JPS63241052A - Styrene copolymer modified with anionically polymerized rubber - Google Patents

Styrene copolymer modified with anionically polymerized rubber

Info

Publication number
JPS63241052A
JPS63241052A JP7298387A JP7298387A JPS63241052A JP S63241052 A JPS63241052 A JP S63241052A JP 7298387 A JP7298387 A JP 7298387A JP 7298387 A JP7298387 A JP 7298387A JP S63241052 A JPS63241052 A JP S63241052A
Authority
JP
Japan
Prior art keywords
rubber
copolymer
styrene
weight
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7298387A
Other languages
Japanese (ja)
Other versions
JP2675781B2 (en
Inventor
So Iwamoto
岩本 宗
Noribumi Ito
伊藤 紀文
Kazuo Sugazaki
菅崎 和男
Tetsuyuki Matsubara
松原 徹行
Toshihiko Ando
敏彦 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP62072983A priority Critical patent/JP2675781B2/en
Priority to KR1019880010148A priority patent/KR910008280B1/en
Publication of JPS63241052A publication Critical patent/JPS63241052A/en
Application granted granted Critical
Publication of JP2675781B2 publication Critical patent/JP2675781B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide the title polymer which has excellent flow characteristics and gives molded products having excellent appearances, gloss and resistance to impact and heat, by copolymerizing a monomer mixture of styrene with acrylonitrile in the presence of a rubbery polymer obtd. by anionic polymn. CONSTITUTION:22% (by weight; the same applies hereinafter) styrene is anionically polymerized with 78% butadiene to obtain a rubbery copolymer (B) having a styrene- insoluble matter content of 0.1% or lower and such a particle size distribution that the ratio of the area of rubber particles having the max. cell diameter not smaller than 0.1mu (volume-average particle size : 0.3-4.0mu) is 2-60% and that of the area of rubber particles having the max. cell diameter smaller than 0.1mu (volume-average particle size) is 98-40% when the total area a of the rubber particles are referred to as 100%. The component B is added to a monomer mixture (A) of 90-55% styrene (a), 10-45% acrylonitrile (b) and optionally 1-30% [based on the total amount of the components (a) and (b)] maleimide monomer (c). The mixture is copolymerized in the presence of a polymn. initiator and an MW modifier to obtain the title copolymer which has a styrene soln. viscosity of 2-250cp (25 deg.C) and in which the component B is dispersed in the form of particles.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は成形材料樹脂に間1−1繍彫物の札清強度及び
加工特性の優れたアニオン重合によるゴム状重合体とス
チレン、アクリロニトリルを必須とした共重合体より成
るゴム変性スチレン系共重合体に関する。更に詳細には
、成形物の光沢、外観、衝撃強変更に射出成形時の樹脂
の流動性に著しく優れたゴム変性スチレン系共重合体(
以後RMCと略称する)に関する0本発明の共重合体は
1例えば、電気機器、自動車等の部品用の成形材料等に
用いられ、具体的には例えば電話機やコンピューターの
ハウジング等に用いられる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention requires a rubber-like polymer produced by anionic polymerization, styrene, and acrylonitrile, which have excellent strength and processability for embroidery carving, as a molding material resin. This invention relates to a rubber-modified styrenic copolymer comprising a copolymer of More specifically, we use a rubber-modified styrenic copolymer that has outstanding resin fluidity during injection molding to change the gloss, appearance, and impact strength of molded products.
The copolymer of the present invention relating to (hereinafter abbreviated as RMC) is used, for example, as a molding material for parts of electrical equipment, automobiles, etc., and specifically, for example, for housings of telephones and computers.

