JPS63241560A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS63241560A
JPS63241560A JP62074185A JP7418587A JPS63241560A JP S63241560 A JPS63241560 A JP S63241560A JP 62074185 A JP62074185 A JP 62074185A JP 7418587 A JP7418587 A JP 7418587A JP S63241560 A JPS63241560 A JP S63241560A
Authority
JP
Japan
Prior art keywords
layer
barrier layer
electrophotographic photoreceptor
photoconductive layer
photoconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62074185A
Other languages
Japanese (ja)
Inventor
Hideji Yoshizawa
吉澤 秀二
Tatsuya Ikesue
龍哉 池末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Intelligent Technology Co Ltd
Original Assignee
Toshiba Corp
Toshiba Intelligent Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Intelligent Technology Co Ltd filed Critical Toshiba Corp
Priority to JP62074185A priority Critical patent/JPS63241560A/en
Publication of JPS63241560A publication Critical patent/JPS63241560A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08264Silicon-based comprising seven or more silicon-based layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Light Receiving Elements (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain a photosensitive body superior in electric chargeability characteristics, low in residual potential, and high in sensitivity in a wide wavelength region up to a near infrared region by using a barrier layer having superlattice structure. CONSTITUTION:The electrophotographic sensitive body is composed of a conductive supporting body 1, the barrier layer 2 having superlattice structure formed by alternately laminating 2 kinds of amorphous silicon thin films, at least one of both kinds containing conductivity governing atom, and each of both films having a film thickness of 30-500Angstrom , and a photoconductive layer 3, thus permitting the obtained photosensitive body to have high carrier transferability, high resistivity, superior chargeability characteristics, and optimum photoconductive characteristics to optional wavelength regions.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、帯電特性、暗減衰特性、光感度特性及び耐環
境性等が優れた電子写真感光体に関するO 〔従来の技術〕 水素■を含有するアモルファスシリコン(以下、a=8
i:Hと略す)は、近年、光電変換材料として注目され
ておシ、太陽電池、薄膜トランジスタ、及びイメージセ
ンナ等のほか、電子写真プロセスの感光体に応用されて
いる。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to an electrophotographic photoreceptor having excellent charging characteristics, dark decay characteristics, photosensitivity characteristics, environmental resistance, etc. Technology] Amorphous silicon containing hydrogen (hereinafter a=8
i:H) has recently attracted attention as a photoelectric conversion material, and has been applied to photoreceptors in electrophotographic processes as well as solar cells, thin film transistors, image sensors, etc.

従来、電子写真感光体の光導電層を構成する材料として
、CdS、ZnO,8e、若しくは5e−Te等の無機
材料又はポリ−N−ビニルカルバゾール(PVCZ)i
しくはトリニトロンフルオレノン(T N F)等の有
機材料が使用されていた。しかしながら、a−8i:H
はこれらの無機材料又は有機材料に比して、無公害物質
であるため回収処理の必要がないこと、可視光領域で高
い分光感度を有すること、並びに表面硬度が高く耐磨耗
性及び耐衝撃性が優れていること等の利点を有している
0このため、1−8i:Hは電子写真プロセスの感光体
材料として注目されている。
Conventionally, inorganic materials such as CdS, ZnO, 8e, or 5e-Te, or poly-N-vinylcarbazole (PVCZ) have been used as materials constituting the photoconductive layer of electrophotographic photoreceptors.
Alternatively, organic materials such as trinitrone fluorenone (TNF) have been used. However, a-8i:H
Compared to these inorganic or organic materials, it is a non-polluting substance, so there is no need for recovery treatment, it has high spectral sensitivity in the visible light region, and it has a high surface hardness and is resistant to abrasion and impact. For this reason, 1-8i:H has attracted attention as a photoreceptor material for electrophotographic processes.

このa−8i:Hは、カールソン方式に基づく感光体の
材料として検討が進められているが、この場合、感光体
特性として抵抗及び光感度が高いことが要求される。し
かしながら、この両特性を単一の感光体層で満足させる
ことが困難でちるため、光導電層と導電性支持体との間
に障壁層を設け、かつ光導電層上に表面電荷保持層を設
けた積層型の構造にするこ水より、このような要求を満
足させている。
This a-8i:H is being studied as a material for a photoreceptor based on the Carlson method, but in this case, the photoreceptor is required to have high resistance and photosensitivity. However, since it is difficult to satisfy both of these characteristics with a single photoreceptor layer, a barrier layer is provided between the photoconductive layer and the conductive support, and a surface charge retention layer is provided on the photoconductive layer. The laminated structure of the present invention satisfies these requirements.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、従来、障壁層としては高抵抗の絶縁性単一層
が用いられているが、このような障壁層では、膜厚が厚
いと光導電層から支持体へ流れる中子リアが障壁層を通
過できず、その結果、残留電位が高くなってしまう。一
方、膜厚が薄いと現像バイアスによυ絶縁破壊を生じて
しまう。また、障壁層としてp型又はn型の半導体を用
いた場合には、膜厚が厚いとダングリングボンド等の構
造欠陥に中ヤリアがドラッグされ、残留電位が高くなり
、一方、膜厚が薄い場合には支持体からのキャリアをブ
ロックできず、帯電能が低下してしまう。
By the way, conventionally, a high-resistance insulating single layer is used as a barrier layer, but when such a barrier layer is thick, the core rear flowing from the photoconductive layer to the support passes through the barrier layer. As a result, the residual potential becomes high. On the other hand, if the film thickness is thin, υ dielectric breakdown will occur due to the development bias. In addition, when a p-type or n-type semiconductor is used as a barrier layer, if the film is thick, the intermediate layer will be dragged by structural defects such as dangling bonds, increasing the residual potential; In such cases, carriers from the support cannot be blocked, resulting in a decrease in charging ability.

