JPS6324257B2 - - Google Patents

Info

Publication number
JPS6324257B2
JPS6324257B2 JP18096281A JP18096281A JPS6324257B2 JP S6324257 B2 JPS6324257 B2 JP S6324257B2 JP 18096281 A JP18096281 A JP 18096281A JP 18096281 A JP18096281 A JP 18096281A JP S6324257 B2 JPS6324257 B2 JP S6324257B2
Authority
JP
Japan
Prior art keywords
liquid
gas
sample
continuously
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18096281A
Other languages
Japanese (ja)
Other versions
JPS5883246A (en
Inventor
Hiroshi Kono
Akira Uematsu
Suketoshi Ejiri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onahama Smelting and Refining Co Ltd
Original Assignee
Onahama Smelting and Refining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onahama Smelting and Refining Co Ltd filed Critical Onahama Smelting and Refining Co Ltd
Priority to JP18096281A priority Critical patent/JPS5883246A/en
Publication of JPS5883246A publication Critical patent/JPS5883246A/en
Publication of JPS6324257B2 publication Critical patent/JPS6324257B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1813Specific cations in water, e.g. heavy metals

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、液中の特定元素の測定法および装置
に関し、詳しくは当該元素を含む化学種の水溶液
を電気分解すると該元素の水素化物を生成するよ
うな元素の連続的測定法および装置に関する。 水質分析については、吸光光度法、原子吸光光
度法等の微量分析法が確立されている。しかし、
大気中の成分を分析する方法において、数多くの
連続測定法が開発され実用化されているのに較べ
ると、水質分析の分野ではPH,COD,TOC等の
限られた汚濁指標について連続分析法・装置が開
発され使用されているにすぎない。特に重金属に
関しては、(1)共存物質の影響、(2)含有量が微量で
ある場合が多いため濃縮工程が必要、(3)分析操作
が多段的で複雑になり易いなどの理由により、連
続的測定方法は未だ実現するに至つていない。そ
のため、スポツト的に採取した個々の試料につい
て吸光光度法、原子吸光光度法等の方法を用い
て、分析・測定を行つているのが実状である。 ところが、廃水・河川水などの水中においては
汚染物質の分布はそれらが溶存状態にあるといつ
ても必ずしも一様ではなくて場所的変化が意外に
大きいのみならず、経時的にもかなり変動するの
が普通である。したがつて、試料液をスポツト的
に採取して分析を行うこれまでの方法では、水質
の経時的変動を把握することができなかつた。ま
た試料採取から分析結果を得るまで時間がかかり
すぎ、水質の変動を同時的に把握することもでき
なかつた。したがつて、河川水などの一般水域の
汚染状況の把握、廃水などの水質監視を適確に行
うことが難しかつた。そこで、液中の汚染物質
を、連続的に、しかも試料採取から極く短時間で
分析できる方法の確立が望まれている。 本発明者らは、排水処理工程管理、廃水管理に
おいて特にヒ素As等の監視にあたつて上記のよ
うな必要性を強く感じ、研究を重ねた結果、本発
明の液中の特定元素の連続測定法を完成すること
ができた。 本発明者らは、ヒ素As、セレンSe、アンチモ
ンSbなどの化合物やイオン等の化学種を含有す
る水溶液を電気分解するとこれら元素の水素化物
が生成することに着目し、生成した水素化物をキ
ヤリアガスを用いて検出装置へ導くことにより液
中の前記元素を定量的に測定し得ることを見出し
た。 すなわち、本発明の目的は、一般水域、排廃水
等の液中に存在するヒ素、セレン、アンチモンな
どの連続測定法を提供することにある。 すなわち、本発明の方法を手短かに述べると、 当該元素を含む化学種の水溶液を電気分解する
とその元素のガス状の水素化物が生成する元素の
連続測定法であつて、 試料液を電気分解装置に連続的に供給し、 電気分解装置内で生成したガスを、キヤリアガ
スによりそれとともに検出装置へ連続的に導き、 ガス中に含まれる前記元素の水素化物を連続的
に測定する、 ことからなる液中の前記特定元素の連続測定法で
ある。 本発明の方法は、ヒ素、セレン、アンチモンの
ほか、電気分解により水素化物を生成し、キヤリ
アガスを用いて該水素化物を検出装置へ導き得る
元素に対して適用し得る。 本発明にしたがつて電気分解に供される液にヒ
素()、セレン()、あるいはアンチモン
()などを含む化合物やイオンなどの化学種が
存在すると、それは電気分解の過程で還元されて
水素化物になる。水素化物は、電気分解装置の電
解セルに導入されるキヤリアガスにより、それと
ともにガス状で移送され、検出装置に導かれ、定
性的または定量的に連続測定される。測定結果
は、適当な記録手段に連続的に記録することがで
き、分析者は時々刻々の水質変動を監視すること
ができる。また、試料採取から分析結果を得るま
でを自動化することも容易であり、短時間で結果
を得ることが可能である。 電気分解装置による電気分解は、定電流電気分
解が好ましい。一定電流により電気分解を行う
と、液中の被測定元素濃度と水素化物発生量が高
い相関性を示し、予め作成しておいた検量線を用
い定量分析を行うことができる。検量線は濃度既
知の標準溶液を用いて容易に作成することができ
る。 本発明では、電気分解装置へ導入される試料液
に含まれる測定しようとする元素のすべてが水素
化物に還元される必要はない。また生成した水素
化物のすべてがキヤリアガスにより検出装置へ導
かれる必要はない。試料液中の被測定元素の濃度
と、検出装置において検出される検出値との間に
一定の相関関係があれば十分であり、試料液の供
給流量、電気分解の条件、キヤリアガスの導入流
量などを一定にすれば、前述したように信頼性の
高い検量線を容易に求めることができる。 なお、ヒ素()、セレン()、およびアンチ
モン()は電気分解の過程で還元されてガス状
の水素化物(AsH3,H2Se,SbH3)となるが、
ヒ素(V)、セレン()、およびアンチモン
()は水素化されない。したがつて、試料液中
の全ヒ素、全セレン、および全アンチモンを測定
しようとする場合には、試料液に予め還元処理を
施してヒ素()、セレン()、およびアンチモ
ン()をヒ素()、セレン()、およびアン
チモン()に還元しておく必要がある。還元処
理は、試料液をヒドラジン、アスコルビン酸、二
酸化イオウ等の適当な還元剤に接触させ加熱、冷
却等の処理を施せばよい。 本発明に用いるキヤリアガスとしては、窒素、
アルゴン、ヘリウムなどの不活性なガスが好まし
い。 本発明に用いる検出装置としては、発光光度
法、原子吸光法、誘導結合プラズマ発光分光法、
熱イオン化法、赤外吸収法などを利用した装置が
あげられる。 炎光光度法、誘導結合プラズマ発光分光法を用
いると、二種以上の元素を同時に測定することが
できる利点がある。 なお、電気分解装置に導入される試料液中に妨
害物質、例えば金属イオンやハロゲンイオンが含
まれていると、電着により電極表面を汚したり、
副次的な反応を引き起すなどして正確な測定が困
難になる。そこで、妨害化学種の種類に応じてイ
オン交換樹脂、キレート樹脂その他の吸着剤を用
いて予め除去することが好ましい。 また、以上説明した本発明の方法を実施する連
続測定装置の好ましい構成は次のとおりである。 すなわち、この装置は、当該元素を含む化学種
の水溶液を電気分解するとその元素のガス状の水
素化物が生成する元素の連続測定装置であつて、 試料液を連続的に採取する試料採取装置と、 採取された試料液を電気分解に適切な濃度に希
釈する希釈装置と、 採取された試料液に含まれる電気分解に対する
妨害物質を除去する精製装置と、 採取された試料液を電気分解に適切な酸濃度に
調整する酸濃度調整装置と、 採取された試料液に還元処理を施す還元装置と 前記の諸装置を連続的に経由した試料液が連続
的に供給されて、該試料を電気分解して前記元素
の水素化物を生成させる電解セルを備えた電気分
解装置と、 前記電解セルへキヤリアガスを連続的に供給
し、電解セル内で生成したガスを電解済液ととも
に電解セルから連続的に排出するキヤリアガス供
給装置と、 前記電解セルから排出された電解済液とガスを
分離する気液分離装置と、 気液分離されたガスに含まれる前記水素化物を
連続的に測定する検出装置と、 から構成されている。 またさらに、測定しようとする元素の濃度が既
知である標準溶液を、試料液に代えて前記電気分
解装置に供給し得る、検量線作成のための機構を
備えていると便利である。この機構は、その目的
を達成し得る限り、試料液採取装置の後、電気分
解装置の前までの試料が流れるライン上の適宜の
位置に配置される。 第1図(平面図)、第2図(立面図)は、本発
明に用いる電気分解装置の一例を示した図であ
る。図中11は上部が開口した大体直方体の容器
(電解セル)で、直方体の短辺にあたる側壁12
に試料液導入管13が、そしてその反対側の側壁
14に気液排出管15が、それぞれ接続してい
る。蓋16は、容器11の上端から外向きに延び
る長方形のフランジ17に丁度当接する大きさ、
形状で、気密に装着でき、ボルト18およびナツ
ト19により脱着自在である。この蓋16には、
キヤリアガス導入管20が接続するとともに、二
つの電極21および22が備わつている。二つの
板状電極21,22は、蓋16をフランジ17に
装着したときに、容器11内の試料液中に浸り、
かつ容器11の長手方向に沿つて配置されるよう
に支持棒23,24により蓋16に支持されてい
る。一対の電極板21および22は、白金製であ
ることが好ましい。これらの電極は、定電流電源
の所定端子へ接続される。電気分解により、ヒ素
等の水素化物のほかに水素や酸素も生成するが、
これらはいずれもキヤリアガスにより運ばれて電
解済液(電気分解を経過の液)とともに、気液排
出管15から容器外へ出る。気液排出管15に続
く垂直な管25と、側部に排液口26を有する円
管状容器27は、気液分離器の一部を構成するも
のである。気液分離された気体は、管25の上方
へ向かい検出装置へ導かれる。液は排液口26か
ら排出される。 一定の濃度で被測定元素を含有する試料液から
生成する水素化物の量は、電解セルの容量、電極
面積、電極間距離、電解電流、試料液を電解セル
へ供給する流量、試料液の酸濃度等に依存するの
で、適当に調節する。このうち、電解セルの仕様
は任意に選べるが、電解所要電力を小さくし、装
置を小型化して応答速度を大きくするには望まし
い条件があり、例えばセル容量5〜20cm3、電極面
積3〜10cm2、極間距離0.3〜1.0cm程度が実用的で
ある。このとき、電解電流を0.3〜3アンペアの
範囲の定電流にすると、被測定元素(ヒ素、セレ
ン、アンチモン)濃度0.1〜10μg/ml、酸濃度
0.5〜3N、被検液の供給流速2〜20ml/minの範
囲で、水素化物への変換率は良い一定値となり、
被測定元素(ヒ素、セレン、アンチモン)濃度と
水素化物検出値は良い相関性を示す。 本発明の方法により測定可能な濃度は、使用す
る検出装置の感度にもよるが、電解セルに供給さ
れる被検液の濃度として約0.1μg/mlが下限であ
る。採取された試料液中の被測定元素の濃度が高
過ぎる場合には、用いる装置にとつて好ましい濃
度範囲内に予め希釈すればよい。したがつて、
0.1μg/mlから飽和濃度までの広範囲にわたつて
測定可能である。 測定は用いる検出装置により、定性的にも定量
的にも行うことができる。一定の許容値を越えた
時にその信号が発せられるようにすると、半定量
的に測定を行うこともできる。 第3図は、本発明の好ましい実施態様を実施す
るための装置を概念的に表したものである。この
実施態様に即しながら本発明をさらに詳細に説明
する。 この装置では、試料採取装置1、検量線作成機
構10、試料を適切な濃度に希釈する希釈装置
2、液中の妨害物質を除去する精製装置3、試料
液を電気分解に好適な酸濃度に調整する酸濃度調
整装置4、液中のヒ素()、セレン()、及
び/又はアンチモン()を還元するための還元
装置5、および電気分解装置6が、液を移送する
主ライン11によりこの順序で連結されている。
電気分解装置6を出た気液混合物は気液分離装置
8へ導かれ、気体は検出装置9へ導かれて測定さ
れ、液体は装置外へ排出される12。また、電気
分解装置へはキヤリアガス供給装置7が接続さ
れ、電解セル内へキヤリアガスを供給しそこで生
成した水素化物などの移送を助ける。 次にこの第3図の装置の各構成部分を説明す
る。試料採取装置1は、被測定液13の流速に応
じて揚水力可変の定量ポンプ1A、固形物過用
のフイルター1Bおよび試料分取用のオーバーフ
ロー槽1Cから構成されている。この試料採取装
置で連続的に試料採取が行われ、常態では切替コ
ツク10Cを介して所定流量で定常的に希釈装置
2以降へ送られる。 希釈装置2は、混合槽2Dおよび混合槽へ試料
を送り込む送液ポンプ2Cを備え、さらに純水タ
ンク2Aと純水を混合槽2Dへ供給する定量ポン
プ2Bが備わつていて混合槽2Dへ一定流量で純
水を加え試料液を所望の割合に希釈することがで
きる。電気分解装置6にとつて被測定元素が好ま
しい濃度範囲となるように希釈を行うわけである
が、一定の希釈率となるように送液ポンプ2C、
および定量ポンプ2Bの送液流量を予め調整して
おく。なお第3図の例では希釈を一段で行つてい
るが、希釈率が大きい場合には希釈を数段に分け
て行うと誤差を小さくすることができるので望ま
しい。希釈された試料は、送液ポンプ2Eにより
連続的に所定流量で精製装置3へ送られれる。精
製カラム3Aは妨害化学種の種類・数に応じて同
一又は異なる吸着剤を充填した複数段のカラム構
成とすることもできる。 酸濃度調整装置4は、精製装置3を経た試料液
を受入れる混合槽4Cを有し、この混合槽4Cへ
所定濃度の硫酸を収めたタンク4Aから硫酸を一
定流量で供給する定量ポンプ4Bも備わつてい
る。被測定液の酸濃度を予め測定し、所望の酸濃
度が得られるように定量ポンプ4Bの送液流量を
調節しておく。あるいは、採取した試料もしくは
希釈後の試料の酸濃度をPH計などにより測定する
ようにし、その出力に応じて硫酸の供給流量を自
動的に制御するようにしてもよい。この酸濃度調
整装置4を経た試料液は、電気分解に好適な酸濃
度となつている。 還元装置5は、還元剤タンク5A、還元剤を混
合槽5Cへ供給する定量ポンプ5Bを有し、送ら
れてきた試料液は混合槽5C内で還元剤と撹拌混
合され、さらに、ウオーターバス5Dに送られて
加熱される。液中にヒ素()、セレン()、ア
ンチモン()が存在すると還元されてヒ素
()、セレン()、アンチモン()に転換さ
れる。還元処理を施された液は、冷却器5Eを介
して適温に下げられて次の電気分解装置6へ送ら
れる。 電気分解装置6は、前述第1図、第2図のよう
なもので一対の電極を有する電解セル6Aと電解
電源6Bとから構成され、さらにキヤリアガス供
給装置7からキヤリアガスが供給されるようにな
つている。装置7は弁7Aと流量調節器7Bを備
えていて所定流量のキヤリアガスを電解セルに連
続的に供給する。電解セルに一定流量で連続的に
供給された液は電気分解を受けて、生成した水素
化物ガスはキヤリアガスにより連続的に気液分離
装置8へ移送される。 気液分離装置8は、オーバーフロー槽8A、そ
の上蓋から上方へ導かれた送気ライン上に設けら
れたコンデンサー8B、および乾燥剤カラム8C
を備えている。オーバーフロー槽8Aで分離され
た液はオーバーフローして排出され12、分離さ
れた気体はコンデンサー8Bおよび乾燥剤カラム
8Cによりさらに脱水、乾燥された後に、検出装
置9へ導かれる。乾燥剤としては、塩化カルシウ
ム、過塩素酸マグネシウム等が好ましい。 検出装置9としては、この例では炎光光度分析
計が用いられ、これは炎光光度検出器9A、その
電源9B、レコーダー9C、並びに酸素および水
素のガス流量調節器9D,9Eとから構成されて
いる。ここで気液分離装置8から送られてくる気
体は連続的に測定に供され、被測定元素の水素化
物の検出値がレコーダー9Cに自動的に記録され
る。予め作成しておいた検量線を用いることによ
り試料中の被測定元素濃度を知ることができる。 検量線作成機構10は、被測定元素濃度が既知
の標準溶液タンク10Aと定量ポンプ10Bとか
らなり、標準溶液供給ライン10Dは液流方向切
替用の三方コツク10Cにより主ラインに接続さ
れている。測定中は試料が試料採取装置1から希
釈装置2へ主ライン11を流れるように三方コツ
クが調整されていて、標準溶液の流れは停止され
ている。検量線を作成するときは、流れが標準溶
液タンク10Aから三方コツク10Cを介して希
釈装置2の方向となるように三方コツク10Cを
調整する。希釈装置以降は標準溶液を既に説明し
た主ライン上を流して、発生した水素化物を検出
する。いくつかの異なる濃度の標準溶液を用いた
り、ひとつの標準溶液をいくつかの割合に希釈装
置2で希釈して各濃度について検出値を得、電気
分解装置6に供されたいくつかの濃度と検出値と
から検量線を作成する。検量線作成機構を主ライ
ンに連結する位置は、標準溶液を希釈したり、精
製したり、酸濃度調整したり、還元処理を施す必
要がないときは、電気分解装置の直前でもよい。 検量線の情報を予めレコーダー9Cに内蔵させ
た演算装置に記憶させておき、測定された水素化
物の検出値と検量線との比較較正を演算装置に行
わせれば、レコーダー9Cには水素化物濃度を直
接得ることができる。 上記の装置は上記の情報に基づいて市販の部品
を用いて当業者が容易に設計製作することができ
る。本発明者等が組立てたものは検出装置を除い
て巾40cm×高さ50cm×奥行40cmの空間内に納めら
れた。 本発明の方法・装置によると、被測定液中のヒ
素、アンチモン、セレンなどを連続的かつ試料採
取から極く短時間で測定することができ、しかも
精度の高い測定値を得ることができる。また、本
発明の装置は、長期間の連続運転に耐え、安定性
が高く、保守管理が容易で省力化の高いものとす
