JPS63241375A - Current measurement of electron beam - Google Patents

Current measurement of electron beam

Info

Publication number
JPS63241375A
JPS63241375A JP7523287A JP7523287A JPS63241375A JP S63241375 A JPS63241375 A JP S63241375A JP 7523287 A JP7523287 A JP 7523287A JP 7523287 A JP7523287 A JP 7523287A JP S63241375 A JPS63241375 A JP S63241375A
Authority
JP
Japan
Prior art keywords
optical fiber
electron beam
light
current
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7523287A
Other languages
Japanese (ja)
Other versions
JPH0672932B2 (en
Inventor
Kenichi Ueda
憲一 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP7523287A priority Critical patent/JPH0672932B2/en
Publication of JPS63241375A publication Critical patent/JPS63241375A/en
Publication of JPH0672932B2 publication Critical patent/JPH0672932B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To enable measurement of intensity and distribution of current in an electron beam safely irrelevant to electromagnetic noise and light noise, by detecting Cherenkov light generated with an optical fiber irradiated by a relativistic electron beam. CONSTITUTION:A 20cm-long part of an optical fiber 1 with the core dia. of 600mum and fiber dia. of 750mum at one end thereof is housed into a dark box 7 and is irradiated with an electron beam 20 at right angles to the length of the optical fiber 1. When a free electron 2 has energy exceeding a fixed value, Cherenkov light is generated in the optical fiber 1 and propagates through a core 1a of a quartz optical fiber 1. Then, the light is detected with a PIN photo diode 5 connected to the other end of the optical fiber 17 meters ahead and an output thereof is inputted into a CRT 6. This allows the detection of a current value of the electron beam by checking the intensity of the light. This also enables the detection of a current distribution by checking an output of the light with the positioning of the optical fiber partially at an electron beam projection area.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は相対論的電子ビームの電流値を計測する方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the current value of a relativistic electron beam.

〔従来技術及び発明が解決しようとする問題点〕電子ビ
ームには、そのエネルギーを知るため、或いはその他の
目的で電流値を検出したいという要望があるが、従来こ
れを測定する有効な方法がなく、特に高速度の相対論的
電子ビームにおいては不可能であった。
[Prior art and problems to be solved by the invention] There is a desire to detect the current value of an electron beam in order to know its energy or for other purposes, but there has been no effective method to measure this. , which was not possible, especially for high-velocity relativistic electron beams.

本発明はこのような事情に鑑みてなされたちのであり、
光ファイバ中に発生させたチェレンコフ光の検出により
相対論的電子ビームの電流強度。
The present invention was made in view of these circumstances,
Current intensity of relativistic electron beam detected by Cherenkov light generated in optical fiber.

分布の測定を可能としたものである。This makes it possible to measure distribution.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る電子ビームの電流計測方法は、相対論的電
子ビームの電流値を計測する方法において、前記電子ビ
ームを光ファイバに照射してチェレンコフ光を発生させ
、光ファイバ端部にてチェレンコフ光を検出し、この光
から電子ビームの電流を求めることを特徴とする。
A current measuring method of an electron beam according to the present invention is a method for measuring a current value of a relativistic electron beam, in which the electron beam is irradiated onto an optical fiber to generate Cerenkov light, and the Cherenkov light is generated at the end of the optical fiber. It is characterized by detecting the electron beam and determining the current of the electron beam from this light.

〔作用〕[Effect]

光ファイバに相対論的電子ビームを照射すると光ファイ
バ内にはチェレンコフ光が発生する。この光は光ファイ
バ周面で全反射し、光ファイバ内に閉じこめられる。こ
れを光ファイバ端部において検出する。検出した光強度
は電子ビームの電流に関する情報を含むのでこれから電
流値1分布を知ることができる。
When an optical fiber is irradiated with a relativistic electron beam, Cerenkov light is generated within the optical fiber. This light is totally reflected on the circumferential surface of the optical fiber and is confined within the optical fiber. This is detected at the end of the optical fiber. Since the detected light intensity includes information regarding the current of the electron beam, the current value 1 distribution can be determined from this information.