本発明は、かかる事情に鑑みてなされたものであって、
帯電能が優れておシ、残留電位が低く、近赤外領域まで
の広い波長領域に亘って感度が高く、基板との密若性が
良く、耐環境性が優れた電子写真感光体を提供すること
を目的とする。
The present invention has been made in view of such circumstances, and
Provides electrophotographic photoreceptors with excellent charging ability, low residual potential, high sensitivity over a wide wavelength range up to the near-infrared region, good bonding with substrates, and excellent environmental resistance. The purpose is to

〔発明の構成〕[Structure of the invention]

(問題点を解決するだめの手段) 本発明者らは、種々研究を重ねた結果、電子写真感光体
の障壁層として超格子構造を用いることによシ、上記目
的を達成し得ることを見出し、本発明を完成するに至っ
た。
(Means for solving the problem) As a result of various studies, the present inventors discovered that the above object can be achieved by using a superlattice structure as a barrier layer of an electrophotographic photoreceptor. , we have completed the present invention.

即ち、本発明の電子写真感光体は導電性支持体、障壁層
、および光導電層を具備する電子写真感光体において、
前記障壁層は、少なくとも一方が伝導型を支配する原子
を含む2種類の非晶質シリコン薄膜を交互に積層して構
成され、かつそれぞれの薄膜の膜厚が30〜500X 
であることを特徴とする。
That is, the electrophotographic photoreceptor of the present invention is an electrophotographic photoreceptor comprising a conductive support, a barrier layer, and a photoconductive layer.
The barrier layer is constituted by alternately laminating two types of amorphous silicon thin films, at least one of which contains atoms dominating the conductivity type, and each thin film has a thickness of 30 to 500X.
It is characterized by

本発明の電子写真感光体において、障壁層を構成する超
格子構造の少なくとも一方の非晶質シリコン薄層に含ま
れる伝導型を支配する元素とは、例えば周期律表第1族
又は第V族に属する元素である。これら元素の含有量は
好ましくは10−s〜IIg、子%、よシ好ましくは1
0−1〜10−1原子%である〇 (実施例) 第1図は、本発明の一実施例になる電子写真感光体の断
面構造を示す図である。四回において、1は導電性支持
体である。該導電性支持体の上には障壁1ij2が形成
され、その上には光導電層3が形成されている。更に、
光導電層3の上には表面層4が形成されている。
In the electrophotographic photoreceptor of the present invention, the element controlling the conductivity type contained in at least one amorphous silicon thin layer of the superlattice structure constituting the barrier layer is, for example, a group 1 or group V element of the periodic table. It is an element belonging to The content of these elements is preferably 10-s to IIg, %, more preferably 1
0-1 to 10-1 atomic % (Example) FIG. 1 is a diagram showing a cross-sectional structure of an electrophotographic photoreceptor according to an example of the present invention. In four times, 1 is a conductive support. A barrier 1ij2 is formed on the conductive support, and a photoconductive layer 3 is formed thereon. Furthermore,
A surface layer 4 is formed on the photoconductive layer 3.

導電性支持体1は、通常はアルミニウム製のドラムで構
成される。
The conductive support 1 usually consists of a drum made of aluminum.

障壁層2は、a−8i薄膜の超格子構造を有しておシ、
これら薄膜は水素が添加されたもの(a−si:a)と
することができる。
The barrier layer 2 has a superlattice structure of an a-8i thin film.
These thin films can be hydrogen-doped (a-si:a).

