want to set the voltage as low as possible. However, as is clear from the principle of the heater, it is necessary to suppress the blending ratio of the conductive material fine powder to a level that can change the resistance to high at high temperatures, so it is impossible to achieve an extremely low resistance. As a result of studying how to reduce the resistance value, we found that by changing the blending ratio of ethylene vinyl acetate copolymer and furnace carbon black to 40:60, 35:65, and 30:70, the temperature coefficient of resistance decreased and the minimum required value was achieved. It was found that 35:65 is the limit for satisfying the temperature coefficient of resistance of 0.05℃ -1 at 70 to 80℃. In this case, the lower limit of the resistance value at room temperature was 200Ω/□ even though the coating thickness was 300μ. 200
Ω/□ is a considerably high resistance considering that the output voltage per battery is 1.2V. In order to obtain an output of about 10W immediately after the heater starts energizing, the resistance must be 0.14Ω for 1.2V and 0.58Ω for 2.4V, which is a 3- to 4-digit reduction in resistance compared to the sheet resistance value of the heater material. Is required. In order to achieve a resistance reduction of 3 to 4 orders of magnitude, drastic measures are required, which is impossible within the scope of normal thinking.

低抵抗化を実現するために常識を越えた極微細
のくし形電極を構成することを試みた結果、電極
材料自身の面積抵抗、電極パターン、ヒータの寸
法等によつて様々な関係が明確になつた。まず電
極材料の選定であるが、正抵抗温度係数面状ヒー
タを製造する工程において、抵抗ペーストを塗布
あるいは印刷、乾燥する関係から基板は最初平板
である必要がある。次いで、毛髪のカール部を直
接構成するために直径10〜20mmに巻き込む工程が
ある。したがつて、電極を含めヒータを構成する
材料は十分な可撓性が必要で、特に大電流を扱う
電極部分は十分な余裕が必要である。可撓性の基
板としてはポリエステルフイルムとアルミ板のラ
ミネート板が均熱性、熱容量、電気絶縁性、耐熱
収縮性等に優れているのでこれを使用する。電極
材料はポリエステルフイルム上に構成可能で可撓
性があり、構成精度が良く、低抵抗でなくてはな
らない。この条件に適合した電極材料は少く特別
な配合をしたエポキシバインダ銀ペースト等が適
用できるのみである。これらの銀ペーストは銀の
含有率を印刷性の限界まで高め、可撓性付与剤の
添加量も硬化性を阻害しない限界まで高めた種類
のものでなくてはならない。銀ペーストの低抵抗
化を試みた結果、銀粉末含有比率は80%が印刷性
の限界であり、塗布厚は精度の面と可撓性の面か
ら50μが限界であつた。抵抗値は銀含有比率70%
で0.3Ω/□、75%で0.1Ω、80%で0.04Ωであつ
た。銀ペーストの抵抗値は0.04Ω/□が限界であ
るため1対10の縦横比で配線しただけでも0.4Ω
に達してしまい、カールに必要な寸法のヒータを
極微細のくし形電極で構成しても、電極自身の抵
抗値によつて低抵抗が容易に得られないことがわ
かつた。
As a result of trying to construct ultra-fine comb-shaped electrodes that go beyond common sense in order to achieve low resistance, we found that various relationships were clearly established depending on the sheet resistance of the electrode material itself, the electrode pattern, the dimensions of the heater, etc. Summer. First, regarding the selection of electrode materials, in the process of manufacturing a positive resistance temperature coefficient sheet heater, the substrate must initially be a flat plate because the resistance paste is applied, printed, and dried. Next, there is a step of winding the hair to a diameter of 10-20 mm to directly form the curl part. Therefore, the materials constituting the heater, including the electrodes, must have sufficient flexibility, and in particular, the electrode portions that handle large currents must have sufficient flexibility. As the flexible substrate, a laminate plate of a polyester film and an aluminum plate is used because it has excellent heat uniformity, heat capacity, electrical insulation, heat shrinkage resistance, etc. The electrode material must be able to be constructed on a polyester film, be flexible, have good construction precision, and have low resistance. There are only a few electrode materials that meet this condition, and only a specially formulated epoxy binder silver paste can be used. These silver pastes must be of a type in which the silver content is increased to the limit of printability, and the amount of flexibility imparting agent added is increased to the limit that does not impede curability. As a result of attempts to lower the resistance of the silver paste, it was found that a silver powder content ratio of 80% was the limit for printability, and a coating thickness of 50μ was the limit from the viewpoint of precision and flexibility. Resistance value is 70% silver content
It was 0.3Ω/□ at 75%, 0.1Ω at 80%, and 0.04Ω at 80%. The resistance value of silver paste is limited to 0.04Ω/□, so even wiring with an aspect ratio of 1:10 will reduce the resistance to 0.4Ω.
It was found that even if a heater of the size required for curling was constructed from extremely fine comb-shaped electrodes, low resistance could not be easily obtained due to the resistance value of the electrodes themselves.