ることが容易である。また、少ない必要経費で行
うことができるという経済的利点もある。このよ
うに、本発明の方法・装置は、液中のヒ素、アン
チモン、セレンなどの量の経時的変動を追跡し不
断に監視するのに極めて有用である。 電解法により水素化ヒ素を生成させる場合にお
いて、電解電流と水素化ヒ素発生率の関係および
溶液中のヒ素濃度と水素化ヒ素発生量の関係を調
査するため、次の実験を行つた。 Γ実験−電気分解による水素化ヒ素の発生率およ
び発生量 第1図、第2図に示した電気分解装置を用いて
ヒ素標準溶液を電気分解し、水素化ヒ素の発生量
と発生率を求めた。電気分解の条件は次のとおり
であつた。 セル容量 6.5cm3 白金電極面積 4.0cm2 極間距離 0.7cm 電解電流 0.5〜3A 標準溶液のヒ素濃度 0.1〜10μg/ml (ヒ素は亜ヒ酸イオンとして含有されている
が、単体ヒ素に換算した濃度である) 標準溶液の硫酸濃度 1.0N 標準溶液供給流量 5ml/min キヤリアガス(N2)供給流量 200ml/min 上記条件で60分間電解を行い、発生した水素化
ヒ素をさらし粉溶液(5%)に吸収させ、分解、
濃縮操作を施した後に原子吸光分析法によりヒ素
量を測定し、水素化ヒ素としてのヒ素の発生量、
発生率を求めた。発生量、発生率は単体ヒ素に換
算した値として次のように求めた。 発生量(μg/ml)=単体としてのヒ素検出量(μ
g)/溶液の流量(ml/min)×電解時間(min) 発生率(%)=発生量(μg/ml)×100/溶液中
のヒ素濃度(μg/ml) 測定結果を第1表に、電解電流と水素化ヒ素発
生率の関係を第4図に、溶液中のヒ素濃度と水素
化ヒ素発生量の関係を第5図に示す。
The present invention relates to a method and apparatus for measuring a specific element in a liquid, and more particularly to a method and apparatus for continuously measuring an element that produces a hydride of the element when an aqueous solution of a chemical species containing the element is electrolyzed. Regarding water quality analysis, trace analysis methods such as spectrophotometry and atomic absorption spectrometry have been established. but,
Many continuous measurement methods have been developed and put into practical use for analyzing components in the atmosphere, but in the field of water quality analysis, continuous analysis methods and methods have been developed for limited pollution indicators such as PH, COD, and TOC. The device is simply being developed and used. In particular, with regard to heavy metals, continuous analysis is difficult due to (1) the influence of coexisting substances, (2) a concentration process is necessary because the content is often very small, and (3) analysis operations tend to be multistage and complicated. A method for measuring this has not yet been realized. Therefore, the current situation is to analyze and measure individual samples collected at spots using methods such as spectrophotometry and atomic absorption spectrometry. However, in water such as wastewater and river water, the distribution of pollutants is not necessarily uniform even when they are in a dissolved state, and not only does it vary greatly from place to place, but it also changes considerably over time. is normal. Therefore, with the conventional method of collecting and analyzing sample liquids at spots, it has not been possible to understand changes in water quality over time. Furthermore, it took too long to obtain analysis results from sample collection, and it was not possible to simultaneously understand changes in water quality. Therefore, it has been difficult to grasp the pollution status of general water bodies such as river water and to accurately monitor the quality of water such as wastewater. Therefore, it is desired to establish a method that allows contaminants in liquid to be analyzed continuously and in a very short time after sample collection. The present inventors strongly felt the above-mentioned need for monitoring arsenic, etc. in wastewater treatment process management and wastewater management, and as a result of repeated research, the present inventors discovered that the continuation of specific elements in the liquid of the present invention We were able to complete the measurement method. The present inventors focused on the fact that when an aqueous solution containing chemical species such as compounds and ions such as arsenic As, selenium Se, and antimony Sb is electrolyzed, hydrides of these elements are generated, and the generated hydrides are used as a carrier gas. It has been found that the above elements in a liquid can be quantitatively measured by guiding the liquid to a detection device using a liquid. That is, an object of the present invention is to provide a method for continuously measuring arsenic, selenium, antimony, etc. present in liquids such as general water bodies and wastewater. That is, to briefly describe the method of the present invention, it is a continuous measurement method for an element in which a gaseous hydride of the element is generated when an aqueous solution of a chemical species containing the element is electrolyzed, and the method comprises: electrolyzing a sample solution; continuously supplying the gas generated in the electrolyzer to the device, continuously guiding the gas generated in the electrolyzer together with the carrier gas to the detection device, and continuously measuring the hydride of the element contained in the gas. This is a continuous measurement method for the specific element in a liquid. The method of the present invention can be applied to arsenic, selenium, antimony, and other elements whose hydrides can be produced by electrolysis and which can be guided to a detection device using a carrier gas. If chemical species such as compounds or ions containing arsenic (), selenium (), or antimony () are present in the liquid subjected to electrolysis according to the present invention, they will be reduced to hydrogen during the electrolysis process. Become a monster. The hydride is transported therewith in gaseous form by means of a carrier gas introduced into the electrolysis cell of the electrolyzer, guided to a detection device and continuously measured qualitatively or quantitatively. The measurement results can be continuously recorded in a suitable recording means, allowing the analyst to monitor water quality fluctuations from time to time. Furthermore, it is easy to automate the process from sample collection to obtaining analysis results, and results can be obtained in a short time. Electrolysis using an electrolyzer is preferably constant current electrolysis. When electrolysis is performed using a constant current, the concentration of the element to be measured in the liquid and the amount of hydride generated show a high correlation, and quantitative analysis can be performed using a calibration curve prepared in advance. A calibration curve can be easily created using standard solutions of known concentrations. In the present invention, it is not necessary that all of the elements to be measured contained in the sample liquid introduced into the electrolyzer be reduced to hydrides. Furthermore, it is not necessary that all of the generated hydride be guided to the detection device by the carrier gas. It is sufficient if there is a certain correlation between the concentration of the element to be measured in the sample liquid and the detection value detected by the detection device, and it is sufficient that there is a certain correlation between the concentration of the element to be measured in the sample liquid and the detected value detected by the detection device, and the supply flow rate of the sample liquid, the electrolysis conditions, the introduction flow rate of the carrier gas, etc. By keeping constant, a highly reliable calibration curve can be easily obtained as described above. Note that arsenic (), selenium (), and antimony () are reduced to gaseous hydrides (AsH 3 , H 2 Se, SbH 3 ) during the electrolysis process, but
Arsenic (V), selenium (), and antimony () are not hydrogenated. Therefore, when attempting to measure total arsenic, total selenium, and total antimony in a sample solution, the sample solution must be reduced in advance to reduce arsenic (), selenium (), and antimony () to arsenic (). ), selenium (), and antimony (). The reduction treatment may be carried out by bringing the sample solution into contact with a suitable reducing agent such as hydrazine, ascorbic acid, or sulfur dioxide, and performing treatments such as heating and cooling. The carrier gas used in the present invention includes nitrogen,
Inert gases such as argon and helium are preferred. Detection devices used in the present invention include luminescence photometry, atomic absorption spectrometry, inductively coupled plasma emission spectroscopy,
Examples include devices that utilize thermal ionization, infrared absorption, etc. Flame photometry and inductively coupled plasma emission spectroscopy have the advantage that two or more elements can be measured simultaneously. Note that if the sample solution introduced into the electrolyzer contains interfering substances, such as metal ions or halogen ions, they may stain the electrode surface due to electrodeposition.
