JPS63241486A - Method and device for defining nuclear dosage - Google Patents

Method and device for defining nuclear dosage

Info

Publication number
JPS63241486A
JPS63241486A JP62321145A JP32114587A JPS63241486A JP S63241486 A JPS63241486 A JP S63241486A JP 62321145 A JP62321145 A JP 62321145A JP 32114587 A JP32114587 A JP 32114587A JP S63241486 A JPS63241486 A JP S63241486A
Authority
JP
Japan
Prior art keywords
crystal
tube
gas flow
light
collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62321145A
Other languages
Japanese (ja)
Other versions
JPH0532713B2 (en
Inventor
チャーリー モーリス レビット
ヘンリィ ブルック ダイヤー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Beers Industrial Diamond Division Pty Ltd
Original Assignee
De Beers Industrial Diamond Division Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by De Beers Industrial Diamond Division Pty Ltd filed Critical De Beers Industrial Diamond Division Pty Ltd
Publication of JPS63241486A publication Critical patent/JPS63241486A/en
Publication of JPH0532713B2 publication Critical patent/JPH0532713B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/02Dosimeters
    • G01T1/10Luminescent dosimeters
    • G01T1/11Thermo-luminescent dosimeters

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野] 本発明は核放射の検出ならびに核放!8線fi3の確定
に係る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to the detection of nuclear radiation and the determination of nuclear radiation!8 radiation fi3.

〔従来の技術と問題点〕[Conventional technology and problems]

いわゆる熱ルミネセンス物質は周知のものである。特に
自活な熱ルミネセンス物Y;1はフッ化すナ・ラムであ
る。又、南アフリカ特願第86/19f38号に記載の
如く工業ダイヤモンドも熱ルミネセンス物質の特性を具
えたものとして知られている、もう1つの周知の熱ルミ
ネセンス材は方形窒化ホウ素(CBN)があげられる。
So-called thermoluminescent substances are well known. In particular, the self-supporting thermoluminescent material Y; 1 is fluorinated Na-Rum. Industrial diamond is also known to have the properties of a thermoluminescent material, as described in South African Patent Application No. 86/19f38. Another well-known thermoluminescent material is rectangular boron nitride (CBN). can give.

結晶状熱ルミネセンス物質が例えばエックス線、アルフ
ァ粒子、ニュートロン、プロトン、ガンマ線又は電子の
放射など核放射を適宜低温で受けると、自由電子又は正
孔が結晶中の格子欠陥に捕えられ、若しその温度が十分
低い場合かなり長時間にわたり捕獲されたままで残るこ
とが起り得る。
When a crystalline thermoluminescent substance is subjected to nuclear radiation, e.g. radiation of X-rays, alpha particles, neutrons, protons, gamma rays or electrons, at appropriate low temperatures, free electrons or holes become trapped in lattice defects in the crystal, or If the temperature is low enough it can remain trapped for quite a long time.

而しながら、温度が上+f#すると、電子又は正孔はし
ばしば光の放射を伴って安定エネルギー準位に戻る。
However, as the temperature increases +f#, the electrons or holes return to a stable energy level, often accompanied by the emission of light.

この現象は医療技術にJ3いて核放則線星の確定に用い
られる。例えば、エックス線など核放射を受ける人聞に
上記の如ぎ゛市了エネルギー岸位の変動が放用浴射中発
生する熱ルミネセンス結晶を取付ける。次にこの結晶体
を4+用省より取り外し、結晶体従って着用者が浴用を
受けた放射線(4の測定017を求めるテス1〜にか(
〕る。6合のテスト技術の場合、照射された結晶体を抵
抗加熱器を用い下方より熱せられる支持面上におく工程
が含まれるものである。加熱時結晶体により放射される
光線は光電子増倍管(PM tube )により収集さ
れる。
This phenomenon is used in medical technology to determine nuclear parabolic stars. For example, a thermoluminescent crystal, which generates the above-mentioned fluctuations in the energy level during exposure to nuclear radiation such as X-rays, is attached to a person receiving nuclear radiation such as X-rays. This crystal is then removed from the 4+ body, and the crystal and thus the radiation that the wearer was exposed to during the bath (Test 1 to determine the measurement 017 of 4).
]. The 6-way test technique involves placing the irradiated crystal on a support surface that is heated from below using a resistance heater. The light emitted by the crystal when heated is collected by a photomultiplier tube (PM tube).

このPM管で収集された光線吊は次に収集光線対放射線
tHの既知の関係より最初の核放射線F−の確定樹立に
利用される。
The rays collected by this PM tube are then used to establish the initial nuclear radiation F- from the known relationship between the collected rays and the radiation tH.