〔従来の技術〕[Conventional technology]

ゴム状重合体とスチレン系単量体と7クリロニトリル系
単量体のSA共重合体よりなるRMCは、一般にABS
樹脂として広く用いられている。しかしながら、かかる
共重合体の用途の拡大とともに、より複雑な形状で肉厚
が薄い成形物用に多く用いられる様になり、樹脂の必要
性能として、射出成形時の流動性が高くなおかつ高い衝
撃性を有する樹脂が求められている。更に、成形物の外
観特性である光沢、特に射出成形時において、成形物の
ゲート部と流動末端部の光沢の向上及びその差異の減少
が強く求められている。更にまた、射出成形時に発生す
るゲート付近の模様(ジェツテイング等)の減少が求め
られている。
RMC made of SA copolymer of rubber-like polymer, styrene monomer, and 7-crylonitrile monomer is generally ABS.
Widely used as a resin. However, as the applications of such copolymers expand, they are often used for molded products with more complex shapes and thinner walls, and the required performance of the resin is high fluidity and high impact resistance during injection molding. There is a need for a resin that has the following properties. Furthermore, there is a strong demand for improvement in gloss, which is an external appearance characteristic of molded products, and in particular, during injection molding, to improve the gloss of the gate portion and flow end portion of the molded product, and to reduce the difference therebetween. Furthermore, there is a need to reduce patterns (jetting, etc.) near the gate that occur during injection molding.

これまで、一般にがかるRMCはゴムラテックスを用い
て乳化重合で重合されるものであり、ゴム変性スチレン
系共重合体の衝撃強度向上の手段として、SA共重合体
の分子量を向上させ、あるいはまたゴム成分の量を増大
させる手段がとられているが、かかる方法では樹脂の成
形加工時の流動性が低下するのみならず、成形物の外観
が低下し、流動末端の光沢が低く、ゲート部と流動末端
の光沢の差異が大きくなり、又ゲート付近の模様の発生
が大きくなるという問題があった。かかるRMCの衝撃
特性、外観、成形時の流動性の向上については、これま
でいくつかの提案がなされているが、いまだ改良の余地
が残されている0例えば、特公昭58−4934には特
定のゴム状重合体を用いる方法が開示されているが、外
観、衝撃特性、成形時の流動性において改良の余地が残
されていた。米国特許4,421,885では、特別の
有機過酸化物の特定量、特別のゴム状重合体、および溶
剤を使用してゴム状重合体の大きさを調整する方法が開
示されているが、本発明の目的を達成する方法は何ら開
示されていない。
Until now, RMC has generally been polymerized by emulsion polymerization using rubber latex, and as a means of improving the impact strength of rubber-modified styrenic copolymers, the molecular weight of SA copolymers has been increased, or rubber Measures have been taken to increase the amount of the component, but such methods not only reduce the fluidity of the resin during molding, but also deteriorate the appearance of the molded product, have low gloss at the flow end, and cause problems with the gate area. There was a problem in that the difference in gloss at the end of the flow became large and the occurrence of patterns near the gate became large. Several proposals have been made to improve the impact properties, appearance, and fluidity during molding of RMC, but there is still room for improvement. Although a method using a rubbery polymer has been disclosed, there remains room for improvement in appearance, impact properties, and fluidity during molding. U.S. Pat. No. 4,421,885 discloses a method for controlling the size of rubbery polymers using specific amounts of special organic peroxides, special rubbery polymers, and solvents; No method of achieving the objectives of the invention is disclosed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、成形加工時の流動性を高め、なおかつ高い衝
撃強度と、射出成形時の流動末端の光沢を高め、またゲ
ート部と流動末端間の光沢の差異を減少し、更に成形時
にゲート付近に発生する成形模様を低減し優れた外観を
有するアニオン重合ゴム変性スチレン系共重合体を提供
することを目的とする。かかる共重合体は、例えば射出
成形法で成形される薄肉で複雑な形状を有する成形物用
の樹脂材料として、特に有用なものである。
The present invention improves fluidity during molding, high impact strength, and gloss at the end of the flow during injection molding, reduces the difference in gloss between the gate part and the end of the flow, and further improves the flow near the gate during molding. An object of the present invention is to provide an anionically polymerized rubber-modified styrenic copolymer that reduces molding patterns that occur during molding and has an excellent appearance. Such a copolymer is particularly useful as a resin material for a thin-walled molded article having a complicated shape, for example, molded by injection molding.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らはかかる目的の重要性に鑑み鋭意検討した結
果、従来の知見よりして全く新しい組成のゴム変性スチ
レン系共重合体により上記の目的が達成されることを発
見し本発明を完成するに至った。
The inventors of the present invention have conducted extensive studies in view of the importance of such objectives, and have discovered that the above objectives can be achieved by a rubber-modified styrenic copolymer with a completely new composition compared to conventional knowledge, and have completed the present invention. I ended up doing it.