Accurate measurement becomes difficult due to secondary reactions. Therefore, it is preferable to remove the interfering chemical species in advance using an ion exchange resin, chelate resin, or other adsorbent depending on the type of interfering chemical species. Further, a preferable configuration of a continuous measuring device that implements the method of the present invention explained above is as follows. In other words, this device is a continuous measuring device for an element in which a gaseous hydride of the element is generated when an aqueous solution of a chemical species containing the element is electrolyzed, and a sample collecting device that continuously collects a sample liquid. , a dilution device that dilutes the collected sample solution to a concentration suitable for electrolysis, a purification device that removes substances that interfere with electrolysis contained in the collected sample solution, and a dilution device that dilutes the collected sample solution to a concentration suitable for electrolysis. an acid concentration adjustment device that adjusts the acid concentration to a suitable acid concentration, a reduction device that performs a reduction treatment on the collected sample solution, and a sample solution that has passed through the various devices described above is continuously supplied, and the sample is electrolyzed. an electrolyzer equipped with an electrolytic cell that generates a hydride of the element; a carrier gas is continuously supplied to the electrolytic cell, and the gas generated in the electrolytic cell is continuously transferred from the electrolytic cell together with an electrolyzed solution; a carrier gas supply device for discharging; a gas-liquid separation device for separating the electrolyzed liquid and gas discharged from the electrolytic cell; a detection device for continuously measuring the hydride contained in the gas separated from the gas and liquid; It consists of Furthermore, it is convenient to have a mechanism for creating a calibration curve that can supply a standard solution whose concentration of the element to be measured is known to the electrolyzer instead of the sample solution. This mechanism is placed at an appropriate position on the sample flow line after the sample liquid collection device and before the electrolyzer, as long as it can achieve its purpose. FIG. 1 (plan view) and FIG. 2 (elevation view) are diagrams showing an example of an electrolyzer used in the present invention. In the figure, 11 is a roughly rectangular container (electrolytic cell) with an open top, and the side wall 12 is the short side of the rectangular parallelepiped.
A sample liquid introduction tube 13 is connected to the sample liquid introduction tube 13, and a gas-liquid discharge tube 15 is connected to the side wall 14 on the opposite side. The lid 16 is sized to just abut a rectangular flange 17 extending outward from the top end of the container 11;
Due to its shape, it can be installed in an airtight manner, and can be freely attached and detached using bolts 18 and nuts 19. This lid 16 has
A carrier gas introduction pipe 20 is connected thereto, and two electrodes 21 and 22 are provided. The two plate electrodes 21 and 22 are immersed in the sample liquid in the container 11 when the lid 16 is attached to the flange 17.
Further, it is supported by the lid 16 by support rods 23 and 24 so as to be arranged along the longitudinal direction of the container 11. The pair of electrode plates 21 and 22 are preferably made of platinum. These electrodes are connected to predetermined terminals of a constant current power source. Electrolysis produces hydrogen and oxygen in addition to hydrides such as arsenic, but
All of these are carried by the carrier gas and exit from the container through the gas-liquid discharge pipe 15 together with the electrolyzed liquid (liquid that has undergone electrolysis). A vertical pipe 25 following the gas-liquid discharge pipe 15 and a cylindrical container 27 having a drain port 26 on the side constitute a part of the gas-liquid separator. The separated gas is directed upward through the tube 25 to the detection device. The liquid is drained from the drain port 26. The amount of hydride produced from a sample solution containing the element to be measured at a constant concentration depends on the capacity of the electrolytic cell, the electrode area, the distance between the electrodes, the electrolytic current, the flow rate at which the sample solution is supplied to the electrolytic cell, and the acidity of the sample solution. It depends on the concentration, etc., so adjust it appropriately. Among these, the specifications of the electrolytic cell can be chosen arbitrarily, but there are desirable conditions to reduce the power required for electrolysis, downsize the device, and increase the response speed. For example, cell capacity 5 to 20 cm 3 and electrode area 3 to 10 cm 2. A distance between poles of about 0.3 to 1.0 cm is practical. At this time, when the electrolytic current is set to a constant current in the range of 0.3 to 3 amperes, the concentration of the elements to be measured (arsenic, selenium, antimony) is 0.1 to 10 μg/ml, and the acid concentration is
In the range of 0.5 to 3N and the test liquid supply flow rate of 2 to 20ml/min, the conversion rate to hydride is a good constant value.
There is a good correlation between the concentration of the elements to be measured (arsenic, selenium, antimony) and the detected hydride values. Although the concentration that can be measured by the method of the present invention depends on the sensitivity of the detection device used, the lower limit is about 0.1 μg/ml as the concentration of the test liquid supplied to the electrolytic cell. If the concentration of the element to be measured in the collected sample liquid is too high, it may be diluted in advance to a concentration range suitable for the device used. Therefore,
It can be measured over a wide range from 0.1 μg/ml to saturation concentration. The measurement can be performed qualitatively or quantitatively depending on the detection device used. Semi-quantitative measurements can also be made by emitting a signal when a certain tolerance is exceeded. FIG. 3 is a conceptual representation of an apparatus for carrying out a preferred embodiment of the invention. The present invention will be explained in more detail based on this embodiment. This device includes a sample collection device 1, a calibration curve creation mechanism 10, a dilution device 2 that dilutes the sample to an appropriate concentration, a purification device 3 that removes interfering substances from the solution, and a sample solution that is adjusted to an acid concentration suitable for electrolysis. An acid concentration adjusting device 4 for adjusting, a reducing device 5 for reducing arsenic (), selenium (), and/or antimony () in the liquid, and an electrolyzer 6 are connected to this via a main line 11 for transferring the liquid. connected in order.
The gas-liquid mixture exiting the electrolyzer 6 is led to a gas-liquid separator 8, the gas is led to a detection device 9 and measured, and the liquid is discharged 12 out of the device. Further, a carrier gas supply device 7 is connected to the electrolyzer, and supplies a carrier gas into the electrolytic cell to help transport the hydrides generated therein. Next, each component of the apparatus shown in FIG. 3 will be explained. The sample collecting device 1 includes a metering pump 1A whose pumping force is variable according to the flow rate of the liquid to be measured 13, a filter 1B for removing solids, and an overflow tank 1C for sampling. Samples are continuously collected by this sample collecting device, and in normal conditions, they are constantly sent to the diluting device 2 and beyond at a predetermined flow rate via the switching pot 10C. The diluter 2 includes a mixing tank 2D and a liquid sending pump 2C that sends the sample to the mixing tank, and further includes a pure water tank 2A and a metering pump 2B that supplies pure water to the mixing tank 2D. The sample solution can be diluted to a desired ratio by adding pure water at a constant flow rate. Dilution is performed so that the concentration of the element to be measured falls within a preferable concentration range for the electrolyzer 6, and the liquid sending pump 2C,
