JPS63242248A - Apparatus for measuring elastic characteristic of blood vessel - Google Patents

Apparatus for measuring elastic characteristic of blood vessel

Info

Publication number
JPS63242248A
JPS63242248A JP62075974A JP7597487A JPS63242248A JP S63242248 A JPS63242248 A JP S63242248A JP 62075974 A JP62075974 A JP 62075974A JP 7597487 A JP7597487 A JP 7597487A JP S63242248 A JPS63242248 A JP S63242248A
Authority
JP
Japan
Prior art keywords
light
blood vessel
photodetector
light source
data processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62075974A
Other languages
Japanese (ja)
Inventor
学 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62075974A priority Critical patent/JPS63242248A/en
Publication of JPS63242248A publication Critical patent/JPS63242248A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光を用いて無侵悠で動脈系血管の弾性特性を
計測する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for non-invasively measuring the elastic properties of arterial blood vessels using light.

〔従来の技術〕[Conventional technology]

第4図に従来の無侵聾血管弾性特性計測装置のセンサ部
を示す。図のようにカフ10をヒト手指に装着して計測
を行う。第5図に示すように、カフ10の内部には発光
素子20と受光素子30とが設けられ、これらは透明な
膜40を介して指に接し、指を挟んで対向して配置され
ている。カフ10の内部は気密になっており、管50が
ら空気を送り込むことにより内部の圧力を高め、指を圧
迫する。
FIG. 4 shows a sensor section of a conventional non-invasive blood vessel elasticity measurement device. Measurement is performed by attaching the cuff 10 to a human finger as shown in the figure. As shown in FIG. 5, a light-emitting element 20 and a light-receiving element 30 are provided inside the cuff 10, and these are placed in contact with the finger via a transparent film 40, facing each other with the finger in between. . The inside of the cuff 10 is airtight, and by feeding air through the tube 50, the internal pressure is increased and the finger is compressed.

発光素子20は、還元ヘモグロビンよりも酸化ヘモグロ
ビンによって強く吸収される波長の近赤外光(880n
m〜940nm)を指の内部に向けて発する。この光は
指を透過して受光素子30に刊達し、ここで電気信号に
変換される。この信号は透過光量に対応する振幅を持ち
、発光素子20からの光は酸化ヘモグロビンを多く含む
動脈内の血液によって吸収されるため、動脈系の血管内
容積および容積脈波を反映している。
The light emitting element 20 emits near-infrared light (880 nm) with a wavelength that is more strongly absorbed by oxyhemoglobin than deoxyhemoglobin.
m ~ 940 nm) toward the inside of the finger. This light passes through the finger and reaches the light receiving element 30, where it is converted into an electrical signal. This signal has an amplitude corresponding to the amount of transmitted light, and since the light from the light emitting element 20 is absorbed by blood in the artery containing a large amount of oxyhemoglobin, it reflects the intravascular volume and volume pulse wave of the arterial system.

カフ10内に空気を送り、指を圧迫すると、動脈系の血
管内容積および容積脈波は変化し、従って、受光素子3
0からの信号も変化する。血管弾性特性の指標としての
容積弾性率は、この信号の変化をもとに算出する。
When air is sent into the cuff 10 and the finger is compressed, the intravascular volume and volume pulse wave of the arterial system change, and therefore the light receiving element 3
The signal from 0 also changes. The volume elastic modulus as an index of blood vessel elastic properties is calculated based on the change in this signal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の血管弾性特性計測装置において、発光素
子が発する近赤外光は、還元ヘモグロビンによってもあ
る程度吸収される。従って、カフにより指を圧迫する過
程で、静脈系が完全に圧閉される以前の低圧領域では、
透過光量は還元ヘモグロビンを多く含む静脈系の影響を
受ける。その結果、受光素子の出力信号は純粋に動脈系
の血管内容積を反映するものとはならず、動脈系の血管
内容積は見かけ上大きく計測される。
In the conventional blood vessel elasticity measurement device described above, the near-infrared light emitted by the light emitting element is also absorbed to some extent by deoxyhemoglobin. Therefore, in the process of compressing the finger with the cuff, in the low pressure region before the venous system is completely closed,
The amount of transmitted light is affected by the venous system, which contains a large amount of deoxyhemoglobin. As a result, the output signal of the light receiving element does not purely reflect the intravascular volume of the arterial system, and the intravascular volume of the arterial system is measured to be apparently large.

