JP7257571B2 - pulse oximeter - Google Patents

pulse oximeter Download PDF

Info

Publication number
JP7257571B2
JP7257571B2 JP2022038292A JP2022038292A JP7257571B2 JP 7257571 B2 JP7257571 B2 JP 7257571B2 JP 2022038292 A JP2022038292 A JP 2022038292A JP 2022038292 A JP2022038292 A JP 2022038292A JP 7257571 B2 JP7257571 B2 JP 7257571B2
Authority
JP
Japan
Prior art keywords
light
signal
pulse oximeter
output
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022038292A
Other languages
Japanese (ja)
Other versions
JP2022071208A (en
Inventor
裕 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AIR WATER BIODESIGN INC.
Original Assignee
AIR WATER BIODESIGN INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020172388A external-priority patent/JP2021007783A/en
Application filed by AIR WATER BIODESIGN INC. filed Critical AIR WATER BIODESIGN INC.
Priority to JP2022038292A priority Critical patent/JP7257571B2/en
Publication of JP2022071208A publication Critical patent/JP2022071208A/en
Application granted granted Critical
Publication of JP7257571B2 publication Critical patent/JP7257571B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、パルスオキシメータの技術分野に関する。 The present invention relates to the technical field of pulse oximeters.

この種のパルスオキシメータとして、例えば常時装着を前提とした指輪型のパルスオキシメータであって、例えば検出可能な脈動成分が少ない場合又は低体温により血管が収縮して酸素飽和度の計測精度が低下する場合等に、動脈の脈動を大きくするように計測対象部位を押圧するパルスオキシメータが提案されている(特許文献1参照)。 This type of pulse oximeter is, for example, a ring-type pulse oximeter that is assumed to be worn at all times. A pulse oximeter has been proposed that presses a target site to be measured so as to increase the pulsation of the artery when the arterial pulsation decreases (see Patent Document 1).

或いは、互いに波長の異なる光に応じた2つの容積信号のうち、一方の容積信号の脈動成分とカフ圧とに基づいて血圧値を求めると共に、2つの容積信号各々の脈動成分から抽出された容積脈波信号より血液酸素飽和度を求めることによって、血圧と血液酸素飽和度を同時に連続して測定する装置が提案されている(特許文献2参照)。 Alternatively, the blood pressure value is obtained based on the pulsation component of one volume signal and the cuff pressure of two volume signals corresponding to light with different wavelengths, and the volume extracted from the pulsation component of each of the two volume signals. A device has been proposed that simultaneously and continuously measures blood pressure and blood oxygen saturation by obtaining blood oxygen saturation from a pulse wave signal (see Patent Document 2).

特開2007-330708号公報Japanese Patent Application Laid-Open No. 2007-330708 特開平6-63024号公報JP-A-6-63024

ところで、パルスオキシメータによる動脈酸素飽和度(以降、適宜“SpO”と称する)測定では、パルスオキシメータを構成するセンサの装着圧が変化すると、SpOの測定結果が変化する。 By the way, in arterial oxygen saturation (hereinafter referred to as “SpO 2 ” as appropriate) measurement by a pulse oximeter, when the mounting pressure of the sensor constituting the pulse oximeter changes, the measurement result of SpO 2 changes.

上記特許文献1に記載の技術では、例えば測定対象者の指がむくむ等により、指輪型のパルスオキシメータのセンサの装着圧が比較的高くなった場合、SpO値を正しく測定できない可能性があるという技術的問題点がある。また、上記特許文献2に記載の技術では、SpO測定についてセンサの装着圧が考慮されていないという技術的問題点がある。 In the technique described in Patent Document 1, when the sensor of the finger ring type pulse oximeter is worn relatively high due to, for example, swollen fingers of the person being measured, there is a possibility that the SpO 2 value cannot be measured correctly. There is a technical problem that exists. Moreover, the technique described in Patent Document 2 above has a technical problem that the mounting pressure of the sensor is not taken into consideration for SpO 2 measurement.

本発明は、例えば上記問題点に鑑みてなされたものであり、センサの装着圧の影響を抑制することができるパルスオキシメータを提供することを課題とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a pulse oximeter capable of suppressing the influence of the mounting pressure of the sensor.

本発明の第1のパルスオキシメータは、上記課題を解決するために、第1光を発生する第1発光部と、前記第1光とは異なる波長を有する第2光を発生する第2発光部と、前記第1光の生体からの第1戻り光及び前記第2光の前記生体からの第2戻り光各々を受光する受光部と、前記生体との接触圧に係る信号を検出する接触圧検出手段と、前記第1戻り光及び前記第2戻り光各々に起因して前記受光部から出力される信号と、前記検出された接触圧に係る信号と、に基づいて酸素飽和度に係る情報を出力する出力手段と、を備える。 In order to solve the above problems, a first pulse oximeter of the present invention provides a first light emitting section that generates a first light and a second light emitting section that generates a second light having a wavelength different from that of the first light. a light receiving unit that receives each of the first return light from the living body of the first light and the second return light of the second light from the living body; and a contact that detects a signal related to contact pressure between the living body and the living body. Oxygen saturation based on pressure detection means, a signal output from the light receiving unit due to each of the first return light and the second return light, and a signal related to the detected contact pressure and output means for outputting information.

本発明の第2のパルスオキシメータは、上記課題を解決するために、第1光を発生する第1発光部と、前記第1光とは異なる波長を有する第2光を発生する第2発光部と、前記第1光の生体からの第1戻り光及び前記第2光の前記生体からの第2戻り光各々を受光する受光部と、を備えるパルスオキシメータであって、当該パルスオキシメータと前記生体との接触圧に係る信号を検出する接触圧検出手段と、前記検出された接触圧に係る信号に応じて接触圧の調整に係る情報を出力する出力手段と、を備える。 In order to solve the above problems, a second pulse oximeter of the present invention provides a first light emitting unit that emits a first light and a second light emitting unit that emits a second light having a wavelength different from that of the first light. and a light-receiving unit that receives a first return light from the living body as the first light and a second return light as the second light from the living body, the pulse oximeter comprising: and contact pressure detection means for detecting a signal related to the contact pressure with the living body, and output means for outputting information related to adjustment of the contact pressure according to the detected signal related to the contact pressure.