And the flow rate of the liquid fed by the metering pump 2B is adjusted in advance. In the example shown in FIG. 3, dilution is performed in one stage, but if the dilution rate is large, it is desirable to divide the dilution into several stages to reduce errors. The diluted sample is continuously sent to the purification device 3 at a predetermined flow rate by the liquid sending pump 2E. The purification column 3A can also have a multi-stage column structure filled with the same or different adsorbents depending on the type and number of interfering chemical species. The acid concentration adjustment device 4 has a mixing tank 4C that receives the sample liquid that has passed through the purification device 3, and is also equipped with a metering pump 4B that supplies sulfuric acid at a constant flow rate from a tank 4A containing sulfuric acid at a predetermined concentration to the mixing tank 4C. I'm awake. The acid concentration of the liquid to be measured is measured in advance, and the flow rate of the liquid fed by the metering pump 4B is adjusted so as to obtain the desired acid concentration. Alternatively, the acid concentration of the collected sample or diluted sample may be measured using a PH meter or the like, and the supply flow rate of sulfuric acid may be automatically controlled according to the output. The sample liquid that has passed through the acid concentration adjusting device 4 has an acid concentration suitable for electrolysis. The reducing device 5 includes a reducing agent tank 5A and a metering pump 5B that supplies the reducing agent to the mixing tank 5C.The sent sample liquid is stirred and mixed with the reducing agent in the mixing tank 5C, and further includes a water bath 5D. is sent to and heated. When arsenic (), selenium (), and antimony () are present in the liquid, they are reduced and converted to arsenic (), selenium (), and antimony (). The reduced liquid is lowered to an appropriate temperature via a cooler 5E and sent to the next electrolyzer 6. The electrolyzer 6 is as shown in FIGS. 1 and 2, and is composed of an electrolytic cell 6A having a pair of electrodes and an electrolytic power source 6B, and is further supplied with carrier gas from a carrier gas supply device 7. ing. The device 7 includes a valve 7A and a flow rate regulator 7B, and continuously supplies a predetermined flow rate of carrier gas to the electrolytic cell. The liquid continuously supplied to the electrolytic cell at a constant flow rate undergoes electrolysis, and the generated hydride gas is continuously transferred to the gas-liquid separator 8 by a carrier gas. The gas-liquid separator 8 includes an overflow tank 8A, a condenser 8B provided on an air supply line led upward from its top lid, and a desiccant column 8C.
It is equipped with The liquid separated in the overflow tank 8A overflows and is discharged 12, and the separated gas is further dehydrated and dried by the condenser 8B and desiccant column 8C, and then introduced to the detection device 9. As the desiccant, calcium chloride, magnesium perchlorate, etc. are preferred. In this example, a flame photometric analyzer is used as the detection device 9, which is composed of a flame photometric detector 9A, its power source 9B, a recorder 9C, and oxygen and hydrogen gas flow rate regulators 9D and 9E. ing. Here, the gas sent from the gas-liquid separator 8 is continuously subjected to measurement, and the detected value of the hydride of the element to be measured is automatically recorded on the recorder 9C. By using a calibration curve prepared in advance, the concentration of the element to be measured in the sample can be determined. The calibration curve creation mechanism 10 includes a standard solution tank 10A in which the concentration of the element to be measured is known and a metering pump 10B, and the standard solution supply line 10D is connected to the main line by a three-way socket 10C for switching the liquid flow direction. During measurement, the three-way tank is adjusted so that the sample flows through the main line 11 from the sampling device 1 to the diluting device 2, and the flow of the standard solution is stopped. When creating a calibration curve, the three-way tank 10C is adjusted so that the flow is from the standard solution tank 10A through the three-way tank 10C to the diluter 2. After the diluter, the standard solution is passed through the main line described above to detect the generated hydride. Using standard solutions with several different concentrations, or diluting one standard solution in several proportions with the diluter 2 to obtain a detected value for each concentration, and diluting the standard solution with several concentrations supplied to the electrolyzer 6. Create a calibration curve from the detected values. The calibration curve creation mechanism may be connected to the main line immediately before the electrolyzer when there is no need to dilute, purify, adjust acid concentration, or perform reduction treatment on the standard solution. If the information on the calibration curve is stored in advance in a calculation device built into the recorder 9C, and the calculation device is made to perform comparison calibration between the detected value of the measured hydride and the calibration curve, the recorder 9C will be able to calculate the hydride concentration. can be obtained directly. The above device can be easily designed and manufactured by a person skilled in the art using commercially available parts based on the above information. The device assembled by the inventors was housed in a space measuring 40 cm wide x 50 cm high x 40 cm deep, excluding the detection device. According to the method and apparatus of the present invention, arsenic, antimony, selenium, etc. in a liquid to be measured can be measured continuously and in a very short time from sample collection, and highly accurate measurement values can be obtained. Further, the device of the present invention can withstand continuous operation for a long period of time, has high stability, is easy to maintain and manage, and can easily be made to be highly labor-saving. It also has the economical advantage of being able to be performed with less required expense. As described above, the method and apparatus of the present invention are extremely useful for tracking and constantly monitoring changes over time in the amounts of arsenic, antimony, selenium, etc. in a liquid. When arsenic hydride is produced by an electrolytic method, the following experiment was conducted to investigate the relationship between the electrolytic current and the generation rate of arsenic hydride, and the relationship between the arsenic concentration in the solution and the amount of arsenic hydride generated. Γ Experiment - Rate and amount of arsenic hydride generated by electrolysis Electrolyze a standard arsenic solution using the electrolyzer shown in Figures 1 and 2 to determine the amount and rate of arsenic hydride generated. Ta. The conditions for electrolysis were as follows. Cell capacity 6.5cm Area of 3 platinum electrodes 4.0cm Distance between two electrodes 0.7cm Electrolysis current 0.5~3A Arsenic concentration in standard solution 0.1~10μg/ml (Arsenic is contained as arsenite ion, but converted to elemental arsenic. Sulfuric acid concentration of standard solution 1.0N Standard solution supply flow rate 5ml/min Carrier gas (N 2 ) supply flow rate 200ml/min Electrolysis was performed for 60 minutes under the above conditions, and the generated arsenic hydride was exposed to powder solution (5%). absorb, decompose,
After performing the concentration operation, the amount of arsenic is measured by atomic absorption spectrometry, and the amount of arsenic generated as arsenic hydride,
The incidence rate was calculated. The amount and rate of generation were calculated as values converted to elemental arsenic as follows. Amount generated (μg/ml) = Detected amount of arsenic as a single substance (μg/ml)
g)/Flow rate of solution (ml/min) x Electrolysis time (min) Generation rate (%) = Amount generated (μg/ml) x 100/Arsenic concentration in solution (μg/ml) The measurement results are shown in Table 1. FIG. 4 shows the relationship between the electrolytic current and the arsenic hydride generation rate, and FIG. 5 shows the relationship between the arsenic concentration in the solution and the amount of arsenic hydride generated.