次に、低抵抗化を実現する電極パターンである
が、極微細のくし形電極の設計上重要な寸法は、
電極間隔、電極のくし部の幅と長さの比、ヒータ
の全長を定めるくし付根部分の幅と長さの比であ
る。電極間隔は主に抵抗体の電力密度を左右し、
電極各部の幅と長さの比は主に抵抗値を左右する
と考えられるが、両者のバランスをうまく調節し
ないと、抵抗体の電力密度は高いが電極部分の占
める面積比率が高くて、ヒータとしての温度が上
らない場合や、電極の抵抗値に対し抵抗体の抵抗
値が極端に低くなつて、合成抵抗として正抵抗温
度係数が得られない場合も考えられる。また、ヒ
ータの寸法にも限界があつて、くし方向に寸法を
拡大すると、くし部の抵抗が増大するために抵抗
体に加わる電圧が低下することになるし、その対
策としてくし部の幅を拡げるとヒータの有効発熱
部の面積比率が小さくなり、いずれの場合も温度
は低下する。くし部のエレメント数を増大する方
向に拡大すると、電極のくし付根部分での抵抗が
増大するし、その対策として配線部分の幅を広げ
ると放熱面積が増大し、温度は低下することにな
る。電極材料の抵抗値自体を低下する以外に基本
的な対策はないと考えられるが、現在作製可能な
銀ペーストは0.04Ω/□が下限であるので現状で
はヒータの寸法的にも限界がある。
Next, regarding the electrode pattern that achieves low resistance, the important dimensions in the design of the ultrafine comb-shaped electrode are:
These are the electrode spacing, the width-to-length ratio of the comb portion of the electrode, and the width-to-length ratio of the comb root portion, which determines the overall length of the heater. The electrode spacing mainly affects the power density of the resistor,
It is thought that the ratio of the width and length of each electrode part mainly affects the resistance value, but if the balance between the two is not properly adjusted, the power density of the resistor is high, but the area ratio occupied by the electrode part is high, making it difficult to use as a heater. There may be cases where the temperature of the electrode does not rise, or where the resistance value of the resistor becomes extremely low relative to the resistance value of the electrode, and a positive temperature coefficient of resistance cannot be obtained as a combined resistance. Additionally, there is a limit to the dimensions of the heater, and if the dimensions are expanded in the comb direction, the resistance of the comb increases and the voltage applied to the resistor decreases.As a countermeasure, the width of the comb is increased. When expanded, the area ratio of the effective heat generating portion of the heater becomes smaller, and in either case, the temperature decreases. Increasing the number of elements in the comb portion increases the resistance at the base of the electrode comb, and as a countermeasure to this, increasing the width of the wiring portion increases the heat dissipation area and lowers the temperature. There seems to be no basic countermeasure other than lowering the resistance value of the electrode material itself, but the lower limit of silver paste that can currently be produced is 0.04Ω/□, so there is currently a limit to the size of the heater.

以上述べた観点から実験的に最適寸法形状の検
討を行い、第1図のようなヒータにおいて第2図
の結果を得た。第2図から明らかなように、電圧
2.4Vの場合電極幅は1.0mm以下で電極間隔が0.5mm
以下であれば、最適組合せにより80℃前後のヒー
タが得られる。実際に用いたヒータの有効発熱部
の寸法は50mm×40mmで、ヒータ寸法としては60mm
×60mmであるが、これを16mmの円筒状に巻いて使
用した。80℃で飽和した時の電力は3W程度であ
るから、2.4Vで600mAhの電池を用いれば約30分
使用可能となる。
From the above-mentioned viewpoint, we experimentally investigated the optimum dimensions and shape, and obtained the results shown in FIG. 2 for the heater shown in FIG. 1. As is clear from Figure 2, the voltage
For 2.4V, the electrode width is 1.0mm or less and the electrode spacing is 0.5mm.
If the temperature is below, a heater with a temperature of around 80°C can be obtained by the optimum combination. The dimensions of the effective heat generating part of the heater actually used were 50 mm x 40 mm, and the heater dimensions were 60 mm.
×60 mm, but this was rolled into a 16 mm cylindrical shape and used. The power when saturated at 80℃ is about 3W, so if you use a 600mAh battery at 2.4V, you can use it for about 30 minutes.