本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。 The operation and other advantages of the present invention will become apparent from the detailed description that follows.

第1実施例に係るパルスオキシメータの概要を示す概略構成図である。1 is a schematic configuration diagram showing an overview of a pulse oximeter according to a first embodiment; FIG. 第1実施例に係る算出装置の要部を示すブロック図である。FIG. 2 is a block diagram showing the essential parts of the calculation device according to the first embodiment; FIG. 受光手段から出力される信号の一例を、装着圧毎に示す図である。FIG. 4 is a diagram showing an example of a signal output from a light receiving means for each mounting pressure; 装着圧と信号振幅との関係の一例を示す特性図である。FIG. 5 is a characteristic diagram showing an example of the relationship between mounting pressure and signal amplitude; 装着圧とSpOとの関係の一例を示す特性図である。FIG. 4 is a characteristic diagram showing an example of the relationship between mounting pressure and SpO2 . 第1実施例に係る増幅率の補正関数F(Δp)の一例を示す図である。FIG. 4 is a diagram showing an example of a gain correction function F(Δp) according to the first embodiment; 補正されない場合のSpOの測定結果と、補正された場合のSpOの測定結果との各々の一例を示す図である。FIG. 4 is a diagram showing an example of SpO 2 measurement results without correction and an example of SpO 2 measurement results with correction; 第1実施例に係る透過型のパルスオキシメータを構成する各素子の配置例を示す図である。FIG. 2 is a diagram showing an arrangement example of each element that constitutes the transmission-type pulse oximeter according to the first embodiment; 第1実施例に係る反射型のパルスオキシメータを構成する各素子の配置例を示す図である。FIG. 2 is a diagram showing an arrangement example of each element that constitutes the reflection-type pulse oximeter according to the first embodiment; 第1実施例の変形例に係るパルスオキシメータの概要を示す概略構成図である。It is a schematic block diagram which shows the outline|summary of the pulse oximeter based on the modification of 1st Example. 第2実施例に係るパルスオキシメータの概要を示す概略構成図である。FIG. 2 is a schematic configuration diagram showing an outline of a pulse oximeter according to a second embodiment; 第2実施例の変形例に係るパルスオキシメータの概要を示す概略構成図である。FIG. 11 is a schematic configuration diagram showing an overview of a pulse oximeter according to a modification of the second embodiment;

以下、本発明のパルスオキシメータに係る実施形態について説明する。 Embodiments of the pulse oximeter of the present invention will be described below.

<第1実施形態>
第1実施形態に係るパルスオキシメータは、第1発光部、第2発光部及び受光部を備えて構成されている。第1発光部は、第1光を発生する。第2発光部は、第1光とは異なる波長を有する第2光を発生する。ここで、第1光及び第2光の一方の光の波長は、酸素化ヘモグロビンへの吸収が優位な波長であり、第1光及び第2光の他方の光の波長は、脱酸素化ヘモグロビンへの吸収が優位な波長であることが望ましいが、これに限定されるものではない。尚、本実施形態に係るパルスオキシメータは、3以上の発光部を備えていてよい。
<First embodiment>
A pulse oximeter according to the first embodiment includes a first light emitting section, a second light emitting section, and a light receiving section. The first light emitting unit emits first light. The second light emitter generates second light having a wavelength different from that of the first light. Here, the wavelength of one of the first light and the second light is a wavelength that is predominantly absorbed by oxygenated hemoglobin, and the wavelength of the other light of the first light and the second light is the wavelength of deoxygenated hemoglobin. Although it is desirable that the wavelength is a dominant wavelength for absorption, it is not limited to this. The pulse oximeter according to this embodiment may have three or more light emitting units.

受光部は、第1光の生体からの第1戻り光及び第2光の生体からの第2戻り光各々を受光する。ここで、「戻り光」は、生体により散乱又は反射された光に限らず、生体を透過した光も含む概念である。つまり、本実施形態に係るパルスオキシメータは、反射型のパルスオキシメータであってもよいし、透過型のパルスオキシメータであってもよい。尚、受光部は、例えば単一の受光素子により構成されていることに限らず、複数の受光素子により構成されていてよい。 The light receiving unit receives the first return light from the living body as the first light and the second return light from the living body as the second light. Here, "returned light" is a concept including not only light scattered or reflected by the living body but also light transmitted through the living body. That is, the pulse oximeter according to the present embodiment may be a reflective pulse oximeter or a transmissive pulse oximeter. It should be noted that the light receiving section is not limited to being composed of, for example, a single light receiving element, and may be composed of a plurality of light receiving elements.

接触圧検出手段は、パルスオキシメータと生体との接触圧に係る信号を検出する。ここで、「接触圧に係る信号」は、接触圧そのものの値を示す信号に限らず、例えば圧力センサ等のセンサの出力信号、接触圧を間接的に示す物理量又はパラメータを示す信号、等も含む概念である。 The contact pressure detection means detects a signal related to the contact pressure between the pulse oximeter and the living body. Here, the "signal related to the contact pressure" is not limited to a signal indicating the value of the contact pressure itself. It is a concept that includes

例えばメモリ、プロセッサ等を備えてなる出力手段は、第1戻り光及び第2戻り光各々に起因して受光部から出力される信号と、検出された接触圧に係る信号とに基づいて酸素飽和度に係る情報を出力する。ここで、「酸素飽和度に係る情報」は、酸素飽和度そのものの値を示す情報に限らず、例えば赤色光の戻り光と赤外光の戻り光との比を示す情報等、酸素飽和度を間接的に示す情報も含む概念である。 For example, the output means, which includes a memory, a processor, etc., outputs oxygen saturation signals based on the signals output from the light receiving unit due to the first return light and the second return light and the detected contact pressure signal. Output information about the degree. Here, the "information about the oxygen saturation" is not limited to information indicating the value of the oxygen saturation itself. It is a concept that includes information that indirectly indicates

本願発明者の研究によれば、以下の事項が判明している。即ち、パルスオキシメータは、動脈血に起因する、受光部の出力信号の脈動成分に基づいて酸素飽和度に係る情報を出力する。ここで、生体内で脈動する血管は動脈だけであり、毛細血管から染み出て血圧が0mmHgとみなせる程度まで低下している静脈には脈動が生じない。しかしながら、現実には、動脈の脈動は生体組織中を伝播し、静脈を物理的に振動させる。この結果、受光部の出力信号の脈動成分には、静脈の情報も大なり小なり含まれることとなる。 According to the studies of the inventors of the present application, the following matters have been clarified. That is, the pulse oximeter outputs information about the oxygen saturation level based on the pulsating component of the output signal of the light receiving unit caused by arterial blood. Here, arteries are the only blood vessels that pulsate in the living body, and veins that seep out from capillaries and whose blood pressure is reduced to a level that can be regarded as 0 mmHg do not pulsate. In reality, however, arterial pulsations propagate through living tissue and physically vibrate veins. As a result, the pulsation component of the output signal from the light receiving section contains more or less vein information.