そのため、従来の血管弾性特性計測装置では、受光素子
の出力信号が幼豚血管床の容積脈波を正確に反映してい
ても、この信号をもとに算出する動脈血管の容積弾性率
は実際の値より大きいものとなる。
Therefore, in conventional blood vessel elasticity measurement devices, even if the output signal of the light receiving element accurately reflects the volume pulse wave of the young pig's vascular bed, the volume elastic modulus of the arterial blood vessel calculated based on this signal is actually is larger than the value of .

本発明の目的は、このような問題を解決し、動脈血管の
正確な容積弾性率を得ることのできる血管弾性特性計測
装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a blood vessel elastic characteristic measuring device that can solve such problems and obtain accurate volume elastic modulus of arterial blood vessels.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、ヒト手指の内部に向けて光を発する光源と、
ヒト手指を透過した前記光源からの光を受光し、受光量
に応じた振幅の信号を出力する光検出器と、ヒト手指を
圧迫する圧迫装置と、この圧迫装置によりヒト手指を圧
迫したとき得られる前記信号をもとに動脈血管の弾性率
を計算する血管弾性特性計測装置において、 前記光源は波長の異なる2種類の光を発する光源手段を
備え、 前記光検出器は前記2種類の光を受光し、それぞれの光
の受光量に応じた振幅の2つの信号を出力する光検出手
段を備え、 この光検出手段が出力する前記2つの信号をもとに動脈
の血管内容積を求める第1のデータ処理手段と1、 この第1のデータ処理手段が求めた前記血管内容積を用
いて動脈血管の弾性率を計算する第2のデータ処理手段
とを備えたことを特徴としている。
The present invention includes a light source that emits light toward the inside of a human finger;
A photodetector that receives the light from the light source that has passed through the human finger and outputs a signal with an amplitude corresponding to the amount of received light; a compression device that presses the human finger; and a compression device that compresses the human finger. In the blood vessel elasticity measurement device that calculates the elastic modulus of an arterial blood vessel based on the signal transmitted, the light source includes light source means for emitting two types of light with different wavelengths, and the photodetector emits the two types of light. A first method comprising a light detecting means for receiving light and outputting two signals having amplitudes corresponding to the amount of received light, and calculating the intravascular volume of the artery based on the two signals outputted by the light detecting means. 1. A second data processing means for calculating the elastic modulus of an arterial blood vessel using the intravascular volume determined by the first data processing means.

〔実施例〕〔Example〕

次に本発明の一実施例について説明する。 Next, one embodiment of the present invention will be described.

第2図に本実施例の無侵襲血管弾性特性計測装置のセン
サ部を示す。計測を行うときは、図のように圧迫装置で
あるカフェをヒト手指に装着する。
FIG. 2 shows the sensor section of the non-invasive blood vessel elasticity measurement device of this embodiment. When performing measurements, a CAFFE compression device is attached to the human finger as shown in the figure.

第1図に示すように、カフェの内部には2つの発光ダイ
オードにより構成した光源2と2つのフォトトランジス
タにより構成した光検出器3とを設け、これらは透明な
膜4を介して指に接し、指を挟んで対向して配置する。
As shown in FIG. 1, a light source 2 composed of two light emitting diodes and a photodetector 3 composed of two phototransistors are installed inside the cafe, and these are in contact with the finger through a transparent film 4. , placed opposite to each other with their fingers in between.