上記障壁層2は、導電性支持体1と光導電層3との間の
電荷の流れを抑制することによ)感光体表面の電荷保持
機能を高め、感光体の帯電能を高めるために形成される
ものである。従って、半導体層を障壁層に用いてカール
ソン方式の感光体を構成する場合には、表面に帯電させ
た電荷の保持能力を低下させないために、障壁s2を構
成する非晶質シリーン薄膜をp型またはn型とする。即
ち、感光体表面を正帯電させる場合には障壁層2をp型
とし、表面電荷を中和する電子が電荷発生層に注入され
るのを防止する。逆に表面を負帯電させる場合には障壁
層2をnfiとし、表面電荷を中和するホールが電荷発
生層へ注入されるのを防止する。障壁層2から注入され
るキャリアは光の入射で光導を層3内に発生するキャリ
アに対してノイズとなるから、上記のようにしてキャリ
アの注入を防止することは感度の向上をもたらす0なお
、a−5fをp型にするためには、周期律表の第1族に
属する元素、例えば硼素B、アルミニク砧11ガリウム
Ga、インジウムIn、及びタリウムT1等をドーピン
グすることが好ましい。また、a−8iをn型にするた
めには周期律表の第V族に属する元素、例えば窒素、燐
P1砒素As、アンチモンSb1及びビスマスBi等を
ドーピングすることが好ましい。
The barrier layer 2 is formed to enhance the charge retention function of the photoreceptor surface (by suppressing the flow of charges between the conductive support 1 and the photoconductive layer 3) and to increase the charging ability of the photoreceptor. It is something that will be done. Therefore, when forming a Carlson type photoreceptor using a semiconductor layer as a barrier layer, the amorphous silicone thin film forming the barrier s2 should be changed to p-type so as not to reduce the ability to retain charges on the surface. or n-type. That is, when the surface of the photoreceptor is positively charged, the barrier layer 2 is made p-type to prevent electrons that neutralize the surface charge from being injected into the charge generation layer. Conversely, when the surface is negatively charged, the barrier layer 2 is set to nfi to prevent holes that neutralize the surface charge from being injected into the charge generation layer. Since the carriers injected from the barrier layer 2 cause noise to the carriers generated in the layer 3 when light is incident, preventing the injection of carriers as described above will improve the sensitivity. , a-5f to be p-type, it is preferable to dope them with elements belonging to Group 1 of the periodic table, such as boron B, aluminum gallium Ga, indium In, and thallium T1. Further, in order to make a-8i n-type, it is preferable to dope it with an element belonging to Group V of the periodic table, such as nitrogen, phosphorus P1 arsenic As, antimony Sb1, and bismuth Bi.

゛また障壁層2を構成するa−81に炭素、窒素および
酸素から選択された元素の一種以上を含有させることに
よυ、障壁層を高抵抗とすることができる。
Furthermore, by incorporating one or more elements selected from carbon, nitrogen, and oxygen into a-81 constituting the barrier layer 2, the barrier layer can be made to have high resistance.

障壁層2の厚みは、100X〜10μmが好ましい〇 障壁層2の上に形成される光導電層3は、a−8i:H
又は微結晶シリコンによシ構成することができる。
The thickness of the barrier layer 2 is preferably 100X to 10 μm. The photoconductive layer 3 formed on the barrier layer 2 is a-8i:H
Alternatively, it can be made of microcrystalline silicon.

微結晶シリコン(μc−8i)は、粒径が約数十オンゲ
ストロムの微結晶化したシリコンと非晶質シリコンとの
混合相によシ形成されているものと考えられ、以下のよ
うな物性上の特徴を有している。
Microcrystalline silicon (μc-8i) is thought to be formed by a mixed phase of microcrystalline silicon and amorphous silicon with a grain size of about several tens of Angstroms, and has the following properties: It has physical characteristics.

第一に、X線回折測定では2θが28〜28.5°付近
にある結晶回折パターンを示し、ハローのみが現れる無
定形のa−83から明確に区別される。
First, X-ray diffraction measurements show a crystal diffraction pattern with 2θ in the vicinity of 28 to 28.5°, which is clearly distinguishable from amorphous a-83 in which only a halo appears.

第二に、μc−87の暗抵抗は1o16Ω・α以上に調
整することができ、暗抵抗が1fΩ・口のポリクリスタ
リンシリコンからも明確に区別される。
Second, the dark resistance of μc-87 can be adjusted to 1016 Ω·α or more, and it can be clearly distinguished from polycrystalline silicon, which has a dark resistance of 1 fΩ·α.

光導電層3に光が入射するとキャリアが発生し、このキ
ャリアのうち一方の極性のものは感光体表面の帯電電荷
と中和し、他方の極性のものは光導電層3を走行して導
電性支持体に到達する。
When light enters the photoconductive layer 3, carriers are generated. Among these carriers, carriers of one polarity neutralize the charges on the surface of the photoreceptor, and carriers of the other polarity travel on the photoconductive layer 3 and become conductive. Reach the sexual support.

障壁層2および光導電層3を構成するりa−81:Hお
よびμc−8i:Hにおける水素の含有量は、0.01
〜30原子%が好ましく、1〜25原子%がよシ好まし
い。このような水素の含有量により、シリコンのダング
リングボンドが補償され、暗抵抗と明抵抗とが調和のと
れたものとなシ、光導電特性が向上する。
The hydrogen content in a-81:H and μc-8i:H constituting the barrier layer 2 and the photoconductive layer 3 is 0.01
-30 atom% is preferable, and 1-25 atom% is more preferable. Such hydrogen content compensates for the dangling bonds of silicon, balances dark resistance and bright resistance, and improves photoconductive properties.