パルスオキシメータの生体に対する接触圧が変化すると、生体内における動脈と静脈との物理的な距離が変化し、動脈の脈動が静脈に与える影響も変化する。つまり、接触圧が変化することにより、出力信号の脈動成分に対する静脈の影響も変化する。パルスオキシメータは接触圧を仮定した上で、正確な酸素飽和度が求められるように設計されることが多い。このため、接触圧によっては、出力信号の脈動成分に対する静脈の影響が大きく、誤った酸素飽和度が求められる可能性がある。 When the contact pressure of the pulse oximeter with respect to the living body changes, the physical distance between arteries and veins in the living body changes, and the effect of arterial pulsation on veins also changes. In other words, when the contact pressure changes, the influence of veins on the pulsating component of the output signal also changes. Pulse oximeters are often designed to obtain accurate oxygen saturation based on the assumption of contact pressure. Therefore, depending on the contact pressure, the pulsating component of the output signal is greatly affected by veins, and an erroneous oxygen saturation may be obtained.

そこで、本実施形態では、出力手段により、第1戻り光及び第2戻り光各々に起因して受光部から出力される信号と、検出された接触圧に係る信号と、に基づいて酸素飽和度に係る情報が出力される。 Therefore, in the present embodiment, the oxygen saturation level is calculated based on the signal output from the light receiving unit due to the first return light and the second return light and the signal related to the detected contact pressure by the output means. information is output.

具体的には例えば、出力手段は、検出された接触圧に係る信号に応じて、第1戻り光及び第2戻り光各々に起因して受光部から出力される信号を補正(例えば、信号振幅を増減)した上で、酸素飽和度に係る情報を出力する。或いは、出力手段は、第1戻り光及び第2戻り光各々に起因して受光部から出力される信号に基づいて求められた酸素飽和度に係る情報を、検出された接触圧に係る信号に応じて補正する。いずれにせよ、接触圧の影響のない又は殆どない酸素飽和度に係る情報が出力される。 Specifically, for example, the output unit corrects the signal output from the light receiving unit due to each of the first return light and the second return light (for example, signal amplitude is increased or decreased), and then information related to the oxygen saturation is output. Alternatively, the output means converts the information related to the oxygen saturation obtained based on the signals output from the light receiving section due to the first returned light and the second returned light to the signal related to the detected contact pressure. Correct accordingly. In any case, information on oxygen saturation with little or no effect of contact pressure is output.

以上の結果、本実施形態に係るパルスオキシメータによれば、接触圧の影響を抑制することができ、もって、信頼性の高い酸素飽和度に係る情報を出力することができる。 As a result, according to the pulse oximeter according to the present embodiment, the influence of the contact pressure can be suppressed, and thus highly reliable information regarding the oxygen saturation can be output.

第1実施形態に係るパルスオキシメータの一態様では、出力手段は、第1戻り光に起因して受光部から出力される信号と、第2戻り光に起因して受光部から出力される信号と、の少なくとも一方に係る増幅率を、検出された接触圧に係る信号に基づいて変化させる。 In one aspect of the pulse oximeter according to the first embodiment, the output means includes a signal output from the light receiving section due to the first return light and a signal output from the light receiving section due to the second return light. and at least one of which is changed based on the detected contact pressure signal.

例えば接触圧が高くなると、生体内における動脈と静脈との物理的な距離が短くなり、動脈の脈動が静脈に与える影響が大きくなる。すると、静脈の影響により、出力信号の脈動成分(信号振幅)が大きくなる。 For example, as the contact pressure increases, the physical distance between arteries and veins in the body becomes shorter, and the effects of arterial pulsation on veins become greater. Then, the pulsation component (signal amplitude) of the output signal increases due to the influence of the vein.

出力手段が、上述の如く、検出された接触圧に係る信号に基づいて、第1戻り光に起因して受光部から出力される信号と、第2戻り光に起因して受光部から出力される信号と、の少なくとも一方に係る増幅率を変化させることにより、静脈の影響(即ち、接触圧の影響)を抑制又は除去することができる。 As described above, the output means outputs a signal output from the light receiving section due to the first return light and a signal output from the light receiving section due to the second return light based on the detected signal related to the contact pressure. By changing the amplification factor of at least one of the signal and the venous effect (that is, the contact pressure effect), it is possible to suppress or eliminate the effect of the vein.

或いは、第1実施形態に係るパルスオキシメータの他の態様では、検出された接触圧に係る信号に応じて接触圧の調整に係る情報を出力する第2出力手段を更に備える。 Alternatively, in another aspect of the pulse oximeter according to the first embodiment, the pulse oximeter further includes second output means for outputting information related to adjustment of the contact pressure according to the detected signal related to the contact pressure.

この態様によれば、出力された接触圧の調整に係る情報に応じて、自動で又は手動で、パルスオキシメータの接触圧が調整されれば、接触圧の影響が抑制された酸素飽和度に係る情報を出力することができる。 According to this aspect, if the contact pressure of the pulse oximeter is automatically or manually adjusted according to the output information related to adjustment of the contact pressure, the oxygen saturation with the influence of the contact pressure suppressed can be achieved. Such information can be output.