この技術の原理は正しいが、結果の再現性を)qるのに
大きな困難が伴っている。結果におiノるこのバラツー
1−の主因として、結晶体をその支持体]−にきわめて
精密かつ均一に位置ぎめせねばならぬという必要条件が
あげられる。結晶体をその都度正確に同じように位置き
めすることが行われないため、結晶体及び1つM管によ
る不均等な光線収集に対し異なった熱強度が加わること
に帰因するバラツキのある結果が得られる。更に、結晶
体は片側だけからしか熱ゼられず、此により加熱J作中
における不均一性が助長される。又、結晶体の敢OJす
る光線の大手は散乱しPM管により全熱収集されない。
Although the principle of this technique is correct, there are great difficulties in determining the reproducibility of the results. The main reason for this discrepancy in results is the requirement that the crystal be positioned very accurately and uniformly on its support. Variable results due to different heat intensities applied to uneven beam collection by the crystal and one M tube, since the crystal is not positioned exactly the same each time. is obtained. Furthermore, the crystal can only be heated from one side, which promotes non-uniformity during heating. Moreover, the main part of the light rays emitted by the crystal body is scattered and all of the heat is not collected by the PM tube.

・その他の問題としては、放射光線は特に熱ルミネヒン
スダイヤモンドの場合、強度が低くこれ又ダイヤモンド
をPM管にヌ・1しきわめて精密に位置ぎめゼねばなら
ぬことを、Q味している。又、凸通用いられる抵抗式加
熱器【よダイヤモンドを所定渇疫に熱qるのに20秒か
ら30秒もかかることが有る。
Another problem is that the intensity of the emitted light is low, especially in the case of thermoluminescent diamonds, which also requires very precise positioning of the diamond in the PM tube. In addition, it can take as long as 20 to 30 seconds to heat a diamond to a specified temperature using a resistance heater that is used in a convex manner.

熱ルミネセンメダイヤ−[ンドを医療技術において放射
源h)の確定に有効に使用できるものと信じられている
。その主な理由は、炭素であるダイヤモンド(よ人体の
組成にぎりめて類似せる組成を有していることである。
It is believed that thermoluminescent media can be used effectively in medical technology for the identification of radiation sources (h). The main reason for this is that carbon, diamond, has a composition that closely resembles that of the human body.

即ら、ダイX/′Eンドにより吸収される放射は人体に
吸収される放射に近く、従ってダイヤモンドは人体が照
射を受【)だ放射線間を確実に表示するしのである。
That is, the radiation absorbed by the die X/'End is close to the radiation absorbed by the human body, and thus diamond provides a reliable indication of the radiation range to which the human body is exposed.

〔発明の目的及び構成〕[Object and structure of the invention]

本発明は熱ルミネセンス結晶体を用い核放射線tdを確
定するための方法及び装置の提供を目的としでいる。
The present invention aims to provide a method and apparatus for determining nuclear radiation td using thermoluminescent crystals.

本発明の1つの特徴にJ、れば、熱ルミネセンス結晶体
が照射を受1jだ核放射線間を確立するための方法にし
て、結晶体の冷光作用が行われるのに適切な温度に加熱
し、結晶体の放射づ゛る光線を収集し、結晶体よりの放
射線ωを、it rxする諸段階を含み、l昇ガス流を
用い結晶体をイの加熱中Φカに抗して支持する方法が提
供される。
One feature of the invention is to provide a method for establishing nuclear radiation between a thermoluminescent crystal upon which a thermoluminescent crystal is irradiated, and heating the crystal to a temperature suitable for photoluminescence to take place. The method includes the steps of collecting the rays emitted by the crystal, and rxing the radiation ω from the crystal, and supporting the crystal against the force of Φ during heating using an ascending gas flow. A method is provided.

本発明のもう1つの特徴によれば、熱ルミネセンス結晶
体が照射を受【Jた核放射FIla+を(Kf定りるた
めの装置にして、結晶体をその冷光作用が行われるのに
適切なUffljに加熱・)るための装置と、結晶体の
放射する光線を収集するだめの装置と、結晶体よりの放
射線量をst txするための装置とを有し、又結晶体
の加熱中これを重力に抗して支持するための上昇ガス流
を形成するための装置し含む核放rj4線量の確定のた
めの装置が提供される。
According to another feature of the invention, the thermoluminescent crystal is subjected to irradiation by means of an apparatus for determining the nuclear radiation FIla+ (Kf) suitable for the luminescence to take place. It has a device for heating the crystal to a certain Ufflj, a device for collecting the light rays emitted by the crystal, and a device for measuring the radiation dose from the crystal. An apparatus for determining the nuclear radiation dose is provided, including an apparatus for creating an ascending gas flow to support it against gravity.

結晶体は高tシガス流により支持かつ加熱される。The crystal body is supported and heated by a high t gas flow.

而しながら、結晶体は最初低温ガス流で支持されその(
9高温ガス流に代えても良い。
However, the crystal is initially supported by a low-temperature gas flow and its (
9. It may be replaced by a hot gas flow.

結晶体の111則する光線を収集するのに積分球部材を
使用し、この積分球部材内で結晶体を支持しれを加熱す
るのが好44ニジい。積分球部材には例えば垂直状の光
伝達チューブが貫通して設けられる。
Preferably, an integrating sphere is used to collect the 111-order rays of the crystal, and the crystal is supported and heated within the integrating sphere. For example, a vertical light transmission tube is provided through the integrating sphere member.