【表】 上記の実験結果からも判るように、水素化ヒ素
の発生率は電解電流に対して正比例し、溶液中の
ヒ素濃度に対しては一定値を示す。したがつて水
素化ヒ素の発生量は、電解電流が一定であれば、
溶液中のヒ素濃度に正比例する。このことは、本
発明の方法が液中ヒ素の測定法として信頼性が高
いことを示している。 また、アンチモンおよびセレンについても同様
に、水素化物発生量が溶液中の濃度に比例するこ
とを確認することができた。 実施例 1 第3図に示した装置を用い、試料溶液としてヒ
素をヒ酸ソーダおよび亜ヒ酸ソーダとして含み硫
酸銅、硫酸第1鉄および硫酸亜鉛が共存する2種
類の模疑試料溶液(A,B)を調製して、24時間
の連続測定を行つた。模疑試料溶液中の各化学種
の含有量(単体に換算した値)は次のとおりであ
る。
[Table] As can be seen from the above experimental results, the generation rate of arsenic hydride is directly proportional to the electrolytic current, and shows a constant value with respect to the arsenic concentration in the solution. Therefore, if the electrolytic current is constant, the amount of arsenic hydride generated is:
Directly proportional to arsenic concentration in solution. This shows that the method of the present invention is highly reliable as a method for measuring arsenic in liquid. It was also confirmed that the amount of hydrides generated was proportional to the concentration in the solution for antimony and selenium. Example 1 Using the apparatus shown in Figure 3, two types of mock sample solutions (A , B) was prepared and continuously measured for 24 hours. The content of each chemical species in the mock sample solution (value converted to a single substance) is as follows.