尚、「接触圧の調整に係る情報」は、接触圧の調整値そのものを示す情報に限らず、例えば「接触圧が高い」、「接触圧が低い」等の間接的に接触圧の調整を促す情報や、接触圧の程度を直接的又は間接的に示す物理量又はパラメータ、等をも含む概念である。 It should be noted that the "information related to contact pressure adjustment" is not limited to information indicating the contact pressure adjustment value itself. It is a concept that includes prompting information, a physical quantity or parameter that directly or indirectly indicates the degree of contact pressure, and the like.

<第2実施形態>
第2実施形態に係るパルスオキシメータは、第1発光部、第2発光部及び受光部を備えて構成されている。第1発光部は、第1光を発生する。第2発光部は、第1光とは異なる波長を有する第2光を発生する。受光部は、第1光の生体からの第1戻り光及び第2光の生体からの第2戻り光各々を受光する。
<Second embodiment>
A pulse oximeter according to the second embodiment includes a first light emitting section, a second light emitting section, and a light receiving section. The first light emitting unit emits first light. The second light emitter generates second light having a wavelength different from that of the first light. The light receiving unit receives the first return light from the living body as the first light and the second return light from the living body as the second light.

接触圧検出手段は、パルスオキシメータと生体との接触圧に係る信号を検出する。例えばメモリ、プロセッサ等を備えてなる出力手段は、検出された接触圧に係る信号に応じて接触圧の調整に係る情報を出力する。 The contact pressure detection means detects a signal related to the contact pressure between the pulse oximeter and the living body. For example, the output means including a memory, a processor, etc. outputs information regarding adjustment of the contact pressure according to the detected signal regarding the contact pressure.

出力された接触圧の調整に係る情報に応じて、自動で又は手動で、パルスオキシメータの接触圧が調整されれば、適切な接触圧で、酸素飽和度の測定が実施される。この結果、接触圧の影響が抑制された酸素飽和度を求めることができる。 If the contact pressure of the pulse oximeter is automatically or manually adjusted according to the output information related to contact pressure adjustment, the oxygen saturation is measured at an appropriate contact pressure. As a result, it is possible to obtain the oxygen saturation in which the influence of the contact pressure is suppressed.

第2実施形態に係るパルスオキシメータの一態様では、出力された接触圧の調整に係る情報に応じて、当該パルスオキシメータと生体との接触圧を調整する調整手段を更に備える。 One aspect of the pulse oximeter according to the second embodiment further comprises adjusting means for adjusting the contact pressure between the pulse oximeter and the living body according to the output information relating to adjustment of the contact pressure.

この態様によれば、接触圧が自動的に調整されるので、実用上非常に有利である。 According to this aspect, the contact pressure is automatically adjusted, which is extremely advantageous in practice.

本発明のパルスオキシメータに係る実施例を、図面を参照して説明する。 An embodiment of the pulse oximeter of the present invention will be described with reference to the drawings.

<第1実施例>
本発明のパルスオキシメータに係る第1実施例について、図1乃至図7を参照して説明する。
<First embodiment>
A first embodiment of the pulse oximeter of the present invention will be described with reference to FIGS. 1 to 7. FIG.

図1において、パルスオキシメータ1は、発光手段11と、発光手段12と、例えばPD(Photodiode)である受光手段13と、例えば圧力センサ等である装着圧検出手段14と、受光手段13から出力された信号及び装着圧検出手段14から出力された信号を処理する算出手段100と、を備えて構成されている。 In FIG. 1, the pulse oximeter 1 includes light emitting means 11, light emitting means 12, light receiving means 13 such as a PD (Photodiode), mounting pressure detecting means 14 such as a pressure sensor, and output from the light receiving means 13. and a calculation means 100 for processing the signal output from the mounting pressure detection means 14 and the signal output from the mounting pressure detection means 14 .

発光手段11は、例えば赤外線LED(Light Emitting Diode)を備えて構成されており、酸素化ヘモグロビンへの吸収が優位な波長の第1光を発生する。他方、発光手段12は、例えば赤色LEDを備えて構成されており、脱酸素化ヘモグロビンへの吸収が優位な波長の第2光を発生する。 The light emitting means 11 includes, for example, an infrared LED (Light Emitting Diode), and generates first light having a wavelength that is predominantly absorbed by oxygenated hemoglobin. On the other hand, the light emitting means 12, for example comprising a red LED, emits a second light of a wavelength which is predominantly absorbed by the deoxygenated hemoglobin.

第1光及び第2光は、人の指の血管(本発明に係る“生体”に相当)に照射される。受光手段13は、血管を透過した第1光の第1透過光(本発明に係る“第1戻り光”に相当)及び第2光の第2透過光(本発明に係る“第2戻り光”に相当)を主に受光し、受光量に応じた信号を出力する。 The first light and the second light are applied to blood vessels of human fingers (corresponding to the “living body” according to the present invention). The light receiving means 13 receives the first transmitted light (corresponding to the “first returned light” according to the present invention) of the first light transmitted through the blood vessel and the second transmitted light of the second light (“second returned light” according to the present invention). ”) and outputs a signal corresponding to the amount of light received.

ここで、SpOは、第1透過光(即ち、酸素化ヘモグロビンへの吸収が優位な波長の光)に起因して受光手段13から出力された信号と、第2透過光(即ち、脱酸素化ヘモグロビンへの吸収が優位な波長の光)に起因して受光手段13から出力された信号と、の振幅比に基づいて求められる。 Here, SpO 2 is the signal output from the light receiving means 13 due to the first transmitted light (i.e., light with a wavelength that is predominantly absorbed by oxygenated hemoglobin) and the second transmitted light (i.e., deoxygenated light). It is obtained based on the amplitude ratio between the signal output from the light receiving means 13 due to the light having a wavelength that is predominantly absorbed by hemoglobin.

ところで、受光手段13から出力される信号の振幅は、パルスオキシメータ1の装着圧の影響を受けることが本願発明者の研究により判明している。具体的には例えば、図3及び図4に示すように、パルスオキシメータの装着圧によって、受光手段13から出力される信号の振幅が変化する。 By the way, research by the inventor of the present application has revealed that the amplitude of the signal output from the light receiving means 13 is affected by the mounting pressure of the pulse oximeter 1 . Specifically, for example, as shown in FIGS. 3 and 4, the amplitude of the signal output from the light receiving means 13 changes depending on the mounting pressure of the pulse oximeter.