結晶体をチューブ内に落■する一方ガス流をチューブ内
に上貸せしめる。
The crystal is dropped into the tube while a gas flow is applied over the tube.

本発明は遠距離放射源からの放射線間の確定に用いても
良い。これとは別に、単一源からの放射FAFAの定期
的確立にも利用しても良い。この場合、結晶体は照射υ
イクルの都度チューブの下端に落下せしめ次に積分球体
内へガス流にのせて上51 t!しめ放Q4線fi1確
定を行う。
The invention may also be used to determine between radiation from distant radiation sources. Apart from this, it may also be used to periodically establish a radiation FAFA from a single source. In this case, the crystal body is irradiated υ
Each cycle, the tube is dropped to the bottom end of the tube, and then placed on the gas flow into the integrating sphere. Confirm the release Q4 line fi1.

本発明の1実施例の場合、結晶体は典型的にはガラス製
の光線伝達本体内に単独若しくは他の類似結晶体と共に
閉じ込められる。
In one embodiment of the invention, the crystal is confined alone or with other similar crystals within a light transmission body, typically made of glass.

〔実施例〕〔Example〕

図面において、集積球体は参照番号10に示されている
。球体の内面にはニュートラルなスペクトル反Ω・j率
を有づる(4化バリウム測光塗料が塗イ(iされでいる
。テーパ形状のjΔ明なガラス管12が球体10の頂部
にある開[114から底部の開口15にか(〕直直径面
に延びている。
In the drawings, the integrating sphere is indicated by reference numeral 10. The inner surface of the sphere is coated with a barium tetrachloride photometric paint having a neutral spectral anti-Ω·j coefficient. It extends diametrically from the opening 15 at the bottom.

管16が管12の底部より延びている。この管16に三
方向バルブ22を介して分岐管18及び20が接続して
いる。管12の」二端即ら間口14にdりいて光を通さ
ないバッフル具24が設けられ、これは管や集積球体に
光線が出入りするのを禁止iIるも空気の流通は可能な
らしめる。このバッフル具を持上げ管12内に結晶体を
落とツ機能が設置ノられている。
A tube 16 extends from the bottom of tube 12. Branch pipes 18 and 20 are connected to this pipe 16 via a three-way valve 22. A light-tight baffle 24 is provided at the two ends or openings 14 of the tube 12, which prohibits light from entering or exiting the tube or the integrated sphere, but allows air to pass through. A function for lifting the baffle and dropping the crystal into the pipe 12 is installed.

0木の1)M管28が集積球体の外周に配置され、これ
らの管からの信号はケーブル30を介してプロセス装置
32に送られ、プロセスIJi it’7により視覚に
示器34が廟く。11 M管28はさまざまな波1)の
光線に対して応答できるJ、う選択されている。
1) M tubes 28 are arranged around the outer periphery of the integrated sphere, the signals from these tubes are sent to the process device 32 via the cable 30, and the process IJi it'7 visually displays the indicator 34. . 11 The M tube 28 is selected to be able to respond to rays of various waves 1).

管12の底部端に結晶体がいったんテス1−されたらこ
れを抜き出すことのできるハツチ36が(411えられ
ている。分岐管20は圧縮低温空気源に接続され、分岐
管18は圧縮高温空気源に接続している。
A hatch 36 (411) is provided at the bottom end of tube 12 to allow extraction of the crystals once they have been tested. Branch tube 20 is connected to a source of compressed cold air, and branch tube 18 is connected to a source of compressed hot air. connected to the source.

本装置の使用に当たり、バルブ22を操作し上テア、冷
気流を管12内に形成させる。凹通適当なダイヤモンド
結晶体若しくは方形窒化ホウ素の結晶体である熱ルミネ
センス結晶体25をあらかじめ核放射の照射を受けさけ
”でおきこれを管内に落とし、バッフル具を光が集積球
体に出入りするのを防げしかも冷気流が管より流出する
のを可能ならしめるような位置に戻す。上昇気流は、結
晶体が管内の集積球体の中心で重力に抗して冷気流によ
り支持されるような平衡状態が得られるようにコントロ
ールされる。いったん結晶体がこの状態に達すると、バ
ルブ22を操作して冷気流を止めそれに代え同様なi!
a温空気流を与え、集積球体の中心にお1)る結晶体の
懸架位置を維梢する。
In using this device, the valve 22 is operated to create a top tear, cold air flow within the tube 12. A thermoluminescent crystal 25, which is a suitable diamond crystal or rectangular boron nitride crystal, is placed in advance to avoid irradiation with nuclear radiation and dropped into the tube, and a baffle device is used to allow light to enter and exit the integrated sphere. The updraft is returned to a position that prevents this from occurring and still allows the cold air flow to flow out of the tube.The updraft is an equilibrium in which the crystal is supported by the cold air flow against gravity at the center of the accumulated sphere in the tube. Once the crystal reaches this state, valve 22 is operated to stop the cold air flow and replace it with a similar i!
a) Apply a hot air flow to maintain the suspended position of the crystal at the center of the collecting sphere.