すなわち、本発明は A、 ゴム変性スチレン系共重合体が(a)25°Cに
おけるスチレン溶液粘度が2〜250センチボイズであ
り (b)スチレン不溶成分が0,1wt5未満のアニ
オン重合によって製造されるゴム状重合体を耐衝撃性強
化剤として含有し、 B、該ゴム変性スチレン系共重合体中の該ゴム状重合体
は、粒子状に分散し、その超薄切片電子顕微鏡写真にお
いて、全ゴム粒子の面積を 100%として、ゴム粒子
内の細胞径の最大値が0.1g以上であるゴム粒子(R
1)の面積の割り合いが2〜50%であって、0.1w
未満のゴム粒子(R2)の面積の割り合いが98〜40
%であり、C0該R1の超薄切片電子顕微鏡写真におけ
る体積平均粒子径が6.3〜4.0用であって、該R2
の超薄切片電子顕微鏡写真における体積平均粒子径が0
.1〜0.4延であり、 D、 ゴム変性スチレン系共重合体中のSA共重合体の
単量体組成がスチレン系単量体(ST)と7クリロニト
リル系単量体(A N)の比90/10(S丁/AN 
<55/45より成り、 E、連続相をなすSA共重合体100重量部に対して、
分子量がt、ooo、oooを越える重合体の割り合い
が0.5重量部未満であり、 1,200,000を越
える重合体の割り合いが0.01重量部未満であること
を特徴とするアニオン重合ゴム変性スチレン系共重合体
である。
That is, the present invention provides A. The rubber-modified styrenic copolymer (a) has a styrene solution viscosity of 2 to 250 centiboise at 25°C, and (b) is produced by anionic polymerization with a styrene-insoluble component of less than 0.1wt5. B. The rubber-like polymer in the rubber-modified styrenic copolymer is dispersed in the form of particles, and in an ultra-thin section electron micrograph of the rubber-like polymer, the total rubber is Rubber particles (R
The area ratio of 1) is 2 to 50%, and 0.1w
The area ratio of the rubber particles (R2) is less than 98 to 40
%, and the volume average particle diameter in the ultra-thin section electron micrograph of C0 is 6.3 to 4.0, and the R2
The volume average particle diameter in the ultra-thin section electron micrograph of
.. D. The monomer composition of the SA copolymer in the rubber-modified styrenic copolymer is a styrene monomer (ST) and a 7-acrylonitrile monomer (AN). Ratio 90/10 (S/AN
<55/45, E, based on 100 parts by weight of the SA copolymer forming the continuous phase,
Characterized by the fact that the proportion of polymers with a molecular weight exceeding t, ooo, ooo is less than 0.5 parts by weight, and the proportion of polymers exceeding 1,200,000 is less than 0.01 parts by weight. It is an anionically polymerized rubber-modified styrenic copolymer.