尚、図3及び図4における「赤外光信号」及び「赤色光信号」は、夫々、「第1透過光に起因して受光手段13から出力された信号」、及び「第2透過光に起因して受光手段13から出力された信号」に対応する。 The "infrared light signal" and the "red light signal" in FIGS. 3 and 4 are respectively the "signal output from the light receiving means 13 due to the first transmitted light" and the "signal generated by the second transmitted light". The signal output from the light-receiving means 13 as a result of ".

特に、パルスオキシメータ1の装着圧が高くなると、静脈血に起因して、脱酸素化ヘモグロビンへの吸収が優位な波長の第2光が生体に吸収される割合が増える。すると、該第2光(第2透過光)に起因して受光手段から出力される信号の振幅が、第1透過光に起因して受光手段13から出力された信号の振幅に比べて低下しにくくなる(図4参照)。 In particular, when the mounting pressure of the pulse oximeter 1 increases, the rate at which the second light having a wavelength that is predominantly absorbed by deoxygenated hemoglobin is absorbed by the living body increases due to venous blood. Then, the amplitude of the signal output from the light receiving means due to the second light (second transmitted light) is lower than the amplitude of the signal output from the light receiving means 13 due to the first transmitted light. becomes difficult (see Fig. 4).

この結果、第1透過光に起因して受光手段13から出力された信号の振幅と、第2透過光に起因して受光手段13から出力された信号の振幅との比が、相対的に小さくなる。このため、何らの対策も採らなければ、図5に示すように、パルスオキシメータ1の装着圧が高くなる程、SpOの値が著しく低下する(つまり、誤ったSpOの値が出力される可能性がある)。 As a result, the ratio between the amplitude of the signal output from the light receiving means 13 due to the first transmitted light and the amplitude of the signal output from the light receiving means 13 due to the second transmitted light is relatively small. Become. Therefore , if no countermeasures are taken , as shown in FIG. possible).

そこで本実施例では、静脈の影響を抑制するために、算出装置100により、装着圧検出手段14から出力された信号(本発明に係る“装着圧に係る信号”に相当)に応じて、受光手段13から出力される第2透過光に起因する信号の増幅率が変更される。そして、算出装置100により、増幅率が変更された第2透過光に起因する信号と、受光手段13から出力される第1透過光に起因する信号と、の振幅比に基づいてSpOが求められる。 Therefore, in this embodiment, in order to suppress the influence of veins, the calculation device 100 receives light according to the signal output from the wearing pressure detection means 14 (corresponding to the "signal related to wearing pressure" according to the present invention). The amplification factor of the signal resulting from the second transmitted light output from the means 13 is changed. Then, SpO2 is calculated by the calculating device 100 based on the amplitude ratio between the signal caused by the second transmitted light whose amplification factor is changed and the signal caused by the first transmitted light output from the light receiving means 13. be done.

具体的には、図2において、算出装置100は、装着圧補正手段110、増幅器120及び酸素飽和度出力手段130を備えて構成されている。 Specifically, in FIG. 2, the calculation device 100 includes a wearing pressure correction means 110, an amplifier 120, and an oxygen saturation output means .

装着圧補正手段110は、装着圧検出手段14から出力された装着圧に係る信号に応じて、増幅器120に係る増幅率の補正係数を決定する。 The wearing pressure correction means 110 determines a correction coefficient for the amplification factor of the amplifier 120 according to the signal related to the wearing pressure output from the wearing pressure detection means 14 .

この補正係数は、例えば、装着圧検出手段14から出力された装着圧に係る信号に基づく実際の装着圧と、予め定められた基準となる装着圧との差分Δpと、該差分Δpの関数F(Δp)とを用いて決定される。 This correction coefficient is, for example, the difference Δp between the actual wearing pressure based on the signal related to the wearing pressure output from the wearing pressure detection means 14 and the predetermined reference wearing pressure, and the function F of the difference Δp. (Δp).

このような関数F(Δp)は、基準となる装着圧における第1透過光に起因する信号と第2透過光に起因する信号との振幅比と、任意の装着圧における第1透過光に起因する信号と第2透過光に起因する信号との振幅比と、の比を複数個求め、該求められた複数の比についての近似曲線として求めればよい(図6参照)。 Such a function F(Δp) is the amplitude ratio between the signal due to the first transmitted light and the signal due to the second transmitted light at the reference mounting pressure, and the first transmitted light at an arbitrary mounting pressure. A plurality of ratios of the amplitude ratio of the signal caused by the second transmitted light and the amplitude ratio of the signal caused by the second transmitted light may be obtained, and an approximation curve for the plurality of ratios thus obtained may be obtained (see FIG. 6).

つまり、関数F(Δp)は、下記式のように表すことができる。 That is, the function F(Δp) can be expressed as in the following formula.

Figure 0007257571000001
ここで、RDstdは、基準となる装着圧における第2透過光に起因する信号の振幅値であり、IRstdは、基準となる装着圧における第1透過光に起因する信号の振幅値であり、RDは、任意の装着圧における第2透過光に起因する信号の振幅値であり、IRは、任意の装着圧における第1透過光に起因する信号の振幅値である。
Figure 0007257571000001
Here, RD std is the amplitude value of the signal caused by the second transmitted light at the reference wearing pressure, and IR std is the amplitude value of the signal caused by the first transmitted light at the reference wearing pressure. , RD is the amplitude value of the signal due to the second transmitted light at any wearing pressure, and IR is the amplitude value of the signal due to the first transmitted light at any wearing pressure.

上記式を変形すれば、実際に出力された(即ち、任意の装着圧における)第1透過光に起因する信号と第2透過光に起因する信号との振幅比と、関数F(Δp)とを用いて、基準となる装着圧(言い換えれば、適切な装着圧)における第1透過光に起因する信号と第2透過光に起因する信号との振幅比を求めることができる(下記式参照)。 If the above formula is modified, the amplitude ratio between the signal caused by the first transmitted light and the signal caused by the second transmitted light actually output (that is, at an arbitrary mounting pressure), the function F(Δp), and can be used to determine the amplitude ratio between the signal due to the first transmitted light and the signal due to the second transmitted light at the reference mounting pressure (in other words, appropriate mounting pressure) (see the following formula) .