高温空気は単に結晶体を支持するばかりで<K <これ
を迅速に加熱づる。典型的には、結晶体は立方体の形態
をしており、気流による効果としては結晶体が転回しそ
の向きを変えその間依然球体の中心に位n保持せしめる
結果になる。このように結晶体の全面に熱気流がつき当
たるので、結晶体は均一に熱せられる。結晶体は一般に
500 ’C未満の湿度に加熱される。
The hot air merely supports the crystal and heats it rapidly. Typically, the crystal is in the form of a cube, and the effect of the air flow is to cause the crystal to turn and change its orientation while still remaining centered in the sphere. Since the hot air current hits the entire surface of the crystal in this manner, the crystal is heated uniformly. The crystal body is generally heated to a humidity of less than 500'C.

この結晶体が加熱されると光が放射される。この光【よ
集積球体の周りのPM管により収集され、収集九線吊を
示す適宜信号がプロセス装置32へ送られそこで収集光
線信号は積分・分析される。
When this crystal is heated, light is emitted. This light is collected by the PM tube around the collecting sphere, and appropriate signals indicative of the collection light beam are sent to the processing device 32 where the collected light beam signals are integrated and analyzed.

収集光線信号を積分したプロセス装置により収集光線対
放射′12ii)のl■知の関係により放射線は値をJ
loし、この数値は表示装置iff 34上に視覚的に
表示される。
By the processing device that integrates the collected light signal, the radiation value J is determined by the relationship between the collected light beam and the radiation'
lo and this number is visually displayed on the display device iff 34.

熱ルミネセンス結晶体の均一加熱の機能をμ備する以外
に、本装置には、初めPM管の1つに収集され4cかっ
た放射光線が集積球体の内面で廃用し続1ノ最終的に収
集されるに至るので放q・J光の全部がP M管により
収集されるという利点が備わっている。従って、本装置
により正lif「にして繰返しy1現可能な結果が生じ
るものと信じられる。
In addition to having the function of uniform heating of the thermoluminescent crystal, this device also has the advantage that the emitted light, which was initially collected in one of the PM tubes, is discarded on the inner surface of the collecting sphere, and then finally This has the advantage that all of the emitted Q and J light is collected by the PM tube. Therefore, it is believed that the present device produces a possible result with the positive lif' and the iteration y1.

特定の結晶体がト述の如き方法でテストされると、高湿
気流が止められ結晶体を小力でハツチ36に落としこの
ハツチを介して取り除き次の結晶体のγス]〜に備える
Once a particular crystal has been tested in the manner described above, the high moisture flow is stopped and the crystal is gently dropped into the hatch 36 through which it is removed in preparation for the next crystal.

本装置は、放射線波師や放射線治療を受()る患′?S
など人体が浴用を受ける放射線済の検出が望ましいとさ
れる医療技術面に顕若に好適であると信じられる。熱ル
ミネセンスダイヤモンド結晶体を放射に対づる露出中人
体に固定せしめ、次にこのダイヤモンドを上述の方法で
テストシ放射線吊の表示を行うことが提案される。
This device can be used by radiation wave therapists and patients receiving radiation therapy. S
It is believed that this method is highly suitable for medical technology, where it is desirable to detect radiation exposure of the human body during bathing. It is proposed to fix a thermoluminescent diamond crystal to the human body during exposure to radiation, and then to display this diamond in the manner described above.

既に述べたように、ダイ1フモンドは人体と同じ組成を
もっているので上記応用面に対しては特に好適とされる
As already mentioned, Difmond has the same composition as the human body, so it is particularly suitable for the above-mentioned applications.

ダイヤモンドを用いるもう1つの利点は、放射光線の強
度がスペクトルの赤の端に向()増加することである。
Another advantage of using diamond is that the intensity of the emitted light increases towards the red end of the spectrum.

従って、PM管をスペクトルの赤の端に応答性を示すよ
う選択することができる。これにより色々な波長に応答
するよう41多種類のPM管の使用が不要となる。
Therefore, the PM tube can be selected to exhibit responsivity at the red end of the spectrum. This eliminates the need to use 41 different types of PM tubes to respond to various wavelengths.

(・ヤかに変更ける実施例の場合、複数個のダイ−7七
ンド又(よ方形窒化ボウ索結晶体をガラス球などの光を
通す本体内に納め込みこれを上記の如き方法で管12内
に落下させる。
(In the case of an embodiment that can be modified in any way, a rectangular nitride crystal is housed in a light-transmitting body such as a glass bulb, and the tube is piped in the manner described above.) Drop within 12.

木賃F/は又、結晶体が遠く効れた地点で浴q・1を受
1ノる放射線量の確定にも好適である。又、単一の放射
源からの放射$!Jffiの周期的な凝連続性の読み取
りを得るよう本装置を僅かに変更させることム可能であ
る。この場合、結晶体若しくは結晶体を閉じ込めた光を
通1本体が放射源により照射される管12の下端に静止
状態に保たれる。此は、ハツチ36上方の管12の下端
を横切って架設した孔あき支持具(図示省略)上に結晶
体又は本体を定置できるように構成づることにJこり達
成できる。
Kiyoshi F/ is also suitable for determining the amount of radiation received by a crystal body at a far-reaching point when it receives a bath q·1. Also, radiation from a single source $! It is possible to slightly modify the device to obtain periodic coagulation continuity readings of Jffi. In this case, a crystal body or a body through which the light confined crystal body is kept stationary at the lower end of the tube 12 irradiated by the radiation source. This can be accomplished by constructing the crystal or body so that it can be placed on a perforated support (not shown) extending across the lower end of the tube 12 above the hatch 36.