〔発明の原理〕[Principle of the invention]

まず本発明の原理について説明する。 First, the principle of the present invention will be explained.

いま第1図に示すように光ファイバ1に対して自由電子
2を光ファイバ1の長手方向と直角に照射する。この自
由電子が一定値以上のエネルギーを有する場合は光ファ
イバ1内にはチェレンコフ光が発生するが、チェレンコ
フ光の発光方向と自由電子照射方向とのなす角度θは θ= cos−’ c / v ・を 但し、C:真空中での光速度 V:自由電子の速度 ε:光ファイバの屈折率 で表される。いまy −+ Cとすると石英光ファイバ
1のコア1aではε=1.45であるので1、θζ46
.4となる。この角度の光は同角度θでコア1aとクラ
ッド1bとの界面に入射するが、この界面での全反射角
は46°であるのでチェレンコフ光は外へ出ることなく
コア内を伝播されることになる。
Now, as shown in FIG. 1, free electrons 2 are irradiated onto the optical fiber 1 at right angles to the longitudinal direction of the optical fiber 1. When these free electrons have energy above a certain value, Cerenkov light is generated in the optical fiber 1, and the angle θ between the emission direction of the Cerenkov light and the free electron irradiation direction is θ= cos-' c / v・However, C: Speed of light in vacuum V: Speed of free electrons ε: Represented by the refractive index of the optical fiber. Now, if y - + C, then ε = 1.45 in the core 1a of the silica optical fiber 1, so 1, θζ46
.. It becomes 4. Light at this angle is incident on the interface between core 1a and cladding 1b at the same angle θ, but since the total reflection angle at this interface is 46°, Cherenkov light is propagated within the core without going outside. become.

〔実施例〕 第2図はコア径600μm、ファイバ径750μmの光
ファイバ1の一端部20備の部分を暗箱7に収め、これ
に電子ビーム20(加速電圧250kV、電流密度30
0A / cd 、パルス幅50ns、口径3X20c
m)を照射し、17m先の他端部に結合したPINフォ
トダイオード5によって光を検出した場合の実施例を示
し、フォトダイオード5出力はCRT 6によって検出
された。
[Example] Figure 2 shows one end 20 of an optical fiber 1 with a core diameter of 600 μm and a fiber diameter of 750 μm placed in a dark box 7, and an electron beam 20 (acceleration voltage 250 kV, current density 30
0A/cd, pulse width 50ns, aperture 3X20c
An example is shown in which the light is detected by a PIN photodiode 5 connected to the other end 17 m ahead, and the output of the photodiode 5 is detected by a CRT 6.

第3図はこの場合のフォトダイオード出力を示し、ピー
ク値35mV、半値幅40nsの立上りの短いパルス出
力を得た。この波形は電子ビーム20の出力波形に類似
し、また光ファイバ1からの出力光のスペクトルが30
0〜450nmに幅広く分布していることから明らかで
ある。
FIG. 3 shows the photodiode output in this case, and a short pulse output with a peak value of 35 mV and a half-value width of 40 ns was obtained. This waveform is similar to the output waveform of the electron beam 20, and the spectrum of the output light from the optical fiber 1 is 30
This is clear from the fact that the wavelength is widely distributed from 0 to 450 nm.

第4図は電子ビームの照射長とフォトダイオード5によ
って検出した光強度との関係を示すグラフであり、横軸
に照射長(CIll)、縦軸に強度(任意目盛)をとっ
ている。この図から明らかな如く照射長と発光強度とが
リニアな関係を有していることが分かる。
FIG. 4 is a graph showing the relationship between the irradiation length of the electron beam and the light intensity detected by the photodiode 5, with the irradiation length (CIll) on the horizontal axis and the intensity (arbitrary scale) on the vertical axis. As is clear from this figure, there is a linear relationship between the irradiation length and the emission intensity.