【表】 それぞれ別々のタンクに収容した試料Aおよび
試料Bを、採取装置1を用いて2時間ごとに交互
に採取し測定に供した。試料液は毎分1で採取
し、フイルター1Bを通過せしめオーバーフロー
槽1Cにより毎分0.4mlの流速で希釈装置2に送
つた。希釈装置2では純水を混合して250倍に希
釈し、希釈後液を毎分2.5mlの流速で精製装置3
に送つた精製装置3では、陽イオン交換樹脂20ml
を充填したカラム3Aを通過せしめて酸濃度調整
装置4に送つた。装置4では2規定の硫酸を貯蔵
した硫酸タンク4Aから毎分2.5mlの硫酸を供給
し、毎分5mlの流速で還元装置5に送つた。還元
装置5では濃度10%のアスコルビン酸水溶液を貯
蔵した還元剤タンク5Aから毎分1mlで還元剤を
供給して混合槽5Cで混合し、ウオーターバス5
Dで90℃以上に加熱して反応せしめ、冷却器5E
で常温(20℃)まで冷却したのち毎分6mlの流速
で電気分解装置6に送つた。電気分解装置6では
定電流電解電源1Bにより電解電流を1アンペア
に設定し、またキヤリアガス供給装置7より毎分
50mlの窒素ガスを供給した。なお電気分解装置6
に備つている電解セルの形状は第1図、第2図の
通りで、セル容量6.5cm3のものを用い、2cm×1
cmの白金電極を0.7cmの距離に対置させた。該電
解セル中での気体生成物を前記窒素ガスおよび電
解済液と共に気液分離装置8に送つて電解済液か
ら気体を分離し、さらに5℃の冷水を通じたコン
デンサー8B、塩化カルシウム管8Cにより脱
水・乾燥後炎光光度計9に送り、波長235nmの発
光を測定してヒ素の連続測定を行つた。 第6図に上記測定値の時間変化の記録結果を示
す。 第6図に示すように、試料Aおよび試料Bの切
り換えによる濃度変動に応じた応答速度も十分に
速く、かつ24時間の変動もベース、スパンの変動
を含めて10%以下にすぎず、長期安定性も十分で
あることが確かめられた。 なお24時間の連続測定後、電解セル6Aの白金
電極表面および炎光光度計のバーナー部にわずか
に汚染が認められ、定期的な保守点検事項として
該汚染部の洗浄、計測機器のゼロ調整、スパン調
整、試薬類の交換補充を行なうことによりさらに
長期安定な連続測定が可能であることが確かめら
れた。また、なおこの実施例では、試料採取から
検出結果をレコーダーに得るまでの時間は約15分
間を要しただけであつた。
[Table] Sample A and Sample B, each housed in a separate tank, were sampled alternately every 2 hours using sample collection device 1 and subjected to measurement. The sample liquid was sampled at a rate of 1/min, passed through a filter 1B, and sent to a diluter 2 via an overflow tank 1C at a flow rate of 0.4 ml/min. In diluter 2, pure water is mixed and diluted 250 times, and the diluted solution is passed to purifier 3 at a flow rate of 2.5 ml per minute.
In purifier 3, which was sent to
was passed through a column 3A filled with . In the apparatus 4, 2.5 ml of sulfuric acid was supplied per minute from the sulfuric acid tank 4A storing 2N sulfuric acid, and the sulfuric acid was sent to the reducing apparatus 5 at a flow rate of 5 ml per minute. In the reducing device 5, a reducing agent is supplied at a rate of 1 ml per minute from a reducing agent tank 5A storing an ascorbic acid aqueous solution with a concentration of 10%, and mixed in a mixing tank 5C.
Heat to 90°C or higher in D to react, and then heat in cooler 5E.
After cooling to room temperature (20°C), it was sent to electrolyzer 6 at a flow rate of 6 ml per minute. In the electrolyzer 6, the electrolytic current is set to 1 ampere by the constant current electrolytic power source 1B, and the electrolytic current is set to 1 ampere by the carrier gas supply device 7.
50ml of nitrogen gas was supplied. Furthermore, the electrolyzer 6
The shape of the electrolytic cell installed in
cm platinum electrodes were placed opposite each other at a distance of 0.7 cm. The gaseous product in the electrolytic cell is sent to the gas-liquid separator 8 together with the nitrogen gas and the electrolyzed liquid to separate the gas from the electrolyzed liquid, and then passed through a condenser 8B and calcium chloride pipe 8C through cold water at 5°C. After dehydration and drying, the sample was sent to a flame photometer 9, and the luminescence at a wavelength of 235 nm was measured to continuously measure arsenic. FIG. 6 shows the recording results of the changes in the above measured values over time. As shown in Figure 6, the response speed in response to concentration fluctuations caused by switching between sample A and sample B is sufficiently fast, and the fluctuations over a 24-hour period, including base and span fluctuations, are only 10% or less. It was also confirmed that the stability was sufficient. After continuous measurement for 24 hours, slight contamination was observed on the platinum electrode surface of electrolytic cell 6A and the burner section of the flame photometer, and regular maintenance inspections include cleaning of the contaminated sections, zero adjustment of the measuring equipment, It was confirmed that stable continuous measurement over a longer period of time is possible by adjusting the span and replacing and replenishing reagents. Furthermore, in this example, it took only about 15 minutes from sample collection to obtaining the detection results on the recorder.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の分析法に用いる電気分解装
置の平面図で、第2図は同装置の立面図である。
第3図は、本発明の分析法を実施するのに使用す
る装置を表す概念図である。第4図は、ヒ素を含
む水溶液を電気分解に供した時の、電解電流と水
素化ヒ素発生率の関係を示す図である。第5図
は、溶液中のヒ素濃度と水素化ヒ素発生量の関係
を、用いた電解電流ごとに示した図である。第6
図は、第3図の装置を用いて二時間ごとに二種類
の試料のヒ素を測定した時に得られた時間−測定
値の曲線を表す図である。 11……容器、13……被検液導入管、15…
…気液排出管、20……キヤリアガス導入管、2
1,22……電極、1……試料採取装置、2……
希釈装置、3……精製装置、4……酸濃度調整装
置、5……還元装置、6……電気分解装置、7…
…キヤリアガス供給装置、8……気液分離装置、
9……検出装置。
FIG. 1 is a plan view of an electrolysis device used in the analysis method of the present invention, and FIG. 2 is an elevational view of the same device.
FIG. 3 is a conceptual diagram representing the apparatus used to carry out the analytical method of the present invention. FIG. 4 is a diagram showing the relationship between electrolytic current and arsenic hydride generation rate when an arsenic-containing aqueous solution is subjected to electrolysis. FIG. 5 is a diagram showing the relationship between the arsenic concentration in the solution and the amount of arsenic hydride generated for each electrolytic current used. 6th
The figure is a diagram showing a time-measurement curve obtained when arsenic was measured in two types of samples every two hours using the apparatus of FIG. 3. 11... Container, 13... Test liquid introduction tube, 15...
...Gas liquid discharge pipe, 20...Carrier gas introduction pipe, 2
1, 22... Electrode, 1... Sample collection device, 2...
Dilution device, 3... Purification device, 4... Acid concentration adjustment device, 5... Reduction device, 6... Electrolysis device, 7...
...carrier gas supply device, 8...gas-liquid separation device,
9...Detection device.