カフェの内部は気密とし、管5がら空気を送り込むこと
により内部の圧力を高め、指を圧迫する。
The interior of the cafe is made airtight, and air is pumped through the tube 5 to increase the internal pressure and compress the fingers.

光源2の2つの発光ダイオードは、還元へモグロビンお
よび酸化ヘモグロビンによる吸収度が異なる2種類の波
長の光をそれぞれ指の内部に向けて発する。光検出器3
のフォトトランジスタは、光源2が発する2種類の光の
波長に対してそれぞれ筒い受光感度を持ち、指を透過し
てきた2種類の光をそれぞれ受光し、これら光の透過光
量に対応した振幅を持つ2つの信号を出力する。光源2
からの光は指を通過するとき動脈内の酸化ヘモグロビン
によって吸収されるため、光検出器3の2つの出力信号
の振幅は動脈系の血管内容積および容積脈波を反映して
いる。ただし波長の異なる光を用いているため、反映の
度合は信号によって異なっている。また、光源2からの
光は還元ヘモグロビンによっても吸収されるため、光検
出器3の2つの出力信号は還元ヘモグロビンを多く含む
静脈での吸収の影響を受けている。その影響の度合は、
光の波長が異なるため、信号によって異なっている。
The two light emitting diodes of the light source 2 each emit light of two types of wavelengths, which have different degrees of absorption by reduced hemoglobin and oxyhemoglobin, toward the inside of the finger. Photodetector 3
The phototransistor has a cylindrical light-receiving sensitivity for each of the two wavelengths of light emitted by the light source 2, receives the two types of light that have passed through the finger, and has an amplitude corresponding to the amount of transmitted light. Outputs two signals with light source 2
The amplitude of the two output signals of the photodetector 3 reflects the intravascular volume and plethysmography of the arterial system, since the light from the finger is absorbed by the oxyhemoglobin in the artery as it passes through the finger. However, since light with different wavelengths is used, the degree of reflection differs depending on the signal. Further, since the light from the light source 2 is also absorbed by deoxyhemoglobin, the two output signals of the photodetector 3 are affected by absorption in veins containing a large amount of deoxyhemoglobin. The degree of influence is
Because the wavelength of light is different, it differs depending on the signal.

カフ圧制御部6はニアコンプレッサーを持ち、後述する
システム制御部10からの制御信号にもとづきカフェ内
の圧力を適切に設定する。また、カフ圧制御部6はカフ
1内の圧力をモニタし、その信号pcを出力する。光量
制御部7は光源2の発光ダイオードに電流を供給し、シ
ステム制御部10からの制御信号にもとづき、その発光
量を調節する。
The cuff pressure control section 6 has a near compressor, and appropriately sets the pressure inside the cuff based on a control signal from a system control section 10, which will be described later. Further, the cuff pressure control section 6 monitors the pressure within the cuff 1 and outputs the signal pc. The light amount control section 7 supplies current to the light emitting diode of the light source 2, and adjusts the amount of light emitted from it based on a control signal from the system control section 10.

信号処理部8は第3図に示すように、増幅部81゜82
ならびにフィルタ83.84によって構成する。増幅部
81.82はそれぞれ光検出器3の2つの出力信号を所
定のレベルにまで増幅してフィルタ83.84にそれぞ
れ入力する。
As shown in FIG. 3, the signal processing section 8 includes amplification sections 81 and 82.
and filters 83 and 84. Amplifying sections 81 and 82 each amplify the two output signals of the photodetector 3 to a predetermined level and input them to filters 83 and 84, respectively.

フィルタ83.84は増幅部81.82からの信号にフ
ィルタをかけ、血管内容積を表す直流成分DCI。
Filters 83 and 84 filter the signals from amplifiers 81 and 82 to produce a direct current component DCI representing the intravascular volume.

DC2と、容積脈波を表す交流成分ACI、AC2とに
分離し、これらをデータ処理部9に出力する。
It separates into DC2 and alternating current components ACI and AC2 representing the volume pulse wave, and outputs these to the data processing section 9.