a−8t−Hをグロー放電分解法によシ成膜するには、
原料としてSiH4及びSi、H,等のシラン類ガスを
反応室に導入し、高周波によジグロー放電することによ
シ薄層中にHを添加することができる。必要に応じて、
シラン類のキャリアガスとして水素又はヘリウムをガス
を使用することができる。一方、SiF4ガス及び5i
C14ガス等のノ)ログン化ケイ素を原料ガスとして使
用することができる。また、シラン類ガスとハロゲン化
ケイ素ガスとの混合ガスで反応させても、同様にHを含
有する1−8i:Hを成膜することができる。なお、グ
ロー放電分解法によらず、例えば、スパッタリング等の
物理的な方法によつてもこれ吟の薄層を形成することが
できる。
To form a-8t-H into a film by glow discharge decomposition method,
H can be added into the thin layer by introducing SiH4 and a silane gas such as Si, H, etc. into the reaction chamber as raw materials and generating a jiglow discharge using high frequency waves. as needed,
Hydrogen or helium can be used as a carrier gas for the silanes. On the other hand, SiF4 gas and 5i
(2) Logonized silicon such as C14 gas can be used as the raw material gas. Further, even if a mixed gas of a silane gas and a silicon halide gas is reacted, a film of 1-8i:H containing H can be similarly formed. Note that this thin layer can also be formed by a physical method such as sputtering, instead of using the glow discharge decomposition method.

μc−81層も、a−8i:Hと同様に、高周波グロー
放電分解法によシ、シランガスを原料として、成膜する
ことができる。この場合に、支持体の温度をa−81:
Hを形成する場合よ)も高く設定し、高周波電力もa 
−S i a Hの場合よりも高く設定すると、μc 
−S i * Hを形成しやすくなる。また、支持体温
度及び高周波電力を高くすることによシ、シランガスな
どの原料ガスの流量を増大させることができ、その結果
、成膜速度を早くすることができる。また、原料ガスの
8iH4及びS i、H・等の高次のシランガスを水素
で希釈したガスを使用することによシ、μc−84:H
を一層高効率で形成することができる。
Similarly to a-8i:H, the μc-81 layer can also be formed using a high-frequency glow discharge decomposition method using silane gas as a raw material. In this case, the temperature of the support is a-81:
When forming H) is also set high, and the high frequency power is also
- If set higher than in the case of S i a H, μc
-S i *H becomes easier to form. Furthermore, by increasing the support temperature and high frequency power, the flow rate of raw material gas such as silane gas can be increased, and as a result, the film formation rate can be increased. In addition, by using a raw material gas of 8iH4 and a gas obtained by diluting high-order silane gas such as Si, H・, etc. with hydrogen, μc-84:H
can be formed with even higher efficiency.

光導を層3の上に表面層4が設けられている。A surface layer 4 is provided on top of the light guiding layer 3.

光導電層3を構成するa−8t:H等は、その屈折率が
3乃至3,4と比較的大きいため、表面での光反射が起
きやすい。このような光反射が生じると、光導電層3に
吸収される光量の割合いが低下し、光損失が大きくなる
。このため、表面層4を設けて反射を防止することが好
ましい。また、表面層4を設けることによシ、光導電層
3が損傷から保護される。さらに、表面層を形成するこ
とにょシ、帯電能が向上し、表面に電荷がよくのるよう
になる0表面層を形成する材料としては、a−84:H
,a−8i:H,及びa−8iC:H等の無機化合物並
びにポリ塩化ビニル及びポリアミド等の有機材料がある
Since a-8t:H and the like constituting the photoconductive layer 3 have a relatively large refractive index of 3 to 3.4, light reflection easily occurs on the surface. When such light reflection occurs, the proportion of the amount of light absorbed by the photoconductive layer 3 decreases, increasing optical loss. For this reason, it is preferable to provide the surface layer 4 to prevent reflection. Also, by providing the surface layer 4, the photoconductive layer 3 is protected from damage. Furthermore, as a material for forming the surface layer, a-84:H
, a-8i:H, and a-8iC:H, and organic materials such as polyvinyl chloride and polyamide.