読み取りを行いたい時には、冷気流を形成せしめ結晶体
若しくは本体を集積球体の中心に十シlざUそこで平衡
をとらせる。次いで、高温気流を戊述の如く導入し放射
光線を収集する。読み取りがいったん済むと、コントロ
ールバルブ22が操作され気流を減じ若しくは止め結晶
体又は本体が再び管12の下端に重力の作用で落下でき
るJ、うに刀る。いったん冷却された結晶体又は本体番
ま更に次の読み取りを行う前同じ放射源からの照射を再
び受けることができる。冷IJ1装置(図示省略)を設
けてプロセスの反復の都度結晶体若しくは本体を冷7J
I!J′ることができる。このi置により固定放射源h
s rらの放射の繰返へしモニターが可能とへる。
When it is desired to take a reading, a stream of cold air is created to bring the crystal or body into equilibrium at the center of the collecting sphere. Then, a hot air stream is introduced as described above and the emitted light is collected. Once the reading has been taken, the control valve 22 is operated to reduce or stop the airflow and allow the crystal or body to fall back under the action of gravity to the lower end of the tube 12. Once cooled, the crystal or body can be exposed to radiation from the same source again before taking the next reading. A cold IJ1 device (not shown) is installed to cool the crystal or body each time the process is repeated.
I! J' can be done. Due to this i position, the fixed radiation source h
This makes it possible to repeatedly monitor the radiation of sr et al.

又、冷気流次いで熱気流を用いる代り龜高温空気流だ(
)を使用し結晶体を集積球体の中心に支持しこれを加熱
することができる。この場合、関連づる管系統には複M
なバルブ装置は不要である。
Also, instead of using a cold air flow followed by a hot air flow, a hot air flow is used.
) can be used to support the crystal in the center of the collecting sphere and heat it. In this case, the associated piping system has multiple M
No special valve equipment is required.

図示例の場合、全部で6木のP M管が用いられている
が、もつと少数本又は1本だ【ブのPM管ら使用できる
点注記ずべきである。PM管上に適当なフィルタを設け
た場合、信号が全収集光線に対しj!1られるばかりで
はなく0色な波長の光線に対しても1「1られるので(
σ1究目的上多数本の投首が望ましい。
In the illustrated example, a total of six PM tubes are used, but it should be noted that fewer or one PM tube can also be used. When a suitable filter is installed on the PM tube, the signal j! Not only will it be 1, but it will also be 1 for light with a wavelength of 0, so (
For the purpose of σ1 research, it is desirable to throw a large number of heads.

本装置に用いられるPM管の本数に係りなく、アストの
開始時管を正確に11盛り調整する必東がある。此は既
知の強度をもった光線を光ファイバーを用いて集積球体
内に導入し次いで既知の強度に対する適切な読み取りを
与えるようPM管を目盛り調整することにより行われる
Regardless of the number of PM tubes used in this device, it is necessary to accurately adjust the tubes by 11 steps at the start of the AST. This is done by introducing a beam of known intensity into the integrating sphere using an optical fiber and then calibrating the PM tube to give the appropriate reading for the known intensity.

例                   4゜図示の
ものと同じ装置を用いた実際例において、3Mの熱ルミ
ネセンスダイヤモンドを1分間放射を受【)させた。こ
の照射中結晶体は光を放射し、この光は照射が止んだ後
約1分で消滅した。上界熱気流が装置内に形成され、結
晶体を集積球体の中心に支持するのに適せるレベルに調
節した。ダイヤモンドを熱気流の流れる管内に落下させ
球体の中心に重力に抗して支持される平衡位置に到達せ
しめた。
EXAMPLE 4 In a practical example using the same apparatus as shown, a 3M thermoluminescent diamond was subjected to radiation for one minute. During this irradiation, the crystal body emitted light, and this light disappeared approximately 1 minute after the irradiation stopped. An overhead thermal air flow was created within the apparatus and adjusted to a level suitable for supporting the crystal in the center of the collecting sphere. A diamond was dropped into a tube flowing with hot air and allowed to reach an equilibrium position where it was supported against gravity at the center of the sphere.