Figure 0007257571000002
上記式に従えば、装着圧補正手段110は、装着圧検出手段14から出力された装着圧に係る信号に基づいて求められたF(Δp)の値を、増幅器120に係る増幅率の補正係数として決定する。
Figure 0007257571000002
According to the above formula, the wearing pressure correction means 110 converts the value of F(Δp) obtained based on the signal related to the wearing pressure output from the wearing pressure detection means 14 to the correction coefficient of the amplification factor related to the amplifier 120 Determined as

増幅器120に係る増幅率が、装着圧補正手段110により決定された補正係数に応じて変更されることにより、第2透過光に起因する信号の振幅(上記式における“RD”に相当)が変更される。酸素飽和度出力手段130は、振幅が変更された第2透過光に起因する信号と、第1透過光に起因する信号と、に基づいてSpOを求める。 By changing the amplification factor of the amplifier 120 according to the correction coefficient determined by the mounting pressure correction means 110, the amplitude of the signal caused by the second transmitted light (corresponding to "RD" in the above formula) is changed. be done. Oxygen saturation output means 130 obtains SpO2 based on the signal due to the second transmitted light whose amplitude has been changed and the signal due to the first transmitted light.

パルスオキシメータ1の装着圧について何らの対策も採らなければ、SpOの測定結果は、例えば図7(a)に示すようになってしまう。しかるに本実施例では、上述の如く、パルスオキシメータ1の装着圧に応じて、第2透過光に起因する信号の増幅率が補正されるので、例えば図7(b)に示すような測定結果が得られる。つまり、本実施例に係るパルスオキシメータ1によれば、装着圧の影響がない又は殆どない測定結果が得られる。 If no measures are taken for the mounting pressure of the pulse oximeter 1, the measurement result of SpO 2 will be as shown in FIG. 7(a), for example. However, in this embodiment, as described above, the amplification factor of the signal caused by the second transmitted light is corrected in accordance with the mounting pressure of the pulse oximeter 1, so that the measurement results shown in FIG. is obtained. That is, according to the pulse oximeter 1 according to the present embodiment, measurement results are obtained that are not or hardly affected by the wearing pressure.

尚、発光手段11及び発光手段12は時間的に交互に駆動される(つまり、第1光と第2光とが時間的に交互に発生される)。そして、例えば算出装置100には、発光手段11の駆動期間に、受光手段13から出力された信号を、直接、酸素飽和度出力手段130に入力し、発光手段12の駆動期間に、受光手段13から出力された信号を、増幅器120を介して、酸素飽和度出力手段130に入力する、スイッチング回路(図示せず)が設けられている。 The light emitting means 11 and the light emitting means 12 are driven alternately in terms of time (that is, the first light and the second light are alternately generated in terms of time). Then, for example, in the calculation device 100, the signal output from the light receiving means 13 during the driving period of the light emitting means 11 is directly input to the oxygen saturation output means 130, and during the driving period of the light emitting means 12, the light receiving means 13 A switching circuit (not shown) is provided for inputting the signal output from the oxygen saturation level output means 130 via the amplifier 120 .

パルスオキシメータ1を構成する、発光手段11、発光手段12、受光手段13及び装着圧検出手段14各々は、例えば図8(a)に示すように、指の背に、発光手段11及び12が配置され、指の腹に、受光手段13及び装着圧検出手段14が配置されてもよい。或いは、図8(b)に示すように、指の背に、発光手段11及び12、並びに装着圧検出手段14が配置され、指の腹に、受光手段13が配置されてもよい。或いは、図8(c)に示すように、指の背に、発光手段11及び12、並びに装着圧検出手段14aが配置され、指の腹に、受光手段13及び装着圧検出手段14bが配置されてもよい。 The light emitting means 11, the light emitting means 12, the light receiving means 13, and the wearing pressure detecting means 14, which constitute the pulse oximeter 1, are arranged so that the light emitting means 11 and 12 are placed on the back of the finger, for example, as shown in FIG. 8(a). The light receiving means 13 and the wearing pressure detecting means 14 may be arranged on the pad of the finger. Alternatively, as shown in FIG. 8B, the light emitting means 11 and 12 and the wearing pressure detecting means 14 may be arranged on the back of the finger, and the light receiving means 13 may be arranged on the ball of the finger. Alternatively, as shown in FIG. 8C, the light emitting means 11 and 12 and the wearing pressure detecting means 14a are arranged on the back of the finger, and the light receiving means 13 and the wearing pressure detecting means 14b are arranged on the ball of the finger. may

本実施例では、透過型のパルスオキシメータ1について説明したが、本発明は、反射型のパルスオキシメータにも適用可能である。この場合、発光手段11及び12、受光手段13、並びに装着圧検出手段14各々は、例えば図9(a)~(c)のいずれの配置も採ることができる。 Although the transmissive pulse oximeter 1 has been described in this embodiment, the present invention can also be applied to a reflective pulse oximeter. In this case, each of the light emitting means 11 and 12, the light receiving means 13, and the mounting pressure detecting means 14 can adopt any of the arrangements shown in FIGS. 9(a) to 9(c).

本実施例に係る「発光手段11」、「発光手段12」、「受光手段13」、「装着圧検出手段14」及び「算出装置100」は、夫々、本発明に係る「第1発光部」、「第2発光部」、「受光部」、「接触圧検出手段」及び「出力手段」の一例である。 The "light emitting means 11", the "light emitting means 12", the "light receiving means 13", the "wearing pressure detecting means 14", and the "calculating device 100" according to the present embodiment are respectively the "first light emitting units" according to the present invention. , "second light emitting section", "light receiving section", "contact pressure detecting means" and "output means".

尚、本実施例では、図2に示すように、第2透過光に起因する信号の増幅率が変更されているが、第2透過光に起因する信号ではなく、第1透過光に起因する信号の増幅率が変更されてもよいし、第1透過光に起因する信号及び第2透過光に起因する信号の両方の増幅率が変更されてもよい。 In this embodiment, as shown in FIG. 2, the amplification factor of the signal caused by the second transmitted light is changed. The amplification factor of the signal may be changed, or the amplification factor of both the signal caused by the first transmitted light and the signal caused by the second transmitted light may be changed.