データ処理部9は、信号処理部8からの直流成分DCI
、DC2と交流成分Act、AC2、およびカフ圧制御
部6からのカフェ内の圧力を示す信号をまずディジタル
データに変換する。次に、直流成分DCI、DC2のデ
ータをもとに、動脈血による光の吸収のみを反映するデ
ータを演算により求める。上述のように波長の異なる2
種類の光を用いているため、動脈血および静脈血による
吸収の度合は光によって異なり、フィルタ83.84か
らの2つの直流成分DCI、DC2がこれら動脈血およ
び静脈血による吸収を反映する度合は信号によって異な
っている。データ処理部9はこの差異にもとづいて動脈
血による光の吸収のみを反映するデータを求める。
The data processing unit 9 receives the direct current component DCI from the signal processing unit 8.
, DC2, AC components Act, AC2, and a signal indicating the pressure inside the cafe from the cuff pressure control unit 6 are first converted into digital data. Next, data reflecting only the absorption of light by arterial blood is calculated based on the data of the DC components DCI and DC2. As mentioned above, two different wavelengths
Since different types of light are used, the degree of absorption by arterial blood and venous blood differs depending on the light, and the degree to which the two DC components DCI and DC2 from the filters 83 and 84 reflect the absorption by these arterial and venous blood depends on the signal. It's different. Based on this difference, the data processing unit 9 obtains data that reflects only the absorption of light by arterial blood.

データ処理部9は次にこの動脈血による光の吸収のみを
反映するデータ、交流成分ACI、AC2およびカフ1
内部圧力のデータを用いて血管弾性率を計算する。計算
結果は表示装置に表示し、必要に応じてその記録あるい
は保存を行う。データ処理部9はまた、上記データをも
とに血圧等の計算も行い、血管弾性率と同様に計算結果
の表示、記録、さらにデータの保存を行う。
The data processing unit 9 then generates data reflecting only the absorption of light by this arterial blood, the AC components ACI, AC2 and the cuff 1.
Calculate vessel elastic modulus using internal pressure data. The calculation results are displayed on a display device and recorded or saved as necessary. The data processing unit 9 also calculates blood pressure and the like based on the above data, displays and records the calculation results, and stores the data in the same manner as the blood vessel elastic modulus.

システム制御部10は、カフ圧制御部6および光量制御
部7に制御信号を送り、それぞれカフェの内圧の制御お
よび光源2の光量の制御を行う。
The system control section 10 sends control signals to the cuff pressure control section 6 and the light amount control section 7 to control the internal pressure of the cafe and the light amount of the light source 2, respectively.

次に動作を説明する。計測を行うときはまず、第2図の
ように圧迫装置であるカフェをヒト手指に装着する。カ
フ圧制御部6はシステム制御部10からの制御信号にも
とづいてカフェの内部に管5を通じて空気を送り込む。
Next, the operation will be explained. When performing measurements, first, as shown in Fig. 2, a Caffe, which is a compression device, is attached to a human finger. The cuff pressure control unit 6 sends air into the cafe through the pipe 5 based on a control signal from the system control unit 10.

これによりカフ1内の圧力は徐々に高まり、指は圧迫さ
れる。カフ圧制御部6はこのとき、同時にカフェ内の圧
力を測定し、測定結果を示す信号をデータ処理部9に出
力する。
As a result, the pressure inside the cuff 1 gradually increases, and the finger is compressed. At this time, the cuff pressure control section 6 simultaneously measures the pressure inside the cafe and outputs a signal indicating the measurement result to the data processing section 9.