1木のPM管を配し集積球体の内面の周りで反則する光
を収集した。ダイA7モンド結晶体がいった/υ安定す
ると、P M管が作動しイの出力信号かへD変換器に送
られ、へ〇変換器ににリデジタル仁シ4がプロセス装置
へ送られそこで放Q−1線mのSl紳が行われた。第2
図は時間に対1するPM管信号の振幅(任意単位の)の
グラフを示し、カーブ下方の面積は収集光線を表わして
いる。放射線tdは放射線吊対収集光線の既知の関係に
より上記値より計口された。
A single PM tube was placed to collect the reflected light around the inner surface of the collecting sphere. When the diamond crystal is stabilized, the PM tube is activated and the output signal of A is sent to the D converter, and the digital signal is sent to the converter to the process equipment where it is output. The Sl test of the radiation Q-1 line m was performed. Second
The figure shows a graph of the amplitude (in arbitrary units) of the PM tube signal versus time, with the area under the curve representing the collected rays. The radiation td was calculated from the above values according to the known relationship between the radiation beam and the collected beam.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による集積球体使用の核放QJ線トdの
検出及び確定のための装置を示す概略図、第2図はPM
管信号の振幅対時間の関係を示1グラフ図である。 10・・・・・・集積球体、12・・・・・・光伝達管
、14.15・・・・・・間口、18.20・・・・・
・分岐管、22・・・・・・三方バルブ、24・・・・
・・光を通さないバッフル具、25・・・・・・結晶体
、28・・・・・・PM管、32・・・・・・プロセス
装置、34・・・・・・視覚表示器、36・・・・・・
ハツチ。
FIG. 1 is a schematic diagram showing an apparatus for detecting and determining nuclear radiation QJ rays using an integrated sphere according to the present invention, and FIG.
FIG. 1 is a graph showing the relationship between the amplitude of a tube signal and time. 10... Integrated sphere, 12... Light transmission tube, 14.15... Frontage, 18.20...
・Branch pipe, 22... Three-way valve, 24...
... Baffle device that does not transmit light, 25 ... Crystal body, 28 ... PM tube, 32 ... Process device, 34 ... Visual indicator, 36...
Hatsuchi.

Claims (21)