Claims (1)

【特許請求の範囲】 1 当該元素を含む化学種の水溶液を電気分解す
るとその元素のガス状の水素化物が生成する元素
の連続測定法であつて、 試料液を電気分解装置に連続的に供給し、 電気分解装置内で生成したガスを、キヤリアガ
スによりそれとともに検出装置へ連続的に導き、 ガス中に含まれる前記元素の水素化物を連続的
に測定する、 ことからなる液中の前記特定元素の連続測定法。 2 当該元素を含む化学種の水溶液を電気分解す
るとその元素のガス状の水素化物が生成する元素
の連続測定装置であつて、 試料液を連続的に採取する試料採取装置と、 採取された試料液を電気分解に適切な濃度に稀
釈する稀釈装置と、 採取された試料液に含まれる電気分解に対する
妨害物質を除去する精製装置と、 採取された試料液を電気分解に適切な酸濃度に
調整する酸濃度調整装置と、 採取された試料液に還元処理を施す還元装置と 前記の諸装置を連続的に経由した試料液が連続
的に供給されて、該試料を電気分解して前記元素
の水素化物を生成させる電解セルを備えた電気分
解装置と、 前記電解セルへキヤリアガスを連続的に供給し
電解セル内で生成したガスを電解済液とともに電
解セルから連続的に排出するキヤリアガス供給装
置と、 前記電解セルから排出された電解済液とガスを
分離する気液分離装置と、 気液分離されたガスに含まれる前記水素化物を
連続的に測定する検出装置と、 からなる液中の前記特定元素の連続測定装置。 3 特許請求の範囲第2項記載の装置であつて、
前記元素の濃度が既知の標準溶液を、試料液に代
えて前記電気分解装置に供給し得る、検量線作成
のための機構を具備するもの。
[Scope of Claims] 1. A continuous measurement method for an element in which a gaseous hydride of the element is generated when an aqueous solution of a chemical species containing the element is electrolyzed, the method comprising: continuously supplying a sample solution to an electrolyzer; and continuously guiding the gas generated in the electrolyzer together with a carrier gas to a detection device, and continuously measuring the hydride of the element contained in the gas. continuous measurement method. 2. A continuous measuring device for an element that generates a gaseous hydride of the element when an aqueous solution of a chemical species containing the element is electrolyzed, comprising a sampling device that continuously collects a sample liquid, and the collected sample. A dilution device that dilutes the solution to a concentration appropriate for electrolysis, a purification device that removes substances that interfere with electrolysis contained in the collected sample solution, and an acid concentration that adjusts the collected sample solution to the appropriate concentration for electrolysis. A reduction device that performs reduction treatment on the collected sample liquid; A sample liquid that has passed through the above devices is continuously supplied, and the sample is electrolyzed to remove the elements. An electrolyzer equipped with an electrolytic cell that generates hydrides, and a carrier gas supply device that continuously supplies a carrier gas to the electrolytic cell and continuously discharges the gas generated in the electrolytic cell from the electrolytic cell together with an electrolyzed solution. , a gas-liquid separator that separates the electrolyzed liquid and gas discharged from the electrolytic cell; and a detection device that continuously measures the hydride contained in the gas separated from the gas and liquid. Continuous measuring device for specific elements. 3. The device according to claim 2,
The device is equipped with a mechanism for creating a calibration curve that can supply a standard solution with a known concentration of the element to the electrolyzer in place of the sample solution.
JP18096281A 1981-11-13 1981-11-13 Method for continuously measuring specified elements in liquid and its device Granted JPS5883246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18096281A JPS5883246A (en) 1981-11-13 1981-11-13 Method for continuously measuring specified elements in liquid and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18096281A JPS5883246A (en) 1981-11-13 1981-11-13 Method for continuously measuring specified elements in liquid and its device

