JPS63242339A - Preparation of semiconductive material - Google Patents

Preparation of semiconductive material

Info

Publication number
JPS63242339A
JPS63242339A JP7846187A JP7846187A JPS63242339A JP S63242339 A JPS63242339 A JP S63242339A JP 7846187 A JP7846187 A JP 7846187A JP 7846187 A JP7846187 A JP 7846187A JP S63242339 A JPS63242339 A JP S63242339A
Authority
JP
Japan
Prior art keywords
core rods
rods
core
long
core rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7846187A
Other languages
Japanese (ja)
Inventor
Shojiro Oyoshi
大吉 祥二郎
Shuhei Koshio
小塩 修平
Shigeru Aoyanagi
繁 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Co Ltd
Original Assignee
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Co Ltd filed Critical Osaka Titanium Co Ltd
Priority to JP7846187A priority Critical patent/JPS63242339A/en
Publication of JPS63242339A publication Critical patent/JPS63242339A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/02Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor for obtaining at least one reaction product which, at normal temperature, is in the solid state

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To economically prepare a long-sized core rod with extremely high efficiency within a short time, by connecting by welding a plurality of core rods each becoming a precipitation substrate in the axial direction to form a long semiconductive material. CONSTITUTION:A current is supplied to a high frequency heating coil 13 to heat a preheating ring 12 to a red heat state and, after core rods 5 are preheated by the heat of said ring 12, the high frequency heating coil 13 is raised to the abutted part of two core rods 5, 5' to melt the same under heating. Next, the abutted part is cooled to bond the core rods 5, 5' and the bonded core rods 5, 5' are taken out. Two polycrystalline silicon core rods 7X7mm square and respectively having lengths of 1,400mm, 1,000mm are welded by high frequency heating to prepare a long-sized core rod having a length of 2,400mm. 10 each of core rods thus prepared are assembled in a large-scale water cooling metal furnace and grown by a gaseous phase precipitation method to prepare 10 polycrystalline silicon rods each having a diameter of 67mm.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体材料、特に多結晶シリコンの気相析出
法による製造方法に関し、更に詳しくは、その製造の際
に析出基体として使用される芯棒の製造方法の改良に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a semiconductor material, particularly polycrystalline silicon, by a vapor phase deposition method, and more specifically relates to a method for producing a semiconductor material, particularly polycrystalline silicon, using a vapor phase deposition method. This invention relates to improvements in the manufacturing method of core rods.

〔従来の技術〕[Conventional technology]

気相析出法による多結晶シリコンの製造では、CVD反
応炉内に複数本のシリコン芯棒を立て、通電により芯棒
を1000℃程度に加熱した状態で炉内に水素とトリク
ロロシラン、シラン等のシリコン化合物を含む原料ガス
とを供結し、芯棒表面上に多結晶シリコンを成長させる
In the production of polycrystalline silicon by the vapor phase deposition method, multiple silicon core rods are placed in a CVD reactor, and while the core rods are heated to approximately 1000°C by electricity, hydrogen, trichlorosilane, silane, etc. A raw material gas containing a silicon compound is connected to grow polycrystalline silicon on the surface of the core rod.

従来は、反応炉として比較的小型の石英製ペルジャー炉
等が使用されていたが、内部に収容される芯棒の本数が
限られ、また長さも高々2000鶴程度に制限され、生
産性のよいものとは言えなかった。
Conventionally, relatively small Pelger furnaces made of quartz have been used as reactors, but the number of core rods that can be accommodated inside is limited, and the length is also limited to about 2000 mm, making it difficult to achieve high productivity. It couldn't be called anything.

そこで近時、これらの小型炉に代わるものとして大型の
水冷金属炉が開発され、この炉への転換が図られている
。炉が大型化されると、単に多数本の多結晶゛シリコン
が同時に製造できるだけでなく、通電による輻射熱が相
互のシリコン間で利用できるようになり、また芯棒を長
くし、1本当りの生産量も増大させることができるので
、製造コストの多くを占める電気コストが大巾に低減さ
れる。
Therefore, recently, large water-cooled metal furnaces have been developed as an alternative to these small furnaces, and conversion to these furnaces is being attempted. As the furnace became larger, it became possible not only to produce many pieces of polycrystalline silicon at the same time, but also to make it possible to use the radiant heat generated by electricity between each piece of silicon, and to increase the length of the core rod, making it possible to produce less polycrystalline silicon at the same time. Since the amount can also be increased, electricity costs, which account for most of the manufacturing costs, can be significantly reduced.