【特許請求の範囲】[Claims] (1)熱ルミネセンス結晶体が受けていた核放射線量を
確定する方法にして、結晶体をその冷光発光が行われる
のに適せる温度に加熱し、結晶体により放射される光線
を収集し、これより放射線量を計算する段階を有し、結
晶体を加熱中これを重力に抗して支持するため上界ガス
流を使用することを特徴とする核放射線量の確定方法。
(1) A method of determining the nuclear radiation dose to which a thermoluminescent crystal has been exposed involves heating the crystal to a temperature suitable for its cold luminescence and collecting the light emitted by the crystal. A method for determining a nuclear radiation dose, comprising the step of calculating the radiation dose from this, and using an upper field gas flow to support the crystal against gravity while heating the crystal.
(2)結晶体を加熱する高温ガスの上昇流上に結晶体を
支持する段階を特徴とする特許請求の範囲第1項による
方法。
2. A method according to claim 1, characterized by the step of: (2) supporting the crystal on an upward flow of hot gas that heats the crystal.
(3)結晶体により放射される光線を収集するのに用い
られる集積球体の内部で結晶体を支持する段階を特徴と
する特許請求の範囲第2項による方法。
3. A method according to claim 2, characterized by the step of: (3) supporting the crystal within a collecting sphere used to collect the light rays emitted by the crystal.
(4)初めに低温ガスの上昇流により集積球体内で結晶
体を支持し、その後低温ガス流を高温ガス流に替える段
階を特徴とする特許請求の範囲第3項による方法。
4. A method according to claim 3, characterized by the steps of: (4) initially supporting the crystal within the collecting sphere by an upward flow of cold gas, and then replacing the cold gas flow with a hot gas flow.
(5)集積球体を垂直に貫通して延びる光線伝達管の上
端部内に結晶体を落下し、管の下端部内にガス流を仕向
け管内に上昇せしめ結晶体を集積球体の中心又はその近
くに支持する段階を特徴とする特許請求の範囲第3項又
は第4項による方法。
(5) Dropping the crystal into the upper end of a beam transmission tube that extends vertically through the integrated sphere, directing the gas flow into the lower end of the tube and lifting the crystal into the destination tube to support the crystal at or near the center of the integrated sphere. A method according to claim 3 or 4, characterized by the step of:
(6)放射光線を収集した後、結晶体が管の下端部に落
下するよう管内に流れるガス流を減少若しくは終結する
段階を更に有することを特徴とする特許請求の範囲第5
項による方法。
(6) After collecting the radiation, the method further comprises the step of: reducing or terminating the gas flow within the tube so that the crystals fall into the lower end of the tube.
Method by term.
(7)結晶体に核放射を再び照射させる位置に結晶体を
管の下端部に保持し、前者のガス流を再形成し結晶体を
管内に上昇させ放射線量を更に確定する段階を更に有す
ることを特徴とする特許請求の範囲第6項による方法。
(7) further comprising the step of holding the crystal at the lower end of the tube in a position to re-irradiate the crystal with nuclear radiation, reforming the former gas flow and raising the crystal into the tube to further determine the radiation dose; A method according to claim 6, characterized in that:
(8)単一源からの放射線量の周期的確定のため前記方
法の諸段階を周期的に繰返すことを特徴とする特許請求
の範囲第7項による方法。
8. A method according to claim 7, characterized in that the steps of the method are repeated periodically for the periodic determination of the radiation dose from a single source.
(9)ガス流が空気流であることを特徴とする特許請求
の範囲第1項から第8項のいずれか一つの項による方法
(9) A method according to any one of claims 1 to 8, characterized in that the gas flow is an air flow.
(10)結晶体が単独若しくは他の同様な結晶体と共に
光線伝達材の本体内に閉じ込まれていることを特徴とす
る特許請求の範囲第1項から第9項のいずれか一つの項
による方法。
(10) According to any one of claims 1 to 9, characterized in that the crystal is confined in the main body of the light beam transmitting material alone or together with other similar crystals. Method.
(11)結晶体がダイヤモンド又は方形窒化ホウ素結晶
体であることを特徴とする特許請求の範囲第1項から第
10項のいずれか一つの項による方法。
(11) A method according to any one of claims 1 to 10, characterized in that the crystal is diamond or rectangular boron nitride crystal.
(12)熱ルミネセンス結晶体が受けていた核放射線量
を確定するための装置にして、冷光発光が行われるのに
適せる温度に結晶体を加熱するための装置と、結晶体に
より放射される光線を収集するための装置と、そこから
の放射線量を計算するための装置とを有し、更に又結晶
体を加熱中重力に抗して支持するため上昇ガス流を形成
するための装置を含む核放射線量の確定装置。
(12) A device for determining the amount of nuclear radiation to which a thermoluminescent crystal has been exposed, including a device for heating the crystal to a temperature suitable for cold luminescence; a device for collecting the rays of light and a device for calculating the radiation dose therefrom, and also a device for creating an ascending gas flow to support the crystal against gravity during heating. Nuclear radiation dose determination device including
(13)結晶体を重力に抗して支持しかつ又結晶体を適
宜温度に加熱する上界高温ガス流を形成するための装置
を特徴とする特許請求の範囲第12項による装置。
13. An apparatus according to claim 12, characterized by a device for forming an upper bound hot gas flow which supports the crystal body against gravity and also heats the crystal body to a suitable temperature.
(14)初めに結晶体を重力に抗して支持するための上
昇低温ガス流を形成し、その後この低温ガス流を高温ガ
ス流に替えるのに働く装置を特徴とする特許請求の範囲
第13項による装置。
(14) Claim 13 characterized by an apparatus operative to first form an ascending cold gas stream for supporting the crystal body against gravity and then to convert this cold gas stream into a hot gas stream. Device according to section.
(15)放射された光線を収集するための装置は結晶体
が内部で支持される集積球体であることを特徴とする特
許請求の範囲13項又は第14項による装置。
15. Device according to claim 13 or 14, characterized in that the device for collecting the emitted light beam is an integrated sphere in which a crystal body is supported.
(16)集積球体を貫通して垂直に延びる光線伝達管を
有し、管は結晶体を落下させるとのできる上端部におけ
る開口と、管の下端部に接続可能の圧縮高温ガスの源と
を有することを特徴とする特許請求の範囲第15項によ
る装置。
(16) having a beam transmission tube extending vertically through the integrated sphere, the tube having an opening at the upper end through which the crystal can fall, and a source of compressed hot gas connectable to the lower end of the tube; Device according to claim 15, characterized in that it comprises:
(17)管の下端部に接続可能の圧縮低温ガス源と、低
温ガス源又は高温ガス源を選択的に管に接続するよう作
動できるバルブ装置とを特徴とする特許請求の範囲第1
6項による装置。
(17) Claim 1 characterized by a source of compressed cold gas connectable to the lower end of the tube and a valve device operable to selectively connect the source of cold gas or the source of hot gas to the tube.
Apparatus according to clause 6.
(18)管の上端部のための閉塞具が設けられ、この閉
塞具は光を通さざるもガス流を通すことを特徴とする特
許請求の範囲第16項又は第17項による装置。
18. Device according to claim 16 or 17, characterized in that a closure is provided for the upper end of the tube, said closure being opaque to light but permeable to gas flow.
(19)結晶体が単独若しくは他の同様な結晶体と共に
光線伝達本体内に閉じ込められていることを特徴とする
特許請求の範囲第1項から第18項のいずれか一つの項
による装置。
(19) A device according to any one of claims 1 to 18, characterized in that the crystal body is confined in the light transmission body, alone or together with other similar crystal bodies.
(20)結晶体がダイヤモンド若しくは方形窒化ホウ素
結晶体であることを特徴とする特許請求の範囲第19項
による装置。
(20) The device according to claim 19, wherein the crystal is a diamond or rectangular boron nitride crystal.
(21)光線伝達本体はガラスよりなることを特徴とす
る特許請求の範囲第19項又は第20項による装置。
(21) The device according to claim 19 or 20, characterized in that the light transmission body is made of glass.
JP62321145A 1986-12-18 1987-12-18 Method and device for defining nuclear dosage Granted JPS63241486A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ZA86/9504 1986-12-18
ZA869504 1986-12-18

Publications (2)