本発明のRMCは(a)25℃におけるスチレン溶液粘
度が2〜250センチボイズであり (b)スチレン不
溶成分が(1,1+st%未溝のアニオン重合によって
製造されるゴム状重合体を耐衝撃性強化剤として含有し
なければならない、従来のABS樹脂は一般にラジカル
重合による乳化重−合法のゴムラテックスを出発物質と
して用いるが1本発明のRMCは、耐衝撃性強化剤とし
て、アニオン重合によって製造される実質的にスチレン
可溶のゴム状重合体を耐衝撃性強化剤として含有するも
のである。かかるゴム状重合体は25℃におけるスチレ
ン溶液の粘度が2〜250センチボイズであり、好まし
くは5〜200センチボイズ、特に好ましくは5〜70
センチボイズである。2センチボイズ未満では耐衝撃性
が低く、250センチボイズを越えると本発明の組成物
の製造が実質的に困難になる。
The RMC of the present invention has (a) a styrene solution viscosity of 2 to 250 centiboise at 25°C, and (b) a rubber-like polymer produced by ungrooved anionic polymerization with a styrene-insoluble component of (1,1+st%), which has impact resistance. Conventional ABS resins generally use emulsion polymerization rubber latex by radical polymerization as a starting material; The rubbery polymer contains a substantially styrene-soluble rubbery polymer as an impact strength reinforcing agent.The rubbery polymer has a styrene solution having a viscosity of 2 to 250 centivoise at 25°C, preferably 5 to 250 centivoise. 200 centiboise, particularly preferably 5-70
It's centiboise. If it is less than 2 centivoise, the impact resistance is low, and if it exceeds 250 centivoise, it becomes substantially difficult to manufacture the composition of the present invention.

また、スチレン不溶成分が0,1wt%未満でなければ
ならず、 0.1wt%以上では、本発明の外観特性は
達成されない。
In addition, the styrene-insoluble component must be less than 0.1 wt%; if it is more than 0.1 wt%, the appearance characteristics of the present invention cannot be achieved.

本発明でいうアニオン重合によって製造されるブタジェ
ン系のゴム状重合体は、ラジカル重合で製造されるゴム
状重合体と区別される。後者においては、本発明の光沢
、耐衝撃性、その他の特性において本発明の目的を満足
し得ない、かかるアニオン重合によって製造されるゴム
状重合体としては、溶液重合のチーグラー系触媒、Go
系触媒、Li系触媒で製造されるゴム状重合体であって
、例えば、佐伯康治゛ポリマー製造プロセス”、p、2
19〜272 (1971)、工業調査会に例示されて
いる。ポリブタジェンゴム、ブタジェンスチレン共重合
体その他の共重合体等が例示され、好ましくはブタジェ
ンスチレン共重合体、特に好ましくは、ブタジェンΦス
チレンのブロック共重合体が例示される。ブタジェン・
スチレンのブロック共重合体では、スチレン含有量が3
〜28重量部のものが本発明の目的を達成する上で好ま
しく用いられる。また、その5重量%のスチレン溶液粘
度は30℃で測定して、 100〜2センチポイズ、好
ましくは60〜2センチボイズ、より好ましくは40〜
5センチボイズ、特に好ましくは13〜5センチボイズ
のものが用いられ得る。
Butadiene-based rubbery polymers produced by anionic polymerization in the present invention are distinguished from rubbery polymers produced by radical polymerization. In the latter case, examples of rubbery polymers produced by anionic polymerization that do not satisfy the objectives of the present invention in terms of gloss, impact resistance, and other properties include solution polymerization Ziegler catalysts, Go
A rubber-like polymer produced using a Li-based catalyst or a Li-based catalyst, for example, Yasuharu Saeki, "Polymer Production Process", p. 2
19-272 (1971), Industrial Research Association. Examples include polybutadiene rubber, butadiene styrene copolymer and other copolymers, preferably butadiene styrene copolymer, particularly preferably butadiene Φ styrene block copolymer. butadiene
In a styrene block copolymer, the styrene content is 3
~28 parts by weight is preferably used to achieve the object of the present invention. Further, the viscosity of the 5% by weight styrene solution, measured at 30°C, is 100 to 2 centipoise, preferably 60 to 2 centipoise, more preferably 40 to 2 centipoise.
5 centivoise, particularly preferably 13 to 5 centivoise can be used.