このように構成される電子写真感光体の表面を、コロナ
放電によシ約500Vの正電圧で帯電させた状態で光(
hν)が入射すると、光導電層3において電子と正孔の
キャリアが発生する。この伝導帯の電子は、感光体内の
電界によシ表面層4側に向けて加速され、正孔は導電性
支持体1側に向けて加速される。この場合、従来の高抵
抗の絶縁性単一層から−なる障壁層を用いると、前述の
ように、膜厚が厚いと光導電層から支持体へ流れるキャ
リアが障壁層を通過できず、その結果、残留電位が高く
なってしまう。一方、膜厚が薄いと現像バイアスによシ
絶縁破壊を生じてしまう。また、障壁層としてp型又は
n型の半導体を用いた場合には、膜厚が厚いとダングリ
ングボンド等の構造欠陥にキャリアがトラップされ、残
留電位が高ぐな〕、一方、膜厚が薄い場合には支持体か
らのキャリアをブロックできず、帯電能が低下してしま
う。これに対し、本発明の感光体のように、障壁層を超
格子構造とすると、ポテンシャル井戸層においては、量
子効果のために、超格子構造でない単一層の場合に比し
て、キャリアの寿命が5乃至10倍と長込。また、超格
子構造においては、バンドギャップの不連続性によシ、
周期的なバリア層が形成されるが、キャリアはトンネル
効果で容易にバイアス層を通シ抜けるので、キャリアの
実効移動度はバルクにおける移動度と同等であシ、キャ
リアの走行性が優れている。以上のごとく、薄層を積層
した超格子構造によれば、高光導電特性を得ることがで
き、従来の感光体よシも鮮明な画像を得ることができる
〇 以下に第2図を参照し、上記実施例の電子写真感光体を
グロー放電法によシ製造する装置、並びに製造方法を説
明する。同図において、ガスボンベ21,22,23,
2イには、例えば夫々8 i H4@ JH6@ CH
4等の原料ガスが収容されている。これらガスボンベ内
のガスは、流量調整用のパルプ26及び配管27を介し
て混合器28に供給されるようになっている。各ボンベ
には圧力計25が設置されておυ、該圧力計25を監視
しつつパルプ26を調整することによシ混白画28に供
給する各原料ガスの流量及び混合比を調節できる。混合
器28にて混合されたガスは反応容器29に供給される
。反応容器29の底部31には、回転軸30が鉛直方向
の回ルに回転可能に取付けられている0該回転軸30の
上端に、円板状の支持台32がその面を回転軸30に垂
直にして固定金れている。、ff囚容器29内には、円
筒状のti33がその軸中心を回転軸30の軸中心と一
致させて底部31上に設置されている。感光体のドラム
基体34が支持台32上にその軸中心を回転軸30の軸
中心と一致させて載置されておシ、このドラム基体34
の内側にはドラム基体加熱用のヒータ35が配設されて
いる。電極33とドラム基体34との間に゛は高周波電
源36が設置されて訃シ、電極33およびドラム基体3
4間に高周波電流が供給されるようになっている。回転
軸30はモータ38によシ回転駆動される。反応容器2
9内の圧力は圧力計37によシ監視され、反応容器29
はゲートパルプ38を介して真空ポンプ等の適宜の排気
手段に連続されている。
The surface of the electrophotographic photoreceptor constructed in this manner is charged with a positive voltage of approximately 500 V by corona discharge, and then exposed to light (
hv), electron and hole carriers are generated in the photoconductive layer 3. Electrons in the conduction band are accelerated toward the surface layer 4 side by the electric field within the photoreceptor, and holes are accelerated toward the conductive support 1 side. In this case, if a conventional barrier layer consisting of a single high-resistance insulating layer is used, as mentioned above, if the film is thick, carriers flowing from the photoconductive layer to the support cannot pass through the barrier layer. , the residual potential becomes high. On the other hand, if the film is thin, dielectric breakdown may occur due to the development bias. Furthermore, when a p-type or n-type semiconductor is used as a barrier layer, if the film is thick, carriers will be trapped in structural defects such as dangling bonds, increasing the residual potential. If it is thin, carriers from the support cannot be blocked, resulting in a decrease in charging ability. On the other hand, when the barrier layer has a superlattice structure as in the photoreceptor of the present invention, the carrier lifespan in the potential well layer is longer than in the case of a single layer without a superlattice structure due to quantum effects. has increased by 5 to 10 times. In addition, in the superlattice structure, due to bandgap discontinuity,
Although a periodic barrier layer is formed, carriers easily pass through the bias layer due to the tunnel effect, so the effective mobility of carriers is equivalent to that in the bulk, and carrier mobility is excellent. . As described above, the superlattice structure made of laminated thin layers can provide high photoconductivity and provide clear images even with conventional photoreceptors. See Figure 2 below. An apparatus and a manufacturing method for manufacturing the electrophotographic photoreceptor of the above embodiment by a glow discharge method will be described. In the figure, gas cylinders 21, 22, 23,
For example, 8 i H4 @ JH6 @ CH
4th class raw material gas is accommodated. The gas in these gas cylinders is supplied to a mixer 28 via a pulp 26 and piping 27 for flow rate adjustment. Each cylinder is equipped with a pressure gauge 25, and by adjusting the pulp 26 while monitoring the pressure gauge 25, the flow rate and mixing ratio of each raw material gas supplied to the mixed white 28 can be adjusted. The gases mixed in the mixer 28 are supplied to a reaction vessel 29. At the bottom 31 of the reaction vessel 29, a rotating shaft 30 is rotatably attached to a vertical turn. At the upper end of the rotating shaft 30, a disc-shaped support 32 is attached with its surface facing the rotating shaft 30. The metal is fixed vertically. , ff Inside the prison container 29, a cylindrical ti 33 is installed on the bottom 31 with its axial center aligned with the axial center of the rotating shaft 30. A drum base 34 of a photoreceptor is placed on a support base 32 with its axial center aligned with the axial center of the rotating shaft 30.
A heater 35 for heating the drum base is disposed inside the drum. A high frequency power source 36 is installed between the electrode 33 and the drum base 34.
A high frequency current is supplied between the two. The rotating shaft 30 is rotationally driven by a motor 38. Reaction container 2
The pressure inside the reaction vessel 29 is monitored by a pressure gauge 37.
is connected to a suitable evacuation means such as a vacuum pump via a gate pulp 38.