Publications (2)

Publication Number Publication Date
JPS5883246A JPS5883246A (en) 1983-05-19
JPS6324257B2 true JPS6324257B2 (en) 1988-05-19

Family

ID=16092318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18096281A Granted JPS5883246A (en) 1981-11-13 1981-11-13 Method for continuously measuring specified elements in liquid and its device

Country Status (1)

Country Link
JP (1) JPS5883246A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045978A1 (en) * 2013-09-24 2015-04-02 株式会社Taane Negative hydrogen ion detection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07101210B2 (en) * 1990-02-27 1995-11-01 新日本製鐵株式会社 Method and apparatus for electrolytic gasification analysis of metallic materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045978A1 (en) * 2013-09-24 2015-04-02 株式会社Taane Negative hydrogen ion detection method

Also Published As

Publication number Publication date
JPS5883246A (en) 1983-05-19

Similar Documents

Publication Publication Date Title
US5132094A (en) Method and apparatus for the determination of dissolved carbon in water
US5820823A (en) Method and apparatus for the measurement of dissolved carbon
Sturgeon et al. Preconcentration of selenium and antimony from seawater for determination by graphite furnace atomic absorption spectrometry
US3659100A (en) System and method of air pollution monitoring utilizing chemiluminescence reactions
US20060076246A1 (en) Water electrolysis method and device for determination of hydrogen and oxygen stable isotopic composition
Červený et al. Determination of mercury in water samples by electrochemical cold vapor generation coupled to microstrip microwave induced helium plasma optical emission spectrometry
CN107655875B (en) Total organic carbon analysis method based on high-intensity ultraviolet light oxidation and point discharge
US3622487A (en) Apparatus for measuring nitrogen oxide concentrations
WO1997021096A1 (en) Method and apparatus for the measurement of dissolved carbon
US20110210752A1 (en) Voltammetric device having sample degassing system
JPS6324257B2 (en)
EP1913368A2 (en) Method and apparatus for measuring the elementary composition of wastewaters
EP0748445A1 (en) Reagentless oxidation reactor
Schermer et al. Optimization of electrochemical hydride generation in a miniaturized electrolytic flow cell coupled to microwave-induced plasma atomic emission spectrometry for the determination of selenium
Ghasemi et al. Speciation and determination of trace inorganic tellurium in environmental samples by electrodeposition-electrothermal atomic absorption spectroscopy
Spurlin et al. On-line chemiluminescence detector for hydrogen sulfide and methyl mercaptan
Kowalska et al. Determination of total and mobile arsenic content in soils
Khongrangdee et al. Colorimetric determination of sulfide in turbid water with a cost-effective flow-batch porous membrane-based diffusion scrubber system
Seritti et al. A contribution to the determination of “reactive” and “total” mercury in sea water
JP2002205053A (en) System for monitoring raw water and method for controlling operation of concentrating/separating apparatus using the same
De-qiang et al. In-situ concentration and determination of mercury by graphite furnace atomic absorption spectrometry with Pd-Rh as the chemical modifier
JP3780627B2 (en) Underwater TOC monitor
JP7234202B2 (en) Apparatus and method for continuous analysis of dissolved inorganic carbon (DIC) concentration and its isotopic carbon and oxygen composition
JPH0812186B2 (en) Continuous analyzer for trihalomethane
Li et al. Catalytic determination of ultra trace amounts of tellurium by 2.5-order differential oscillopolarography