一方、光量制御部7は光源2の発光ダイオードに電流を
供給し、システム制御部10からの制御信号にもとづき
、その発光量を調節する。これにより、光源2の2つの
発光ダイオードは、還元ヘモグロビンおよび酸化ヘモグ
ロビンによる吸収度が異なる2種類の波長の光をそれぞ
れ指の内部に向けて発する。これらの光は指を透過し、
光検出器3のフォトトランジスタにより受光される。そ
して、これらフォトトランジスタは、指を透過してきた
2種類の光の透過光量に対応した振幅を持つ2つの信号
を出力する。
On the other hand, the light amount control section 7 supplies current to the light emitting diode of the light source 2, and adjusts the amount of light emitted from it based on the control signal from the system control section 10. As a result, the two light emitting diodes of the light source 2 each emit light of two types of wavelengths having different absorption levels by deoxyhemoglobin and oxyhemoglobin toward the inside of the finger. These lights pass through the fingers,
The light is received by the phototransistor of the photodetector 3. These phototransistors output two signals having amplitudes corresponding to the amounts of the two types of light transmitted through the finger.

信号処理部8の増幅部81.82はそれぞれ光検出器3
の2つの出力信号を所定のレベルにまで増幅してフィル
タ83.84に出力する。フィルタ83.84は増幅部
8L 82からの信号にフィルタをかけ、血管内容積を
表す直流成分DCI、DC2と、容積脈波を表す交流成
分ACI、AC2とに分離し、これらをデータ処理部9
に出力する。
The amplifying sections 81 and 82 of the signal processing section 8 each have a photodetector 3.
The two output signals are amplified to a predetermined level and output to filters 83 and 84. The filters 83 and 84 filter the signals from the amplifying section 8L 82 and separate them into direct current components DCI, DC2 representing intravascular volume and alternating current components ACI, AC2 representing volume pulse waves, and these are sent to the data processing section 9.
Output to.

データ処理部9は、信号処理部8からの直流成分DCI
、DC2と交流成分ACI、AC2、およびカフ圧制御
部6からのカフ1内の圧力を示す信号をまずディジタル
データに変換する。次に、直流成分DCI、DC2のデ
ータをもとに、動脈血による光の吸収のみを反映するデ
ータを演算により求める。その後、この動脈血による光
の吸収のみを反映するデータ、交流成分へC1,AC2
およびカフ1内部圧力のデータを用いて血管弾性率を計
算する。計算結果は表示装置に表示し、必要に応じてそ
の記録あるいはデータの保存を1テう。
The data processing unit 9 receives the direct current component DCI from the signal processing unit 8.
, DC2, AC components ACI, AC2, and a signal indicating the pressure inside the cuff 1 from the cuff pressure control section 6 are first converted into digital data. Next, data reflecting only the absorption of light by arterial blood is calculated based on the data of the DC components DCI and DC2. After that, data that reflects only the absorption of light by this arterial blood is converted to AC components C1 and AC2.
Then, the vascular elastic modulus is calculated using the data of the internal pressure of the cuff 1. The calculation results are displayed on a display device, and the data can be recorded or saved as necessary.

データ処理部9はまた、上記データをもとに血圧等の計
算も行い、血管弾性率と同様に計算結果の表示、記録、
さらに保存を行う。
The data processing unit 9 also calculates blood pressure etc. based on the above data, and displays and records the calculation results as well as the vascular elastic modulus.
Save further.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ヒト手指の内部に向けて
光を発する光源と、ヒト手指を透過した光源からの光を
受光し、受光量に応じた振幅の信号を出力する光検出器
と、ヒト手指を圧迫する圧迫装置と、この圧迫装置によ
りヒト手指を圧迫したとき得られる信号をもとに動脈血
管の弾性率を計算する血管弾性特性計測装置において、
光源は波長の異なる2種類の光を発する光源手段を備え
、光検出器は2種類の光を受光し、それぞれの光の受光
量に応じた振幅の2つの信号を出力する光検出手段を備
え、この光検出手段が出力する2つの信号をもとに動脈
の血管内容積を求める第1のデータ処理手段と、この第
1のデータ処理手段が求めた血管内容積を用いて動脈血
管の弾性率を計算する第2のデータ処理手段とを備えて
いる。
As explained above, the present invention includes a light source that emits light toward the inside of a human finger, and a photodetector that receives light from the light source that has passed through the human finger and outputs a signal with an amplitude corresponding to the amount of received light. , a compression device that compresses a human finger, and a blood vessel elasticity measurement device that calculates the elastic modulus of an arterial blood vessel based on a signal obtained when the human finger is compressed by this compression device,
The light source includes light source means for emitting two types of light with different wavelengths, and the photodetector includes photodetection means for receiving two types of light and outputting two signals with amplitudes corresponding to the amounts of received light. , a first data processing means for calculating the intravascular volume of the artery based on the two signals outputted by the light detection means; second data processing means for calculating the ratio.