そして、このような大型炉で多結晶シリコンを製造する
には、炉規模に見合った長さの長尺のシリコン芯棒が必
要になる。
In order to manufacture polycrystalline silicon in such a large furnace, a long silicon core rod with a length commensurate with the scale of the furnace is required.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

多結晶シリコンの製造に用いられる芯棒は、従来は引き
上げ法と、切り出し法とで製造されていた。
Core rods used in the production of polycrystalline silicon have conventionally been produced by a pulling method and a cutting method.

引き上げ法は結晶融液に浸漬したシードを引き上げるこ
とにより芯棒を1本1本製造し、切り出し法は製造され
た多結晶シリコンから切断機により芯棒を切り出すもの
である。
In the pulling method, core rods are manufactured one by one by pulling up seeds immersed in a crystal melt, and in the cutting method, core rods are cut out from the manufactured polycrystalline silicon using a cutting machine.

引き上げ法の場合、引上げ速度が遅く、長尺の芯棒は製
造に特に長時間を要し、能率面で大きな問題が残る。こ
れに対し、切り出し法は引き上げ法と比べて格段に能率
がよい。
In the case of the pulling method, the pulling speed is slow, and long core rods require a particularly long time to manufacture, leaving major problems in terms of efficiency. On the other hand, the cutting method is much more efficient than the pulling method.

しかし、切り出し法で長尺の芯棒を製造するには、芯棒
より長い長尺の多結晶シリコン棒を必要とする。そして
、このような長尺の多結晶シリコン棒の製造のためには
長尺の芯棒が必要であり、大型炉への転換を図るには長
尺の芯棒を能率よ(低コストで製造することが重要とな
る。
However, manufacturing a long core rod using the cutting method requires a long polycrystalline silicon rod that is longer than the core rod. In order to manufacture such long polycrystalline silicon rods, long core rods are required, and in order to convert to large furnaces, long core rods can be manufactured more efficiently (lower cost). It is important to do so.

本発明は、斯かる状況に鑑みなされたもので、切り出し
法で長尺の芯棒を製造する場合の素材となる長尺のシリ
コン芯棒を低コストで能率よく製造し、ひいては多結晶
シリコンの製造コスト低減に寄与する半導体材料の製造
方法を提供するものである。
The present invention was made in view of the above situation, and it is possible to efficiently manufacture a long silicon core rod, which is a raw material when manufacturing a long core rod by the cutting method, at low cost, and also to produce polycrystalline silicon. The present invention provides a method for manufacturing semiconductor materials that contributes to reducing manufacturing costs.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の製造方法は、気相析出法による半導体材料の製
造において、析出基体となる芯棒を軸方向に溶接で複数
本接続し長尺化するものである。
In the manufacturing method of the present invention, a plurality of core rods serving as a deposition base are connected in the axial direction by welding to elongate them in manufacturing a semiconductor material by a vapor phase deposition method.

溶接に使用する加熱手段としては、高周波加熱、ランプ
集光加熱等が適当である。
As the heating means used for welding, high frequency heating, lamp condensing heating, etc. are suitable.

溶接に供する芯棒は、引き上げ法、切り出し法のいずれ
で製造されたものでもよい。
The core rod to be welded may be manufactured by either the pulling method or the cutting method.

〔作 用〕[For production]

溶接で芯棒を接続することにより、従来使用されていた
短尺の芯棒を素材として極めて簡単に長尺の芯棒を製造
することができる。
By connecting the core rods by welding, it is possible to extremely easily manufacture a long core rod using a conventionally used short core rod as a raw material.

長尺の芯棒が製造されると、これを使用して長尺の半導
体材料を製造することができる。
Once the long core rod is manufactured, it can be used to manufacture long lengths of semiconductor material.

更に、製造された長尺の半導体材料がら芯棒を切り出す
ようにすれば、多数本の芯棒を一層能率よく低コストで
製造できる。
Furthermore, if the core rods are cut out of the manufactured long semiconductor material, a large number of core rods can be manufactured more efficiently and at lower cost.

〔実施例〕〔Example〕

第1図は本発明に係る芯棒の製造方法を実施するのに適
した装置の一例を示したものである。
FIG. 1 shows an example of an apparatus suitable for carrying out the method for manufacturing a core rod according to the present invention.