上記製造装置によシ感光体を製造する場合には、反応容
器29内にドラム基体34を設置した後、ダートパルプ
39を開にして反応容器29内を約0、ITorrの圧
力以下に排気する。次いで、ボンベ21.22,23.
24から所要の反応ガスを所定の混合比で混合して反応
容器29内に導入する。
When manufacturing a photoreceptor using the above manufacturing apparatus, after installing the drum base 34 in the reaction vessel 29, the dirt pulp 39 is opened and the inside of the reaction vessel 29 is evacuated to a pressure of about 0.0 Torr or less. . Next, cylinders 21, 22, 23.
24, the required reaction gases are mixed at a predetermined mixing ratio and introduced into the reaction vessel 29.

この場合に、反応容器29内に導入するガス流量は反応
容器29内の圧力が0.1乃至1.0Torrになるよ
うに設定する。次いで、モータ38を作動させてドラム
基体34を回転させ、ヒータs5I/cよシトラム基体
34を一定湿度に加熱すると共に、高周波電源36によ
シミ極33とドラム基体34との間に高周波電流を供給
して、両者間にグロー放電を形成する。これによシ、ド
ラム基体34上にpc−8i: H!a−8i:Hが堆
積する。なお、原料ガス中にN、O、NH,、No、 
、 N、 、 CH,。
In this case, the flow rate of the gas introduced into the reaction vessel 29 is set so that the pressure within the reaction vessel 29 is 0.1 to 1.0 Torr. Next, the motor 38 is operated to rotate the drum base 34, the heater s5I/c heats the citrus base 34 to a constant humidity, and the high frequency power supply 36 applies a high frequency current between the stain electrode 33 and the drum base 34. A glow discharge is formed between the two. In addition, the PC-8i is placed on the drum base 34: H! a-8i: H is deposited. Note that the raw material gas contains N, O, NH,, No,
,N, ,CH,.

C,H4,O□ガス等を使用することによjり、C,0
、Nt−μc−8i:Hやa−8i : H中に含有さ
せることができる。
By using C, H4, O□ gas, etc., C,0
, Nt-μc-8i:H or a-8i:H.

このように、この発明に係る電子写真感光体は、クロー
ズドシステムの製造装置で製造することができるため、
人体に対して安全である。
As described above, since the electrophotographic photoreceptor according to the present invention can be manufactured using a closed system manufacturing apparatus,
Safe for humans.

次に、この発明に係る電子写真感光体を成膜し、電子写
真特性を試験した結果について説明する。
Next, the results of testing the electrophotographic properties of an electrophotographic photoreceptor according to the present invention formed into a film will be described.

試験例1 必要に応じて、干渉防止のために、酸処理、アルカリ処
理及びサンドブラスト処理を施した直径が8on1幅が
35011nのアルミニウム製ドラム基体を反応容器内
に装着し、反応容器を約10−1トルの真空度に排気し
た。ドラム基体を250″CK加熱し、10 rpmで
自転させつつ、8iH,ガスを5008CCM%B、H
,ガスを8iH,ガスに対する流量比で10−”、H,
ガスを3008ccMという流量で反応容器内に導入し
、反応容器内の圧力を1トルに調節した。そして、35
0Wの高周波電力を印加してプラズマを生起させ、ドラ
ム基体上にp塑のa−8i:H膜を50大形成した。
Test Example 1 If necessary, to prevent interference, an aluminum drum base with a diameter of 8 on and a width of 35011 nm, which has been subjected to acid treatment, alkali treatment, and sandblasting, is installed in the reaction vessel, and the reaction vessel is heated to approximately 10 mm. The vacuum was evacuated to 1 torr. The drum base was heated to 250"CK, and while rotating at 10 rpm, 8iH, gas was heated to 5008 CCM% B, H.
, the gas is 8iH, the flow rate ratio to the gas is 10-'', H,
Gas was introduced into the reaction vessel at a flow rate of 3008 ccM, and the pressure inside the reaction vessel was adjusted to 1 Torr. And 35
A high frequency power of 0 W was applied to generate plasma to form 50 p-plastic a-8i:H films on the drum base.

次いで、B、H,ガスの流量を3 i H4ガスに対す
る流量比で10−4として、5oXop型a−8i:H
薄膜を形成した。このような操作を繰返して、50層づ
つの、p型a−8i:H薄膜からなる2000^の超格
子構造の障壁層を形成した。
Next, the flow rate ratio of B, H, and gases to 3i H4 gas was set to 10-4, and 5oXop type a-8i:H
A thin film was formed. These operations were repeated to form barrier layers each having a 2000^ superlattice structure consisting of 50 p-type a-8i:H thin films.