その他設計上の問題として、ヒータの抵抗温度
係数との関連について述べる。ヒータの正抵抗温
度係数の値はヒータの温度安定性を左右するため
に非常に重要であるが、使用する電池の電圧や電
極パターンとの密接な関係を持つているためにこ
れらの関連を明確にする必要がある。電極パター
ンを固定して、70〜80℃の間の平均抵抗温度係数
と電圧と飽和温度との関係を調べた結果を第3図
に示す。電池の電圧は容量的には1.2Vないし
2.4Vが最も望ましいが、容量的に余裕がある場
合には、電圧を優先して3.6Vないし4.8Vに設定
することもできる。その場合を含めると、このヒ
ータは70〜80℃の平均抵抗温度係数で0.05〜0.20
-1に適用できるものである。抵抗温度係数は
0.05℃-1以上あれば実用上十分な温度制御性が得
られるので、必要な範囲を十分にカバーしている
と言える。
As another design issue, we will discuss the relationship with the temperature coefficient of resistance of the heater. The value of the temperature coefficient of positive resistance of a heater is very important as it affects the temperature stability of the heater, but it is important to clarify these relationships because it is closely related to the voltage and electrode pattern of the battery used. It is necessary to Figure 3 shows the results of examining the relationship between the average temperature coefficient of resistance, voltage, and saturation temperature between 70 and 80°C with the electrode pattern fixed. Battery voltage is 1.2V in terms of capacity.
2.4V is most desirable, but if there is sufficient capacity, it is also possible to prioritize the voltage and set it to 3.6V or 4.8V. Including that case, this heater has an average resistance temperature coefficient of 0.05-0.20 at 70-80℃
It is applicable to ℃ -1 . The temperature coefficient of resistance is
If it is 0.05℃ -1 or more, practically sufficient temperature controllability can be obtained, so it can be said that the necessary range is sufficiently covered.

次に第4図〜第6図をもとに実施例について説
明を加える。
Next, the embodiment will be explained based on FIGS. 4 to 6.

第4図は本発明の基づく実施例の面状発熱体を
示し、1は0.2mmのアルミ板、2および2′は25μ
のポリエステルフイルムをホツトメルト接着剤に
よつてアルミ板1の両面にラミネートした電気絶
縁層、3は電極間隔Bが0.4mm、くし部の幅Aが
0.6mm、くし部の長さCが45mm、くし付根部の幅
Dが5mm、長さが50mm、くし部の本数50本、アル
ミ板1の寸法60mm×60mmの電極である。電極3の
材料は硬化性の強いエポキシと可撓性の良いエポ
キシを1対1に配合したバインダに、銀粉末を80
%配合した低抵抗銀ペーストより構成されてい
る。
Figure 4 shows a planar heating element according to an embodiment of the present invention, where 1 is a 0.2 mm aluminum plate, 2 and 2' are 25μ
The electrical insulating layer 3 is made by laminating polyester film on both sides of the aluminum plate 1 with hot melt adhesive, the electrode spacing B is 0.4 mm, and the width A of the comb part
The electrode is 0.6 mm long, the length C of the comb part is 45 mm, the width D of the base of the comb is 5 mm, the length is 50 mm, the number of comb parts is 50, and the dimensions of the aluminum plate 1 are 60 mm x 60 mm. The material for electrode 3 is a binder made of a 1:1 ratio of hardening epoxy and flexible epoxy, and 80% silver powder.
% of low resistance silver paste.