同図によると、ベース1にコ字形のアーム2が水平軸3
により回動可能に支持され、これに加熱管4が取付けら
れている。
According to the figure, a U-shaped arm 2 is attached to a horizontal axis 3 on a base 1.
It is rotatably supported by a heating tube 4 and a heating tube 4 is attached thereto.

加熱管4はステンレス鋼製等の真空に耐え得る容器であ
って、軸方向に分割された構造を採り、下部に芯棒5の
ガイドチューブ6を挿入し、下端に芯棒5の長さのバラ
ツキを吸収するためのフレキシブルチューブ7を備えて
いる。加熱管4の上部には芯棒5のクランパー8が内蔵
され、上端には蓋板9が脱着可能に取り付けられている
The heating tube 4 is a container made of stainless steel or the like that can withstand vacuum, and has a structure divided in the axial direction, with a guide tube 6 of the core rod 5 inserted at the bottom, and a guide tube 6 of the length of the core rod 5 at the lower end. A flexible tube 7 is provided to absorb variations. A clamper 8 for the core rod 5 is built into the upper part of the heating tube 4, and a lid plate 9 is removably attached to the upper end.

lOはアルゴンガス導入管、ttはガス導出管、12は
ガイドチューブ6の上端に設けた予熱リングである。
10 is an argon gas inlet pipe, tt is a gas outlet pipe, and 12 is a preheating ring provided at the upper end of the guide tube 6.

加熱管4の中央部は大径になっていて、ここに高周波加
熱コイル13が芯棒5を包囲するように収容されている
。加熱コイル13はその支持体が加熱管4の軸方向に設
けられたスクリュウ14に螺合し、スクリュウ14をモ
ータ15で回転させることにより、加熱管4の軸方向に
移動するようになっている。16はのぞき窓である。
The central portion of the heating tube 4 has a large diameter, and the high frequency heating coil 13 is housed there so as to surround the core rod 5. The heating coil 13 has its support screwed onto a screw 14 provided in the axial direction of the heating tube 4, and is moved in the axial direction of the heating tube 4 by rotating the screw 14 with a motor 15. . 16 is a peephole.

第1図の装置により、本発明に係る芯棒の製造方法を実
施するには、先ず、加熱管4を水平にした状態で蓋板9
を外し、ここから接続しようとする芯棒5を装入する0
次にフレキシブルチューブ7を外しここから芯棒5′を
装入して、フレキシプルチューブをとりつける。そして
、後から装入した芯棒5′を、先に装入した芯棒5との
間に隙間が生じないように十分押し込んだ状態でクラン
パー8にて固定し、蓋板9を取付けた後、加熱管4を旋
回させ垂直にする。後に装入した芯棒5′はガイドチュ
ーブ6とフレキシブルチューブ7とにより位置決めされ
る。
In order to carry out the method of manufacturing a core rod according to the present invention using the apparatus shown in FIG.
0 and insert the core rod 5 to be connected from here.
Next, the flexible tube 7 is removed, the core rod 5' is inserted therein, and the flexible tube is attached. Then, the core rod 5' inserted later is pushed in sufficiently so that there is no gap between it and the core rod 5 inserted earlier, and is fixed with the clamper 8, and the cover plate 9 is attached. , the heating tube 4 is turned vertically. The core rod 5' inserted later is positioned by the guide tube 6 and the flexible tube 7.

加熱管4が垂直にされると、管内をアルゴンガスにて置
換し、その後もガス流通を続ける。そして、高周波加熱
コイル13を予熱リング12のところまで下げ、高周波
加熱コイル13に通電をして予熱リング12を赤熱状態
に加熱し、その熱で下部の芯棒5を予熱した後、高周波
加熱コイル13を2本の芯棒5,5′の突き合せ部まで
上昇させ、突き合せ部を加熱し、更に加熱出力を高めて
同部を溶融する。
When the heating tube 4 is made vertical, the inside of the tube is replaced with argon gas, and gas flow continues thereafter. Then, the high-frequency heating coil 13 is lowered to the preheating ring 12, the high-frequency heating coil 13 is energized to heat the preheating ring 12 to a red-hot state, and the lower core rod 5 is preheated with the heat, and then the high-frequency heating coil 13 is raised to the abutting part of the two core rods 5, 5', the abutting part is heated, and the heating output is further increased to melt the same part.