次KSiH,,fスを500 S CCMs B2H6
カスをSIH,ガスに対する流量比が10−6となるよ
うな流量で反応容器内に導入し、反応容器内を1トルと
し、300Wの高周波電力を印加して30層mのi型a
−8i:H光導電層を形成した。
Next KSiH,, f 500 S CCMs B2H6
The scum was introduced into the reaction vessel at a flow rate such that the flow rate ratio to the SIH gas was 10-6, the inside of the reaction vessel was set to 1 Torr, and a high frequency power of 300 W was applied to form a 30-layer I-type a.
-8i:H photoconductive layer was formed.

最後に、0.1μmの厚さのa−8iC:Hからなる表
面層を形成した。
Finally, a surface layer of a-8iC:H with a thickness of 0.1 μm was formed.

このようにして形成した感光体表面を約500vで正帯
電し、白色光を露光すると、この光は光導[ffiで吸
収され、電子正孔対のキャリアが発生する。この試験例
においては、多数のキャリアが発生し、キャリアの寿命
が高く、高い走行性が得られた。これによシ、鮮明で高
品質の画像が得られた。また、この試験例で製造された
感光体を、繰返し帯電させたところ、転写画像の再現性
及び安定性は極めて良好であシ、更に、耐コロナ性、耐
湿性、及び耐磨耗性等の耐久性が優れていることが実証
された。
When the surface of the photoreceptor thus formed is positively charged at about 500 V and exposed to white light, this light is absorbed by the light guide [ffi] and carriers of electron-hole pairs are generated. In this test example, a large number of carriers were generated, the carriers had a long life, and high running performance was obtained. As a result, clear and high quality images were obtained. In addition, when the photoreceptor manufactured in this test example was repeatedly charged, the reproducibility and stability of the transferred image were extremely good. It has been proven that it has excellent durability.

試験例2 障壁層をN型a−8i:H薄膜の超格子構造にょシ構成
したことを除き、試験例1と同様の方法で電子写真感光
体を製造した。即ち、試験列1におけるB、H,ガスの
代わりにPH,、yスをSiH4ガスに対する流量比で
5 X 10−”という流量で導入し、反応室内の圧力
をI Torrとし、350Wの高周波電力を印加して
、50^のNを暑−8i:H@膜を形成した。次いで、
PH,ガスをSiH4ガスに対する流量比で1(f’−
’という流量で導入し、同様に50XのN型a−8i:
H薄膜を形成した。このような操作を繰返して2000
Xの超格子構造の障壁層を形成した。
Test Example 2 An electrophotographic photoreceptor was manufactured in the same manner as in Test Example 1, except that the barrier layer had a superlattice structure of an N-type a-8i:H thin film. That is, instead of the B, H, and gases in test row 1, PH, and ys were introduced at a flow rate ratio of 5 x 10-'' to the SiH4 gas, the pressure in the reaction chamber was set to I Torr, and a high-frequency power of 350 W was applied. was applied to form a 50^N heat-8i:H@ film.
PH, the flow rate ratio of gas to SiH4 gas is 1 (f'-
Similarly, 50X N type a-8i:
A H thin film was formed. Repeat this operation until 2000
A barrier layer having a superlattice structure of X was formed.

この感光体を繰返し帯電したところ、転写画像の再現性
及び安定性が高く、耐コロナ性、耐湿性、及び耐磨耗性
などの耐久性が優れていた。
When this photoreceptor was repeatedly charged, the transferred image had high reproducibility and stability, and had excellent durability such as corona resistance, moisture resistance, and abrasion resistance.

また、薄層の種類は、上記試験例のように2種類に限ら
ず、3種類以上の薄層を積石しても良く、要するに、光
学的バンドキャップが相違する薄層の境界を形成すれば
良い。
In addition, the types of thin layers are not limited to two types as in the above test example, but three or more types of thin layers may be stacked.In short, the optical band cap forms a boundary between different thin layers. Good.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、障壁層に超格子構造を用いているため
、キャリアの走行性が高いとともに、高抵抗のため帯電
特性の優れた電子写真感光体を得ることができる。特に
、この発明においては、薄層を形成する材料を適宜組み
合わせることKよシ、任意の波長′帯の光に対して最適
の光導電特性を有する感光体を得ることができるという
利点がある。
According to the present invention, since a superlattice structure is used for the barrier layer, it is possible to obtain an electrophotographic photoreceptor that has high carrier mobility and has high resistance and excellent charging characteristics. In particular, the present invention has the advantage that by appropriately combining the materials forming the thin layer, it is possible to obtain a photoreceptor having optimal photoconductive properties for light in any wavelength band.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る電子写真感光体を示す断
面図、第2図は本発明の実施例に係る電子写真感光体の
製造装置を示す図である。 1・・・導電性支持体、2・・・障壁層、3・・・光導
電層、4・・・表面層〇 出願人代理人 弁理士 鈴 江 武 彦N 1因 第 2囚
FIG. 1 is a sectional view showing an electrophotographic photoreceptor according to an embodiment of the present invention, and FIG. 2 is a diagram showing an apparatus for manufacturing an electrophotographic photoreceptor according to an embodiment of the invention. 1... Conductive support, 2... Barrier layer, 3... Photoconductive layer, 4... Surface layer 〇 Applicant's representative Patent attorney Takehiko Suzue N. 1st cause 2nd prisoner