第5図は2.4V用の正抵抗温度係数面状発熱体
を組み込んだヘアーカーラの外観を示し、4は第
4図に示したヒータで、基材上に巻付け円柱状を
している。5はヒータ4との間に髪をはさむクリ
ツプ、6は2個本体7内に設けたニツケルカドミ
ウム電池、8はクリツプ5を開閉操作する押ボタ
ン、9はスイツチである。
Fig. 5 shows the appearance of a hair curler incorporating a 2.4V positive resistance temperature coefficient sheet heating element, and 4 is the heater shown in Fig. 4, which is wrapped around a base material and has a cylindrical shape. Reference numeral 5 indicates a clip for holding hair between the heater 4, 6 indicates two nickel cadmium batteries provided in the main body 7, 8 indicates a push button for opening and closing the clip 5, and 9 indicates a switch.

第6図は、第4図に示した銀電極に、エチレン
酢酸ビニル共重合体とフアーネス系カーボンブラ
ツクを40対60の比率で配合した混練物を、エチレ
ンプロピレンゴムをバインダとして、高沸点溶剤
(例えばテトラヒドロナフタリン)と共にすりつ
ぶしてペースト化した抵抗ペーストを印刷し、焼
付けたヒータの正抵抗温度係数を示す図である。
70〜80℃の平均の抵抗温度係数は0.08℃-1で2.4V
印加で80℃の飽和温度が得られるものである。
Figure 6 shows the silver electrode shown in Figure 4 mixed with a mixture of ethylene vinyl acetate copolymer and furnace carbon black in a ratio of 40:60, ethylene propylene rubber as a binder, and a high boiling point solvent ( FIG. 4 is a diagram showing the positive resistance temperature coefficient of a heater printed and baked with a resistance paste made by grinding it with (for example, tetrahydronaphthalene).
Average resistance temperature coefficient from 70 to 80℃ is 2.4V at 0.08℃ -1
A saturation temperature of 80°C can be obtained when applied.

このようなヘアーカーラは、ヒータ4上に直接
髪を巻つけこれをクリツプ5で挾み込んでカール
することができるものである。電池6への充電は
別に設けた充電器で行なうものである。
Such a hair curler allows hair to be wrapped directly around the heater 4 and then held between the clips 5 and curled. The battery 6 is charged using a separately provided charger.

以上に述べたように、本発明は性能的に優れて
いる反面、高抵抗で電池の負荷としては適合しな
いと考えられていた樹脂とカーボンブラツク分散
系より成る正抵抗温度係数抵抗体を、電極パター
ンや抵抗温度係数の極限設計により、1.2Vの低
電圧にまで適合できるもので、このようなヒータ
の開発により、初めて携帯用のヘアーカーラ等の
器具を実現することができたものである。
As described above, although the present invention has excellent performance, it has a high resistance and was thought to be unsuitable as a battery load. Due to the extreme design of the pattern and temperature coefficient of resistance, it can be applied to voltages as low as 1.2V, and the development of this heater made it possible to create portable hair curlers and other devices for the first time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はくし形電極の平面図、第2図は電極間
隔と幅とヒータの飽和温度の関係を示す特性図、
第3図はヒータの特性と電圧と飽和温度の関係を
示す特性図、第4図A,Bは電極を構成した基板
の実施例を示す平面図と断面図、第5図は2.4V
用ヒータを組込んだヘアーカーラの外観を示す側
面図、第6図は2.4V用ヒータの実施例の抵抗と
温度との関係を示す特性図である。 1……基板(アルミ板)、2,2′……電気絶縁
層、3……電極、4……ヒータ。
Figure 1 is a plan view of the comb-shaped electrode, Figure 2 is a characteristic diagram showing the relationship between electrode spacing, width, and heater saturation temperature.
Fig. 3 is a characteristic diagram showing the relationship between heater characteristics, voltage, and saturation temperature, Fig. 4 A and B are plan views and cross-sectional views showing an example of the substrate that constitutes the electrode, and Fig. 5 is a 2.4V
FIG. 6 is a side view showing the appearance of a hair curler incorporating a 2.4V heater, and FIG. 6 is a characteristic diagram showing the relationship between resistance and temperature of an example of a 2.4V heater. 1... Substrate (aluminum plate), 2, 2'... Electric insulating layer, 3... Electrode, 4... Heater.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリエステルフイルムを両面にラミネートし
たアルミ板を基板として、この基板上に、銀ペー
ストを塗布、乾燥することによりくし形電極を設
け、さらに、その上に、導電性カーボンブラツク
と結晶性樹脂またはその共重合体樹脂との混練物
に結合剤と溶剤を加えペースト状にした発熱体材
料を塗布、乾燥することにより構成し、前記くし
形電極は、その電極間隔が0.5mm以下、電極幅が
1.0mm以下、70〜80℃の平均抵抗温度係数が0.05
〜0.2℃-1であることを特徴とする頭髪美容器具
用の面状発熱体。
1 An aluminum plate with polyester film laminated on both sides is used as a substrate.A comb-shaped electrode is provided on this substrate by applying and drying silver paste, and then conductive carbon black and crystalline resin or its The comb-shaped electrodes are constructed by applying and drying a heating element material made into a paste by adding a binder and a solvent to a mixture kneaded with a copolymer resin.
1.0mm or less, average resistance temperature coefficient of 0.05 from 70 to 80℃
A sheet heating element for hair beauty equipment characterized by a temperature of ~0.2°C -1 .
JP9018179A 1979-07-16 1979-07-16 Panel heater for hair beauty device Granted JPS5613689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9018179A JPS5613689A (en) 1979-07-16 1979-07-16 Panel heater for hair beauty device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9018179A JPS5613689A (en) 1979-07-16 1979-07-16 Panel heater for hair beauty device