従来、スチレン系単量体及びアクリロニトリル系単量体
の共重合体を吸蔵及び/又はグラフトしたブタジェン系
のゴム状重合体より成るゴム粒子はラジカル重合により
製造されている0本発明のゴム粒子の分散体(RDR)
の卓越した性能の由来するところは明確ではないが、か
かるラジカル重合によるゴム状重合体とはミクロ構造、
スチレン不溶成分の量1重合体に含まれる乳化剤等の不
純物に差異があり、又特にブロック型のブタジェン・ス
チレン共重合体の場合はラジカル重合では実質的に到達
され得ないものであって、これらの構造に関連すること
が推察される。
Conventionally, rubber particles made of a butadiene-based rubbery polymer occluded and/or grafted with a copolymer of a styrene monomer and an acrylonitrile monomer have been produced by radical polymerization. Dispersion (RDR)
Although it is not clear where the outstanding performance of this product comes from, the rubber-like polymer produced by such radical polymerization has a microstructure,
Amount of styrene-insoluble components 1 There are differences in impurities such as emulsifiers contained in the polymer, and especially in the case of block-type butadiene-styrene copolymers, these cannot be substantially reached by radical polymerization. It is inferred that this is related to the structure of

本発明のRMCは、概念的には一般のゴム変性スチレン
系樹脂にみられる、ゴム相とSA共重合体相より成るい
わゆる海鳥構造を形成する。即ち、ゴム状重合体は、R
MC中に粒子状に分散された分散相を形成する。一方、
スチレン系単量体、アクリロニトリル系単量体、場合に
よればその他の単量体の共重合体(SA共重合体と総称
する)が連続相を構成する。尚、上記分散相もSA共重
合体をグラフトもしくは吸蔵した形態において含有する
。ここで分散相は超薄切片電子顕微鏡写真(以下電子顕
微鏡写真という)により観察するとき島状に存在し、連
続相は泡状に存在する。
Conceptually, the RMC of the present invention forms a so-called seabird structure consisting of a rubber phase and an SA copolymer phase, which is seen in general rubber-modified styrenic resins. That is, the rubbery polymer has R
A dispersed phase is formed in the form of particles in the MC. on the other hand,
A copolymer of a styrene monomer, an acrylonitrile monomer, and possibly other monomers (generally referred to as SA copolymer) constitutes the continuous phase. Incidentally, the above-mentioned dispersed phase also contains the SA copolymer in a grafted or occluded form. Here, when observed using an ultrathin section electron micrograph (hereinafter referred to as an electron micrograph), the dispersed phase exists in the form of islands, and the continuous phase exists in the form of bubbles.

なお、連続相はメチルエチルケトンとメタノールの7対
3の混合溶剤で溶解される性質を有する部分であり、一
方分散相は該溶剤で溶解されない性質を有する部分であ
る。
The continuous phase is a portion that has the property of being dissolved in a 7:3 mixed solvent of methyl ethyl ketone and methanol, while the dispersed phase is a portion that has the property of not being dissolved by the solvent.

本発明でいう細胞とは、上記電子顕微鏡写真において分
散相であるゴム状重合体粒子の内部に観察される小粒子
である。この小粒子の成分は、ゴム状重合体がグラフト
もしくは吸蔵したSA共重合体等であり、RMCの電子
顕微鏡写真撮影時にゴム状重合体はオスミウム等により
染色されるのに対し、連続相に似て染色されないで残る
部分である。
The cells referred to in the present invention are small particles observed inside the rubbery polymer particles that are the dispersed phase in the above electron micrograph. The components of these small particles are SA copolymers grafted or occluded with rubbery polymers, and while rubbery polymers are stained with osmium etc. when taking RMC electron micrographs, they resemble a continuous phase. This is the part that remains undyed.

かかる電子顕微鏡写真におけるゴム粒子と細胞について
例示すれば1例えば、N、M、旧1(aleS。
Examples of rubber particles and cells in such electron micrographs include N, M, and old 1 (aleS).