従って本発明によって、カフにより指を圧迫する過程で
、静脈系が完全に圧閉される以前の低圧領域においても
、静脈系の影響を受けることなく動脈系の血管内容積を
計測でき、動脈血管の正確な容積弾性率を求めることが
できる。
Therefore, according to the present invention, in the process of compressing a finger with a cuff, the intravascular volume of the arterial system can be measured without being influenced by the venous system even in a low pressure region before the venous system is completely closed. The accurate bulk modulus of elasticity can be determined.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
第1図の実施例の一部を示す斜視図、第3図は第1図の
実施例の一部を示すプロ・ツク図、 第4図は従来の装置の一部を示す斜視図、第5図は第4
図の装置の一部を示す断面図である。 1・・・・・カフ 2・・・・・光源 3・・・・・光検出器 4・・・・・膜 5・・・・・管 6・・・・・カフ圧制御部 7・・・・・光量制御部 8・・・・・信号処理部 9・・・・・データ処理部 IO・・・・・システム制御部 81、82・・・増幅部 83、84・ ・ ・フィルタ 代理人 弁理士  岩 佐  義 幸 に 第1図 第2図 第3図 第4図 受光素子 第5図 手続補正書 63.1.20 昭和  年  月  日
FIG. 1 is a block diagram showing one embodiment of the present invention, FIG. 2 is a perspective view showing a part of the embodiment of FIG. 1, and FIG. 3 is a block diagram showing a part of the embodiment of FIG. 1. Figure 4 is a perspective view showing a part of the conventional device, and Figure 5 is a perspective view of a part of the conventional device.
FIG. 2 is a cross-sectional view of a portion of the illustrated device; 1...Cuff 2...Light source 3...Photodetector 4...Membrane 5...Tube 6...Cuff pressure control section 7... ... Light amount control section 8 ... Signal processing section 9 ... Data processing section IO ... System control section 81, 82 ... Amplification section 83, 84 ... Filter agent Patent attorney Yoshiyuki Iwasa: Figure 1 Figure 2 Figure 3 Figure 4 Photo-receiving element Figure 5 Procedural amendment 63.1.20 Showa Year Month Date

Claims (1)