下部の芯棒5′の予熱は、不純物の拡散等を防止し、溶
接部の品質確保を図るためのものである。
The purpose of preheating the lower core rod 5' is to prevent the diffusion of impurities and to ensure the quality of the welded part.

突き合せ部が十分に溶融されると、高周波加熱コイル1
3の出力を徐々に低下させて、突き合わせ部を徐冷し、
これにより同部が溶融液にて接合される。
When the butt part is sufficiently melted, the high frequency heating coil 1
Gradually reduce the output of Step 3 to slowly cool the butt part,
As a result, the same parts are joined using the molten liquid.

接合が終わると、加熱管4を水平に旋回し、蓋板9を外
して、接合された芯棒5,5′を取り出す。
When the joining is completed, the heating tube 4 is turned horizontally, the cover plate 9 is removed, and the joined core rods 5, 5' are taken out.

切り出し法にて製造された7×7fi角で長さが140
0 asと10000の2本の多結晶シリコン芯棒を上
記の如き高周波加熱法により溶接して、長さが2400
+uの長尺化された芯棒を10本製造した。この10本
の8捧を大型の水冷金属炉内に組立て、気相析出法によ
り芯棒を成長させて直径が67璽−の10本の多結晶シ
リコンを製造した。
7x7fi square manufactured by cutting method, length 140
Two polycrystalline silicon core rods, 0 as and 10000 mm, were welded using the high frequency heating method as described above, and a length of 2400 mm was obtained.
Ten +u elongated core rods were manufactured. These 10 8-pieces were assembled in a large water-cooled metal furnace, and the core rods were grown by a vapor phase deposition method to produce 10 polycrystalline silicon pieces each having a diameter of 67 mm.

製造された10本の多結晶シリコンより、ダイヤモンド
を埋込んだ外刃切断機を用いて、厚み7龍、長さ230
0fiの板を切出し、更に各機より、7×7鶴角で長さ
が2300wnの芯棒を切出し、全部で240本(24
X10)の芯棒を得た。
From the 10 manufactured polycrystalline silicon pieces, a diamond-embedded outer blade cutter was used to cut them into pieces with a thickness of 7mm and a length of 23mm.
A 0fi plate was cut out, and from each machine, a core rod with a length of 2300wn with a 7x7 crane angle was cut out, making a total of 240 pieces (240 pieces).
A core rod of X10) was obtained.

製造された芯棒は表面の汚れを硝弗酸で2回エツチング
除去し、純水で洗浄した後、大型の水冷金属炉による多
結晶シリコンの製造に供した。
The produced core rod was etched to remove dirt on its surface twice with nitric-fluoric acid, washed with pure water, and then subjected to the production of polycrystalline silicon in a large water-cooled metal furnace.

また、引き上げ法で製造された直径が8mmで長さが1
400mと1000鶴の、断面円形のシリコン芯棒を素
材として、上記と同様の方法でシリコン芯棒および多結
晶シリコンを製造したいずれの場合も最終的に得られた
多結晶シリコンは満足できる品質であった。
Also, the diameter is 8mm and the length is 1mm manufactured by the pulling method.
In both cases, silicon core rods and polycrystalline silicon were manufactured using silicon core rods with a circular cross section of 400 m and 1000 m in diameter using the same method as described above, and the polycrystalline silicon finally obtained was of satisfactory quality. there were.

上記の実施例では、加熱手段として高周波加熱を使用し
ているが、高温発熱体から発生する高エネルギー光を凹
面鏡で集光させる、集光加熱等を用いてもよく、加熱手
段は特に問わない。
In the above embodiment, high-frequency heating is used as the heating means, but condensed heating, etc., in which high-energy light generated from a high-temperature heating element is focused with a concave mirror, may also be used, and the heating means is not particularly limited. .

また、溶接雰囲気も、実施例で示したアルゴン雰囲気に
限るものではなく、真空雰囲気等、放電、汚染が防止で
きる雰囲気であれば、その種類は問わない。
Furthermore, the welding atmosphere is not limited to the argon atmosphere shown in the embodiments, but may be of any type as long as it can prevent discharge and contamination, such as a vacuum atmosphere.