<変形例>
次に、第1実施例に係るパルスオキシメータの変形例について、図10を参照して説明する。図10は、第1実施例の変形例に係るパルスオキシメータの概要を示す概略構成図である。
<Modification>
Next, a modification of the pulse oximeter according to the first embodiment will be described with reference to FIG. FIG. 10 is a schematic configuration diagram showing an outline of a pulse oximeter according to a modification of the first embodiment.

図10において、第1実施例の変形例に係るパルスオキシメータ2は、発光手段11、発光手段12、受光手段13、装着圧検出手段14及び算出装置100に加えて、演算装置21及び装着圧表示装置22を備えて構成されている。 In FIG. 10, the pulse oximeter 2 according to the modification of the first embodiment includes, in addition to the light emitting means 11, the light emitting means 12, the light receiving means 13, the wearing pressure detecting means 14 and the calculating device 100, an arithmetic device 21 and a wearing pressure It is configured with a display device 22 .

本発明に係る「第2出力手段」の一例としての、演算装置21は、装着圧検出手段14から出力された信号に基づいて、装着圧表示装置22における表示に適した、装着圧の調整に係る情報を出力する。ここで特に、装着圧表示装置22には、装着圧が所定の範囲内に誘導されるような表示がされる。 The calculation device 21, which is an example of the "second output means" according to the present invention, adjusts the wearing pressure suitable for display on the wearing pressure display device 22 based on the signal output from the wearing pressure detection means 14. Output the relevant information. Here, in particular, the wearing pressure display device 22 displays such that the wearing pressure is guided within a predetermined range.

パルスオキシメータ2のユーザが、装着圧表示装置22の表示を参照して、該パルスオキシメータ2の装着圧を調整すれば、SpOの値を好適に測定することができる。 If the user of the pulse oximeter 2 adjusts the wearing pressure of the pulse oximeter 2 with reference to the display of the wearing pressure display device 22, the SpO 2 value can be preferably measured.

特に、装着圧が比較的高い場合には、例えば図7に示すように、補正量が比較的大きくなる。このため、上記のように構成すれば、補正に起因する誤差を抑制することができ、実用上非常に有利である。 In particular, when the mounting pressure is relatively high, the correction amount is relatively large, as shown in FIG. 7, for example. Therefore, with the configuration as described above, errors due to correction can be suppressed, which is very advantageous in practice.

<第2実施例>
本発明のパルスオキシメータに係る第2実施例について、図11を参照して説明する。第2実施例では、パルスオキシメータの構成が一部異なる以外は、上述した第1実施例と同様である。よって、第2実施例について、第1実施例と重複する説明を省略すると共に、図面上における共通箇所には同一符号を付して示し、基本的に異なる点についてのみ、図11を参照して説明する。
<Second embodiment>
A second embodiment of the pulse oximeter of the present invention will be described with reference to FIG. The second embodiment is the same as the first embodiment described above, except that the configuration of the pulse oximeter is partially different. Therefore, for the second embodiment, description overlapping with the first embodiment will be omitted, common parts on the drawings will be indicated by the same reference numerals, and only basic differences will be described with reference to FIG. explain.

図11において、第2実施例に係るパルスオキシメータ3は、発光手段11、発光手段12、受光手段13、装着圧検出手段14、演算装置21、装着圧表示装置22及び算出装置100を備えて構成されている。 In FIG. 11, the pulse oximeter 3 according to the second embodiment comprises a light emitting means 11, a light emitting means 12, a light receiving means 13, a wearing pressure detecting means 14, an arithmetic device 21, a wearing pressure display device 22 and a calculating device 100. It is configured.

演算装置21は、装着圧検出手段14から出力された信号に基づいて、装着圧表示装置22における表示に適した、装着圧の調整に係る情報を出力する。 Based on the signal output from the wearing pressure detection means 14 , the calculation device 21 outputs information related to adjustment of the wearing pressure suitable for display on the wearing pressure display device 22 .

パルスオキシメータ2のユーザが、装着圧表示装置22の表示を参照して、該パルスオキシメータ2の装着圧が所定の値となるように調整すれば、第1実施例に記載したような受光手段13から出力される信号の補正をすることなく、SpOの値を好適に測定することができる。 When the user of the pulse oximeter 2 refers to the display of the wearing pressure display device 22 and adjusts the wearing pressure of the pulse oximeter 2 to a predetermined value, light is received as described in the first embodiment. SpO 2 values can be conveniently measured without correction of the signal output from means 13 .

<変形例>
次に、第2実施例に係るパルスオキシメータの変形例について、図12を参照して説明する。図12は、第2実施例の変形例に係るパルスオキシメータの概要を示す概略構成図である。
<Modification>
Next, a modification of the pulse oximeter according to the second embodiment will be described with reference to FIG. FIG. 12 is a schematic configuration diagram showing an outline of a pulse oximeter according to a modification of the second embodiment.

図12において、第2実施例の変形例に係るパルスオキシメータ4は、発光手段11、発光手段12、受光手段13、装着圧検出手段14、演算装置21及び算出装置100に加えて、装着圧調整部23を備えて構成されている。 In FIG. 12, the pulse oximeter 4 according to the modification of the second embodiment includes a light emitting means 11, a light emitting means 12, a light receiving means 13, a wearing pressure detecting means 14, an arithmetic device 21, and a calculating device 100, and a wearing pressure It is configured to include an adjustment section 23 .

装着圧調整部23は、発光手段11及び12を支持する支持部材と、受光手段13及び装着圧検出手段14を支持する支持部材との間に設けられている。 The mounting pressure adjusting portion 23 is provided between a supporting member that supports the light emitting means 11 and 12 and a supporting member that supports the light receiving means 13 and the mounting pressure detecting means 14 .

演算装置21は、装着圧が所定の値となるように、装着圧検出手段14から出力された信号に応じて、装着圧調整部23を制御する。このように構成すれば、SpOの値を好適に測定することができる。 The computing device 21 controls the mounting pressure adjusting section 23 according to the signal output from the mounting pressure detecting means 14 so that the mounting pressure becomes a predetermined value. With this configuration, the SpO 2 value can be suitably measured.