以上を総括すると電子ビーム照射によって光ファイバ内
にチェレンコフ光が発生し、その発生光強度は電子ビー
ムの電流密度×照射長(又は面積)とリニアな関係を有
することになる。従って光ファイバ端部から得られる光
強度を検出することで電子ビームの電流値を検出でき、
また光ファイバを電子ビーム投射域に部分的に位置させ
てその光出力を検出することで電流分布をも検出するこ
とが可能となるのである。電流計測にあたっては予め光
強度と電流値との検量線を求めておく必要があることは
勿論である。
To summarize the above, Cerenkov light is generated in an optical fiber by electron beam irradiation, and the intensity of the generated light has a linear relationship with electron beam current density x irradiation length (or area). Therefore, by detecting the light intensity obtained from the end of the optical fiber, the current value of the electron beam can be detected.
Furthermore, by positioning an optical fiber partially in the electron beam projection area and detecting its optical output, it is also possible to detect the current distribution. Of course, when measuring current, it is necessary to obtain a calibration curve between light intensity and current value in advance.

なお外光を遮る都合上光ファイバは被覆を施しておくの
がよく、それによってS/N比が向上する。
Note that the optical fiber is preferably coated to block external light, thereby improving the S/N ratio.

また光ファイバはチェレンコフ光が全反射する条件を満
たせばよいからクラッドを有しないコアのみのものであ
ってもよい。
Further, since the optical fiber only needs to satisfy the condition that Cerenkov light is totally reflected, the optical fiber may have only a core without a cladding.

更に電子ビームの光ファイバに対する投射方向は直角で
ある必要はなく傾斜していてもよい。これはチェレンコ
フ光の全反射がより生じ易くなるからである。
Further, the direction in which the electron beam is projected onto the optical fiber need not be perpendicular, but may be inclined. This is because total reflection of Cerenkov light becomes more likely to occur.

〔効果〕〔effect〕

以上の如き本発明による場合はこれまで実現できなかっ
た相対論的電子ビームの電流、及びその分布を測定する
ことができる。
According to the present invention as described above, it is possible to measure the current of a relativistic electron beam and its distribution, which has not been possible until now.

また光ファイバは電気絶縁物であるので、数100kV
以上の高電圧にある電子ビーム照射域に置かれてもフォ
トダイオード5等の光検出等には何らの危険性もない、
更に大電流の電子ビーム照射により気体発光している場
においても、この場での電流が電磁雑音、光雑音と無関
係に測定できる。光雑音の影響がないのは、本発明では
光ファイバの内部で発生した光を検出するからであり、
外部の光はその伝播モードに入ることができないからで
ある。
Also, since optical fiber is an electrical insulator, it has a voltage of several hundred kV.
Even if placed in the electron beam irradiation area at a high voltage above, there is no danger to the photodetection of the photodiode 5, etc.
Furthermore, even in a field where gaseous light is emitted by high-current electron beam irradiation, the current in this field can be measured independently of electromagnetic noise and optical noise. There is no effect of optical noise because the present invention detects light generated inside the optical fiber.
This is because external light cannot enter its propagation mode.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図、第2図は本発明の実施例
を示す模式図、第3図は検出光の波形図、第4図は照射
長と検出光強度との関係を示すグラフである。 1・・・光ファイバ 5・・・フォトダイオード6・・
・CRT  20・・・相対論電子ビーム特許出願入植
1)憲−外1名 代理人 弁理士 河 野  登 夫 i   Ib 簗1図 第3図 照射長(am)
Fig. 1 is a diagram explaining the principle of the present invention, Fig. 2 is a schematic diagram showing an embodiment of the invention, Fig. 3 is a waveform diagram of detection light, and Fig. 4 shows the relationship between irradiation length and detection light intensity. It is a graph. 1... Optical fiber 5... Photodiode 6...
・CRT 20... Relativistic electron beam patent application filed 1) Noriyuki and one other representative Patent attorney Noboru Kono I Ib Figure 1 Figure 3 Irradiation length (am)

Claims (1)