〔発明の効果〕〔Effect of the invention〕

本発明の製造方法は、複数の芯棒を溶接接続して長尺化
するものであるから、従来の短い芯棒がそのまま使用で
き、しかも引上げと比べて格段に短い時間で長尺化を行
うことができるので、全体として極めて高能率かつ経済
的に長尺芯棒を製造することができ、る、そして、この
長尺芯棒を素材として得られた長尺の半導体材料から芯
棒を切り出すならば、長尺芯棒の量産が可能となり、量
産により得られた低コストの芯棒で半導体製造を行うな
らば、半導体製造コストの大巾な引き下げが可能になる
ことは言うまでもない。
Since the manufacturing method of the present invention involves welding and connecting a plurality of core rods to lengthen them, conventional short core rods can be used as is, and lengthening can be achieved in a much shorter time compared to pulling. Therefore, the long core rod can be manufactured with extremely high efficiency and economically as a whole.Then, the core rod is cut out from the long semiconductor material obtained using this long core rod as a raw material. Therefore, it goes without saying that if long core rods can be mass-produced and semiconductors are manufactured using low-cost core rods obtained through mass production, semiconductor manufacturing costs can be significantly reduced.

このように、本発明は多結晶シリコンの製造において、
小型炉から大型の水冷金属炉への転換に当って大きな障
害になっていた長尺芯棒の確保を、溶接あるいは溶接と
切り出しとの組合せにより、簡単かつ経済的に実現する
ものであり、その工業的価債は多大である。
In this way, the present invention provides the following steps in the production of polycrystalline silicon:
By welding or a combination of welding and cutting, it is possible to easily and economically secure a long core rod, which was a major obstacle when converting from a small reactor to a large water-cooled metal reactor. Industrial debt is huge.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法の実施に適したvi置の1例を示
す断面図である。 図中、4:加熱管、5. 5’  :芯棒、13:高周
波加熱コイル。
FIG. 1 is a sectional view showing an example of a vi position suitable for carrying out the method of the present invention. In the figure, 4: heating tube, 5. 5': Core rod, 13: High frequency heating coil.

Claims (3)

【特許請求の範囲】[Claims] (1)気相析出法による半導体材料の製造において、析
出基体となる芯棒を軸方向に溶接で複数本接続すること
により長尺化することを特徴とする半導体材料の製造方
法。
(1) A method for producing a semiconductor material by a vapor phase deposition method, characterized in that a plurality of core rods serving as a deposition base are connected in the axial direction by welding to make them longer.
(2)気相析出法による半導体材料の製造において、析
出基体となる芯棒を軸方向に溶接で複数本接続すること
により長尺化し、長尺化された芯棒上に気相析出法によ
って製造した半導体材料より複数本の長尺化された芯棒
を切り出すことを特徴とする半導体材料の製造方法。
(2) In the production of semiconductor materials using the vapor phase deposition method, a plurality of core rods that serve as deposition substrates are connected in the axial direction by welding to make them longer, and the vapor phase deposition method is performed on the elongated core rods. A method for manufacturing a semiconductor material, comprising cutting out a plurality of elongated core rods from the manufactured semiconductor material.
(3)気相析出法による半導体材料の製造において、析
出基体となる芯棒を軸方向に溶接で複数本接続すること
により長尺化し、長尺化された芯棒上に気相析出法によ
って製造した半導体材料より複数本の長尺化された芯棒
を切り出し、切り出された芯棒で半導体材料の製造を行
うことを特徴とする半導体材料の製造方法。
(3) In the production of semiconductor materials using the vapor phase deposition method, a plurality of core rods that serve as deposition substrates are connected in the axial direction by welding to make them longer, and the vapor phase deposition method is performed on the elongated core rods. A method for manufacturing a semiconductor material, comprising cutting out a plurality of elongated core rods from a manufactured semiconductor material, and manufacturing a semiconductor material using the cut out core rods.
JP7846187A 1987-03-30 1987-03-30 Preparation of semiconductive material Pending JPS63242339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7846187A JPS63242339A (en) 1987-03-30 1987-03-30 Preparation of semiconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7846187A JPS63242339A (en) 1987-03-30 1987-03-30 Preparation of semiconductive material

Publications (1)

Publication Number Publication Date
JPS63242339A true JPS63242339A (en) 1988-10-07

Family

ID=13662664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7846187A Pending JPS63242339A (en) 1987-03-30 1987-03-30 Preparation of semiconductive material

Country Status (1)