本変形例に係る「演算装置21」及び「装着圧調整部23」は、本発明に係る「調整手段」の一例である。 The "computing device 21" and the "wearing pressure adjusting section 23" according to this modification are examples of the "adjusting means" according to the present invention.

本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴うパルスオキシメータもまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiments, and can be modified as appropriate within the scope of the gist or idea of the invention that can be read from the scope of claims and the entire specification. is also included in the technical scope of the present invention.

1、2、3、4…パルスオキシメータ、11、12…発光手段、13…受光手段、14、14a、14b…装着圧検出手段、21…演算装置、22…装着圧表示装置、23…装着圧調整部、100…算出装置 1, 2, 3, 4... Pulse oximeter, 11, 12... Light-emitting means, 13... Light-receiving means, 14, 14a, 14b... Wearing pressure detecting means, 21... Computing device, 22... Wearing pressure display device, 23... Wearing Pressure adjusting unit, 100... Calculating device

Claims (1)

第1光を発生する第1発光部と、
前記第1光とは異なる波長を有する第2光を発生する第2発光部と、
前記第1光の生体からの第1戻り光及び前記第2光の前記生体からの第2戻り光各々を受光する受光部と、
前記生体との接触圧に係る信号を検出する接触圧検出手段と、
前記第1戻り光及び前記第2戻り光各々に起因して前記受光部から出力される信号と、前記検出された接触圧に係る信号と、に基づいて酸素飽和度に係る情報を出力する出力手段と、
を備える
前記出力手段は、前記第1戻り光に起因して前記受光部から出力される信号と、前記第2戻り光に起因して前記受光部から出力される信号と、の少なくとも一方に係る増幅率を、前記検出された接触圧に係る信号に基づいて変化させる
ことを特徴とするパルスオキシメータ。
a first light emitting unit that emits a first light;
a second light emitting unit that generates a second light having a wavelength different from that of the first light;
a light receiving unit that receives a first return light from the living body of the first light and a second return light from the living body of the second light;
contact pressure detection means for detecting a signal related to contact pressure with the living body;
Output for outputting information related to oxygen saturation based on a signal output from the light receiving unit due to each of the first return light and the second return light and a signal related to the detected contact pressure. means and
comprising a
The output means provides an amplification factor for at least one of a signal output from the light receiving section due to the first return light and a signal output from the light receiving section due to the second return light. is changed based on the detected contact pressure signal
A pulse oximeter characterized by:
JP2022038292A 2020-10-13 2022-03-11 pulse oximeter Active JP7257571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022038292A JP7257571B2 (en) 2020-10-13 2022-03-11 pulse oximeter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020172388A JP2021007783A (en) 2020-10-13 2020-10-13 Pulse oximeter
JP2022038292A JP7257571B2 (en) 2020-10-13 2022-03-11 pulse oximeter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020172388A Division JP2021007783A (en) 2020-10-13 2020-10-13 Pulse oximeter

Publications (2)

Publication Number Publication Date
JP2022071208A JP2022071208A (en) 2022-05-13
JP7257571B2 true JP7257571B2 (en) 2023-04-13

Family

ID=87852530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022038292A Active JP7257571B2 (en) 2020-10-13 2022-03-11 pulse oximeter

Country Status (1)

Country Link
JP (1) JP7257571B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023204087A1 (en) 2022-04-23 2023-10-26 キヤノン株式会社 Microchannel device and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233374A (en) 1999-03-29 2009-10-15 Hitachi Medical Corp Biological optical measurement instrument
WO2009136311A2 (en) 2008-05-08 2009-11-12 Koninklijke Philips Electronics N.V. Contact pressure control for probe for material analysis
JP2012110520A (en) 2010-11-25 2012-06-14 Nippon Koden Corp Sensor mounting time period-informing method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233374A (en) 1999-03-29 2009-10-15 Hitachi Medical Corp Biological optical measurement instrument
WO2009136311A2 (en) 2008-05-08 2009-11-12 Koninklijke Philips Electronics N.V. Contact pressure control for probe for material analysis
JP2012110520A (en) 2010-11-25 2012-06-14 Nippon Koden Corp Sensor mounting time period-informing method and apparatus

Also Published As

Publication number Publication date
JP2022071208A (en) 2022-05-13

Similar Documents

Publication Publication Date Title
US11672429B2 (en) Sensor device
CN107249444B (en) Wearable hemodynamic sensor
WO2015177867A1 (en) Pulse oximeter
US8649838B2 (en) Wavelength switching for pulse oximetry
JP4739126B2 (en) Oxygen saturation measuring device, control program for oxygen saturation measuring device, and recording medium recording control program for oxygen saturation measuring device
US8834378B2 (en) Systems and methods for determining respiratory effort
KR102595148B1 (en) Blood pressure measurement methods, devices and electronic devices
EP3355775B1 (en) Vital signs sensor and method of measuring vital signs of a user
US20120029363A1 (en) Systems and methods for improved computation of differential pulse transit time from photoplethysmograph signals
US8777867B2 (en) Detection of oximetry sensor sites based on waveform characteristics
JP6878312B2 (en) Photoelectric volumetric pulse wave recording device
US8571623B2 (en) System and method for detection of venous pulsation
US20100081892A1 (en) Systems and Methods for Combined Pulse Oximetry and Blood Pressure Measurement
CN112426141B (en) Blood pressure detection device and electronic device
US20180220965A1 (en) Measurement of oxygen saturation of blood haemoglobin
JP7257571B2 (en) pulse oximeter
US7014611B1 (en) Oscillometric noninvasive blood pressure monitor
JP4433756B2 (en) Biological information measuring device, control method therefor, control program, and recording medium
JP2019048050A (en) Pulse oximeter
US20090171172A1 (en) Method and system for pulse gating
CN109788919B (en) Optical vital sign sensor
JP2021007783A (en) Pulse oximeter
KR20170064906A (en) Apparatus and method for measuring bio-signal
WO2009088799A1 (en) Method and apparatus for assessing contact of a sensor with arterialized tissue
US11020010B2 (en) Blood pressure/pulse wave measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220311

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230403

R150 Certificate of patent or registration of utility model

Ref document number: 7257571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150