Claims (7)

【特許請求の範囲】[Claims] (1)導電性支持体、障壁層、および光導電層を具備す
る電子写真感光体において、前記障壁層は、少なくとも
一方が伝導型を支配する原子を含む2種類の非晶質シリ
コン薄膜を交互に積層して構成され、かつそれぞれの薄
膜の膜厚が30〜500Åであることを特徴とする電子
写真感光体。
(1) In an electrophotographic photoreceptor comprising a conductive support, a barrier layer, and a photoconductive layer, the barrier layer consists of alternating layers of two types of amorphous silicon thin films, at least one of which contains atoms dominating the conductivity type. An electrophotographic photoreceptor characterized in that the electrophotographic photoreceptor is constructed by laminating two thin films, each having a thickness of 30 to 500 Å.
(2)前記伝導型を支配する元素は、周期律表第III族
および第V族に属する元素から選ばれた少なくとも1種
であることを特徴とする特許請求の範囲第1項記載の電
子写真感光体。
(2) The electrophotography according to claim 1, wherein the element that dominates the conductivity type is at least one element selected from elements belonging to Group III and Group V of the periodic table. Photoreceptor.
(3)前記障壁層は、炭素、酸素および窒素のうちの少
なくとも一種を含むことを特徴とする特許請求の範囲第
1項又は2項記載の電子写真感光体。
(3) The electrophotographic photoreceptor according to claim 1 or 2, wherein the barrier layer contains at least one of carbon, oxygen, and nitrogen.
(4)前記光導電層は、非晶質材料および/または少な
くとも一部が微結晶化した半導体材料からなることを特
徴とする特許請求の範囲第1〜3項のうちのいずれか1
項記載の電子写真感光体。
(4) Any one of claims 1 to 3, wherein the photoconductive layer is made of an amorphous material and/or a semiconductor material that is at least partially microcrystalline.
The electrophotographic photoreceptor described in .
(5)前記光導電層は、周期律表第III族又は第V族に
属する元素から選択された少なくとも一種の元素を含む
ことを特徴とする特許請求の範囲第1〜4項のうちのい
ずれか1項記載の電子写真感光体。
(5) Any one of claims 1 to 4, wherein the photoconductive layer contains at least one element selected from elements belonging to Group III or V of the Periodic Table. The electrophotographic photoreceptor according to item 1.
(6)前記光導電層は、炭素、酸素および窒素のうちの
少なくとも一種を含むことを特徴とする特許請求の範囲
第1〜5項のうちのいずれか1項記載の電子写真感光体
(6) The electrophotographic photoreceptor according to any one of claims 1 to 5, wherein the photoconductive layer contains at least one of carbon, oxygen, and nitrogen.
(7)前記光導電層の上に表面層を有することを特徴と
する特許請求の範囲第1〜6項のうちのいずれか1項記
載の電子写真感光体。
(7) The electrophotographic photoreceptor according to any one of claims 1 to 6, further comprising a surface layer on the photoconductive layer.
JP62074185A 1987-03-30 1987-03-30 Electrophotographic sensitive body Pending JPS63241560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62074185A JPS63241560A (en) 1987-03-30 1987-03-30 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62074185A JPS63241560A (en) 1987-03-30 1987-03-30 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPS63241560A true JPS63241560A (en) 1988-10-06

Family

ID=13539857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62074185A Pending JPS63241560A (en) 1987-03-30 1987-03-30 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS63241560A (en)

Similar Documents

Publication Publication Date Title
JPS63241560A (en) Electrophotographic sensitive body
JPS63187258A (en) Electrophotographic sensitive body
JPS63241556A (en) Electrophotographic sensitive body
JPS63241554A (en) Electrophotographic sensitive body
JPS63187254A (en) Electrophotographic sensitive body
JPS63294567A (en) Electrophotographic sensitive body
JPS63294566A (en) Electrophotographic sensitive body
JPS63292144A (en) Electrophotographic sensitive body
JPS63294565A (en) Electrophotographic sensitive body
JPS63178255A (en) Electrophotographic sensitive body
JPS63187257A (en) Electrophotographic sensitive body
JPS63292145A (en) Electrophotographic sensitive body
JPS63178251A (en) Electrophotographic sensitive body
JPS63241559A (en) Electrophotographic sensitive body
JPS63187260A (en) Electrophotographic sensitive body
JPS63292146A (en) Electrophotographic sensitive body
JPS63208056A (en) Electrophotographic sensitive body
JPS63273877A (en) Electrophotographic sensitive body
JPS63208057A (en) Electrophotographic sensitive body
JPS63273876A (en) Electrophotographic sensitive body
JPS63187259A (en) Electrophotographic sensitive body
JPS63208055A (en) Electrophotographic sensitive body
JPS63208052A (en) Electrophotographic sensitive body
JPS63187256A (en) Electrophotographic sensitive body
JPS63208051A (en) Electrophotographic sensitive body