Country Link
JP (1) JPS63242339A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120060562A1 (en) * 2010-09-15 2012-03-15 Wacker Chemie Ag Method for producing thin silicon rods
US8444800B2 (en) 2009-10-29 2013-05-21 Mitsubishi Materials Corporation Apparatus and method of manufacturing silicon seed rod
US8911659B2 (en) 2012-04-20 2014-12-16 Creative Innovations, Inc. Method and apparatus for manufacturing silicon seed rods
CN106457457A (en) * 2014-06-27 2017-02-22 Oci有限公司 Polysilicon filament binding device using polysilicon fragments
WO2021024889A1 (en) 2019-08-02 2021-02-11 株式会社トクヤマ Silicon core wire for depositing polycrystalline silicon and production method therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8444800B2 (en) 2009-10-29 2013-05-21 Mitsubishi Materials Corporation Apparatus and method of manufacturing silicon seed rod
US20120060562A1 (en) * 2010-09-15 2012-03-15 Wacker Chemie Ag Method for producing thin silicon rods
US8911659B2 (en) 2012-04-20 2014-12-16 Creative Innovations, Inc. Method and apparatus for manufacturing silicon seed rods
US9573817B2 (en) 2012-04-20 2017-02-21 Creative Innovations, Inc. Method and apparatus of manufacturing silicon seed rods
CN106457457A (en) * 2014-06-27 2017-02-22 Oci有限公司 Polysilicon filament binding device using polysilicon fragments
EP3162487A4 (en) * 2014-06-27 2017-11-15 OCI Company Ltd. Polysilicon filament binding device using polysilicon fragments
WO2021024889A1 (en) 2019-08-02 2021-02-11 株式会社トクヤマ Silicon core wire for depositing polycrystalline silicon and production method therefor
JPWO2021024889A1 (en) * 2019-08-02 2021-09-13 株式会社トクヤマ Silicon core wire for polycrystalline silicon precipitation and its manufacturing method
KR20220043108A (en) 2019-08-02 2022-04-05 가부시키가이샤 도쿠야마 Silicon core wire for polycrystalline silicon precipitation and manufacturing method thereof
EP3995447A4 (en) * 2019-08-02 2024-02-28 Tokuyama Corporation Silicon core wire for depositing polycrystalline silicon and production method therefor

Similar Documents

Publication Publication Date Title
JPH09278590A (en) Forming ingot by unidirectionally coagulating molten liquid consisting of silicon in bottomless type crystallization room and device therefor
TWI405877B (en) Single crystal manufacturing apparatus and manufacturing method thereof
CN104372408B (en) Large size gallium oxide single crystal Czochralski growing method under normal pressure
US6503563B1 (en) Method of producing polycrystalline silicon for semiconductors from saline gas
US20080069755A1 (en) Method for Manufacturing Polycrystalline Silicon, and Polycrystalline Silicon for Solar Cells Manufactured by the Method
US4265859A (en) Apparatus for producing semiconductor grade silicon and replenishing the melt of a crystal growth system
US3751539A (en) Use of vapor deposition to form a hollow tubular body closed on one end
TW201619453A (en) Device for moving small insulating plate at bottom of polycrystalline silicon ingot furnace and polycrystalline silicon ingot furnace
JP3437034B2 (en) Apparatus and method for manufacturing silicon ribbon
JPS63242339A (en) Preparation of semiconductive material
JP2006027940A (en) Method for refining metal
CN101469940A (en) Annular region smelting furnace
JPS61247683A (en) Pulling device for single crystal sapphire
CN102451893B (en) Manufacturing method for alloy wire rod
JP2022159501A (en) Polycrystalline silicon bar, polycrystalline silicon rod and production method of the same
CN104389017A (en) Internal inlet gas gas-cooling device of coagulation enhancing block of polycrystalline silicon ingot furnace and polycrystalline silicon ingot furnace
JPS58217419A (en) Method and device for manufacturing polycrystal silicon rod
JPH0748200A (en) Production of single crystal
JP2001206798A (en) Device for producing silicon ribbon
EP0704559A1 (en) Method for the preparation of a substrate material for solar cells and a solar cell prepared by using the same
US3950479A (en) Method of producing hollow semiconductor bodies
JP2000234108A (en) Spherical metal titanium, and manufacture of titanium compound
CN112195506A (en) Special-shaped PBN and quartz combined crucible
CN215887309U (en) Gallium arsenide polycrystal synthesis device
JP3242520B2 (en) Polycrystalline silicon production method and crucible for polycrystalline silicon production