【特許請求の範囲】[Claims] (1)ヒト手指の内部に向けて光を発する光源と、ヒト
手指を透過した前記光源からの光を受光し、受光量に応
じた振幅の信号を出力する光検出器と、ヒト手指を圧迫
する圧迫装置と、この圧迫装置によりヒト手指を圧迫し
たとき得られる前記信号をもとに動脈血管の弾性率を計
算する血管弾性特性計測装置において、 前記光源は波長の異なる2種類の光を発する光源手段を
備え、 前記光検出器は前記2種類の光を受光し、それぞれの光
の受光量に応じた振幅の2つの信号を出力する光検出手
段を備え、 この光検出手段が出力する前記2つの信号をもとに動脈
の血管内容積を求める第1のデータ処理手段と、 この第1のデータ処理手段が求めた前記血管内容積を用
いて動脈血管の弾性率を計算する第2のデータ処理手段
とを備えたことを特徴とする血管弾性特性計測装置。
(1) A light source that emits light toward the inside of the human finger, a photodetector that receives the light from the light source that has passed through the human finger, and outputs a signal with an amplitude corresponding to the amount of received light, and presses the human finger. and a blood vessel elasticity measurement device that calculates the elastic modulus of an arterial blood vessel based on the signal obtained when a human finger is compressed by the compression device, wherein the light source emits two types of light with different wavelengths. The photodetector includes a light source means, the photodetector receives the two types of light, and the photodetector outputs two signals having amplitudes corresponding to the received amounts of the respective lights, and the photodetector outputs the above-mentioned signals. a first data processing means for calculating the intravascular volume of the artery based on two signals; and a second data processing means for calculating the elastic modulus of the arterial blood vessel using the intravascular volume calculated by the first data processing means. What is claimed is: 1. A blood vessel elastic characteristic measuring device comprising: data processing means.
JP62075974A 1987-03-31 1987-03-31 Apparatus for measuring elastic characteristic of blood vessel Pending JPS63242248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62075974A JPS63242248A (en) 1987-03-31 1987-03-31 Apparatus for measuring elastic characteristic of blood vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62075974A JPS63242248A (en) 1987-03-31 1987-03-31 Apparatus for measuring elastic characteristic of blood vessel

Publications (1)

Publication Number Publication Date
JPS63242248A true JPS63242248A (en) 1988-10-07

Family

ID=13591724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62075974A Pending JPS63242248A (en) 1987-03-31 1987-03-31 Apparatus for measuring elastic characteristic of blood vessel

Country Status (1)

Country Link
JP (1) JPS63242248A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002085204A1 (en) * 2001-04-20 2002-10-31 Combi Corporation Arteriosclerosis measurer
JP2007044261A (en) * 2005-08-10 2007-02-22 Utsunomiya Univ Blood vessel hardness measuring instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002085204A1 (en) * 2001-04-20 2002-10-31 Combi Corporation Arteriosclerosis measurer
JP2007044261A (en) * 2005-08-10 2007-02-22 Utsunomiya Univ Blood vessel hardness measuring instrument

Similar Documents

Publication Publication Date Title
EP2182839B1 (en) A cuff for determining a physiological parameter
US3998550A (en) Photoelectric oximeter
JP4464128B2 (en) Site irradiation pressure zone for in vitro optical measurement of blood indicators
JP3091929B2 (en) Pulse oximeter
US8398556B2 (en) Systems and methods for non-invasive continuous blood pressure determination
US20160206219A1 (en) Device for continuous, non-invasive measurement of arterial blood pressure and uses thereof
AU2005211992A1 (en) Apparatus and method for measuring hemodynamic parameters
WO1997000041A9 (en) Method and apparatus for removing motion artifact and noise from pulse oximetry
US20180220965A1 (en) Measurement of oxygen saturation of blood haemoglobin
JP5039123B2 (en) Finger artery elasticity measurement program, finger artery elasticity measurement device, and finger artery elasticity measurement method
US8588879B2 (en) Motion compensation in a sensor
WO2010038120A1 (en) Systems and methods for combined pulse oximetry and blood pressure measurement
JPH0458973B2 (en)
JP2004321253A (en) Pulse wave propagation velocity information measuring device
US7014611B1 (en) Oscillometric noninvasive blood pressure monitor
JP2001008909A (en) Electric sphygmomanometer
EP0168461A1 (en) Measurement of physiological parameter
Zneid et al. Non-invasive blood pressure remote monitoring instrument based microcontroller
JPS63242248A (en) Apparatus for measuring elastic characteristic of blood vessel
Tamam et al. Design a system of measurement of heart rate, oxygen saturation in blood and body temperature with non-invasive method
CN109875526A (en) One kind is based on pressure and reflective composite measurement pulse device
JP7257571B2 (en) pulse oximeter
US4473080A (en) Blood pressure instrument
JP2019048050A (en) Pulse oximeter
JPH02305555A (en) Device for simultaneously measuring degree of saturation of blood oxygen and blood pressure