Publications (2)

Publication Number Publication Date
JPS5613689A JPS5613689A (en) 1981-02-10
JPS6324313B2 true JPS6324313B2 (en) 1988-05-20

Family

ID=13991311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9018179A Granted JPS5613689A (en) 1979-07-16 1979-07-16 Panel heater for hair beauty device

Country Status (1)

Country Link
JP (1) JPS5613689A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60255738A (en) * 1984-05-30 1985-12-17 Asahi Chem Ind Co Ltd Partial hydrogenation of monocyclic aromatic hydrocarbon
JP2598688Y2 (en) * 1992-04-20 1999-08-16 エヌオーケー株式会社 Planar heating element
EP2365493B1 (en) 2002-06-19 2013-01-09 Panasonic Corporation Method of manufacturing a flexible PTC heating element
CA2559707C (en) 2004-03-12 2010-11-30 Matsushita Electric Industrial Co., Ltd. Heating element and production method therefor
CN101336565B (en) 2006-03-29 2011-09-28 松下电器产业株式会社 Sheet heating element and seat making use of the same
WO2008091003A2 (en) 2007-01-22 2008-07-31 Panasonic Corporation Ptc resistor
KR101265895B1 (en) 2009-10-21 2013-05-20 (주)엘지하우시스 Heating film and heating article comprising the same
CN111372335A (en) * 2018-12-26 2020-07-03 弈禔股份有限公司 Conductive heat-generating material and module using the same

Also Published As

Publication number Publication date
JPS5613689A (en) 1981-02-10

Similar Documents

Publication Publication Date Title
JPS6324313B2 (en)
GB2032271A (en) Electric hair iron
JPS6265401A (en) Regulating method for ordinary heating temperature in thermosensitive electric resistance compositiion
GB2167295A (en) Hairsetter for flexible hair curlers
US5015986A (en) Organic positive temperature coefficient thermistor
KR20220032661A (en) Eyelash curler
JPS6312557Y2 (en)
JPH0449601A (en) Planar heater
JPS59226493A (en) Self-temperature controllable heater
JP2638862B2 (en) Positive low temperature coefficient heating element
JP2636243B2 (en) Positive resistance temperature coefficient heating element
JP2638800B2 (en) Positive resistance temperature coefficient heating element
JP2005322431A (en) Exothermic material, exothermic element, and using method of exothermic element
JPH07107870B2 (en) Positive resistance temperature coefficient heating element
JP3356647B2 (en) Hair curl device
JP3979188B2 (en) Heating element
CN201078860Y (en) Non-metal electric heating component
JPH0646074Y2 (en) Sheet heating element
JPH06203946A (en) Flat heater element
JP2525467Y2 (en) Planar heating element
JP2001227760A (en) Composite heating element
JPH0439888A (en) Plane-like heating body
JPH062234Y2 (en) Sheet heating element
JPH1116663A (en) Heating element and hair set unit
JP2002025757A (en) Portable low-voltage sheet-like heating element and its manufacturing method