【特許請求の範囲】[Claims] 1、相対論的電子ビームの電流値を計測する方法におい
て、前記電子ビームを光ファイバに照射してチェレンコ
フ光を発生させ、光ファイバ端部にてチェレンコフ光を
検出し、この光から電子ビームの電流を求めることを特
徴とする電流計測方法。
1. In the method of measuring the current value of a relativistic electron beam, the electron beam is irradiated onto an optical fiber to generate Cerenkov light, the Cerenkov light is detected at the end of the optical fiber, and the electron beam is determined from this light. A current measurement method characterized by determining current.
JP7523287A 1987-03-27 1987-03-27 Electronic beam current measurement method Expired - Lifetime JPH0672932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7523287A JPH0672932B2 (en) 1987-03-27 1987-03-27 Electronic beam current measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7523287A JPH0672932B2 (en) 1987-03-27 1987-03-27 Electronic beam current measurement method

Publications (2)

Publication Number Publication Date
JPS63241375A true JPS63241375A (en) 1988-10-06
JPH0672932B2 JPH0672932B2 (en) 1994-09-14

Family

ID=13570269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7523287A Expired - Lifetime JPH0672932B2 (en) 1987-03-27 1987-03-27 Electronic beam current measurement method

Country Status (1)

Country Link
JP (1) JPH0672932B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01305390A (en) * 1988-06-03 1989-12-08 Mitsubishi Electric Corp Method for measuring shape of charged particle beam
WO2007141895A1 (en) * 2006-06-06 2007-12-13 Niigata University Method for measuring radon and thoron in air
CN114047540A (en) * 2021-09-28 2022-02-15 西北核技术研究所 Method and system for measuring beam density distribution of high-current pulse electron beam

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01305390A (en) * 1988-06-03 1989-12-08 Mitsubishi Electric Corp Method for measuring shape of charged particle beam
WO2007141895A1 (en) * 2006-06-06 2007-12-13 Niigata University Method for measuring radon and thoron in air
JPWO2007141895A1 (en) * 2006-06-06 2009-10-15 国立大学法人 新潟大学 Method for measuring radon and thoron in air
US7642520B2 (en) 2006-06-06 2010-01-05 Niigata University Method for measuring randon and thoron in air
JP4649670B2 (en) * 2006-06-06 2011-03-16 国立大学法人 新潟大学 Method for measuring radon and thoron in air
CN114047540A (en) * 2021-09-28 2022-02-15 西北核技术研究所 Method and system for measuring beam density distribution of high-current pulse electron beam
CN114047540B (en) * 2021-09-28 2023-06-20 西北核技术研究所 Measuring method and measuring system for beam current density distribution of high-current pulse electron beam

Also Published As

Publication number Publication date
JPH0672932B2 (en) 1994-09-14

Similar Documents

Publication Publication Date Title
US4165496A (en) Optical fiber light tap
JPH0921698A (en) Optical sensor
CN1015827B (en) Method of measuring refractive index profile of optical fibers
JPS62190728A (en) Method and apparatus for monitoring etching end point
JPS63241375A (en) Current measurement of electron beam
JP2635732B2 (en) Optical fiber sensing method
JPS63305259A (en) Voltage detecting apparatus
KR910008061B1 (en) Apparatus for measuring properties of a laser emission
Whitten et al. Fiber optic waveguides for time-of-flight optical spectrometry
US6041150A (en) Multipass cavity sensor for measuring a tissue-equivalent radiation dose
JP2568328B2 (en) Outer diameter measuring machine
JPH04258705A (en) Position-sensing radiation detecting apparatus
EP4318011A1 (en) Diamond magneto-optical sensor
JPS62211538A (en) Measuring method for light emission characteristic of semiconductor light emitting element
JPS5922887B2 (en) optical power detector
JP2808102B2 (en) Ring beam generating optics
JPH03277990A (en) Photoelectric switch for detecting minute matter
Wang et al. Passive optical fibre sensor based on Cerenkov effect
Gopalan Optical fiber sensor for corrosion detection in chemical storage tanks and as a pH meter using refractive index variation technique
JPS58100739A (en) Detection apparatus for deterioration of oil
US6541288B1 (en) Method of determining semiconductor laser facet reflectivity after facet reflectance modification
JPH0545403A (en) Discharge position detection device
Zhang et al. Effect of coupling condition on vibration‐induced noise in fiber lead used in an optical current measurement system
JPS6378056A (en) Total reflection fluorescent x-ray analyzer
JPS61248490A (en) Measurement apparatus for semiconductor laser