Publication Number Publication Date
JPS63241486A true JPS63241486A (en) 1988-10-06
JPH0532713B2 JPH0532713B2 (en) 1993-05-17

Family

ID=25578669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62321145A Granted JPS63241486A (en) 1986-12-18 1987-12-18 Method and device for defining nuclear dosage

Country Status (5)

Country Link
US (1) US4816682A (en)
JP (1) JPS63241486A (en)
DE (1) DE3742560A1 (en)
GB (1) GB2199406B (en)
NL (1) NL8703024A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL90697A (en) * 1988-07-06 1993-01-14 De Beers Ind Diamond Detection of nuclear radiation
US8555921B2 (en) * 2002-12-18 2013-10-15 Vapor Technologies Inc. Faucet component with coating
US7866342B2 (en) * 2002-12-18 2011-01-11 Vapor Technologies, Inc. Valve component for faucet
US8220489B2 (en) 2002-12-18 2012-07-17 Vapor Technologies Inc. Faucet with wear-resistant valve component
US6904935B2 (en) 2002-12-18 2005-06-14 Masco Corporation Of Indiana Valve component with multiple surface layers
US7866343B2 (en) * 2002-12-18 2011-01-11 Masco Corporation Of Indiana Faucet
CN100370236C (en) * 2003-01-30 2008-02-20 首都师范大学 Light releasing photon frequency division spectrometer
US20070026205A1 (en) * 2005-08-01 2007-02-01 Vapor Technologies Inc. Article having patterned decorative coating

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3590245A (en) * 1968-08-20 1971-06-29 Matsushita Electric Ind Co Ltd Method and instrument for reading out thermoluminescence
JPS5222981A (en) * 1975-08-15 1977-02-21 Matsushita Electric Ind Co Ltd Annealing device for a thermofluorescence dosimeter
JPS5242785A (en) * 1975-10-01 1977-04-02 Matsushita Electric Ind Co Ltd Thermoluminescence dosimeter
ZA765149B (en) * 1976-08-27 1978-04-26 De Beers Ind Diamond Measurement of optical properties
JPS5363077A (en) * 1976-11-17 1978-06-06 Matsushita Electric Ind Co Ltd Reader for quantity of thermofluorescent rays
JPS5941549B2 (en) * 1978-05-31 1984-10-08 松下電器産業株式会社 Hot air supply device for thermal fluorescence dosimeter
US4444531A (en) * 1981-12-01 1984-04-24 Gca Corporation Air track apparatus
JPS58207217A (en) * 1982-05-28 1983-12-02 Fujitsu Ltd Object transfer method in vacuum
JPS6074626A (en) * 1983-09-30 1985-04-26 Fujitsu Ltd Device for plasma treatment

Also Published As

Publication number Publication date
GB2199406B (en) 1990-07-25
JPH0532713B2 (en) 1993-05-17
GB8729450D0 (en) 1988-02-03
NL8703024A (en) 1988-07-18
DE3742560C2 (en) 1993-06-09
GB2199406A (en) 1988-07-06
DE3742560A1 (en) 1988-06-30
US4816682A (en) 1989-03-28

Similar Documents

Publication Publication Date Title
US5659397A (en) Method and apparatus for measuring total specular and diffuse optical properties from the surface of an object
C. Polf et al. A real-time, fibre optic dosimetry system using Al2O3 fibres
US4999504A (en) Remote radiation dosimetry
JPH03206946A (en) Method and device for identifying jewel particularly diamond
CA2167179A1 (en) Examination of breast tissue using time-resolved spectroscopy
EP0106267A2 (en) Apparatus for the diagnosis of body structures into which a gamma-emitting radioactive isotope has been introduced
JPS63241486A (en) Method and device for defining nuclear dosage
AU698099B2 (en) Examining a diamond
US2961541A (en) Monitoring ionizing radiation
CA1152235A (en) Method for monitoring irradiated fuel using cerenkov radiation
US5589690A (en) Apparatus and method for monitoring casting process
Imaeda et al. Spatial distribution readout system of thermoluminescence sheets
Stahl et al. Optical characterization of solid particle solar central receiver materials
CN106290432A (en) A kind of low-temperatureX-ray induction thermoluminescence spectral measurement device
Aleksandrov et al. Investigations on the S-60 SR source of the Lebedev Physical Institute
Bøtter-Jensen et al. Application of luminescence techniques in retrospective dosimetry
Stoneham Accident dosimetry using porcelain: TL analysis of low dose samples
Gregory et al. Absolute calibration and intercalibration of photomultipliers for the measurement of Cherenkov light intensities
West et al. A method of determining the absolute scintillation efficiency of an NaI (Ti) crystal for gamma rays
CN107505646B (en) A kind of optical fiber three-dimensional array type accelerator field of radiation analyzer
CA1319206C (en) Remote radiation dosimetry
Bliss et al. Method for measuring the light output of scintillating glass shards
Bjarngard The properties of lithium fluoride-teflon thermoluminescence dosimeters and their use in radiology
Marchgraber The development of standard instruments for radiation measurements
JPS57132078A (en) 2-dimensional radiation detector