ed、、  Enc7clopedia  of  P
olymer  5cience  andTechn
olog7. Vol、 13. John Wile
7 & 5ons、 NewYork、 1970. 
p、217の第5図にゴムとポリスチレンの系が示され
ている。この例示においては、アクリロニトリルは含ま
れておらず本発明の共重合体とは異なるが、ゴム粒子と
細胞の概念は、本発明と同じである。即ちゴム粒子は第
5図のはC全体を占めているものであり、細胞はゴム粒
子の中に更に分散しており、第5図はゴム粒子内の細胞
の最大値が0.1LL以上であるゴム粒子(即ちR1)
を例示する。
ed, Enc7clopedia of P
olymer 5science andTechn
olog7. Vol, 13. John Wile
7 & 5ons, New York, 1970.
Figure 5 of p. 217 shows a system of rubber and polystyrene. Although this example does not contain acrylonitrile and is different from the copolymer of the present invention, the concept of rubber particles and cells is the same as that of the present invention. In other words, the rubber particles occupy the entire area C in Figure 5, and the cells are further dispersed within the rubber particles, and Figure 5 shows that the maximum number of cells within the rubber particles is 0.1LL or more. Certain rubber particles (i.e. R1)
exemplify.

本発明の共重合体の製造の方法は、特に限定するもので
はないが、好ましくは、例えば連続式の塊状もしくは溶
液重合法を用いて製造される。かかる製造方法について
例示すればゴム状重合体をスチレン系単量体及びアクリ
ロニトリル系単量体を含む液体に投入し、攪拌を施し場
合によれば、温度20℃〜70℃に調整して溶解しかか
る溶液を反応器に供給する。Wl拌機付の1段以上、好
ましくは2段以上の反応器を用いて重合し、重合の最終
段から固形成分と未反応単量体、溶剤等の揮発成分を分
離する脱揮発分工程を経て、共重合体が得られる。かか
る方法において、第1段目の重合器には単量体に溶解し
たゴム状重合体が供給され。
The method for producing the copolymer of the present invention is not particularly limited, but it is preferably produced using, for example, a continuous bulk or solution polymerization method. To give an example of such a production method, a rubbery polymer is poured into a liquid containing a styrene monomer and an acrylonitrile monomer, stirred, and depending on the case, the temperature is adjusted to 20°C to 70°C to dissolve it. Such a solution is fed to the reactor. Polymerization is carried out using one or more stages, preferably two or more stages of reactors equipped with a Wl stirrer, and a devolatilization step is carried out in which solid components and volatile components such as unreacted monomers and solvents are separated from the final stage of polymerization. Through this process, a copolymer is obtained. In this method, a rubbery polymer dissolved in a monomer is supplied to the first stage polymerization vessel.

また、単量体および重合開始剤および連鎖移動剤は任意
の段階で反応器へ供給される0本発明のアニオン重合ゴ
ム変性スチレン系共重合体の好ましい製造方法は、上記
の連続式の溶液または塊状重合方法であるが、この方法
によって得られるゴム変性スチレン系共重合体は、アニ
オン重合で製造されるゴム状重合体をゴム粒子として含
有し得るものであって、いわゆる乳化重合のゴムラテッ
クスにスチレン系単量体及びアクリロニトリル系単量体
を加えてグラフト重合する方法では製造し得ないもので
ある。
In addition, the monomer, polymerization initiator, and chain transfer agent are supplied to the reactor at any stage. Although it is a bulk polymerization method, the rubber-modified styrenic copolymer obtained by this method can contain a rubbery polymer produced by anionic polymerization as rubber particles. This cannot be produced by adding a styrene monomer and an acrylonitrile monomer and performing graft polymerization.

本発明のRMCにおいては、電子顕微鏡写真において全
ゴム粒子の面積を100%とした時ゴム粒子内の細胞径
の最大値がo、tuL以上であるゴム粒子(R1)の面
積の割り合いが2〜60%であって、 0.1ル未満の
ゴム粒子(R2)の面積の割り合いが98〜40%なけ
ればならない、R1の面積は好ましくは2〜50%であ
りより好ましくは2〜45%であり、R2の面積は好ま
しくは98〜50%でありより好ましくはH〜55%で
ある。R1の面積が60%を越えると流動性耐衝撃性が
低く外観が不良となり、2%未満では耐衝撃性が低い、
R2の面積が88%を越えると耐衝撃性が低く、50%
未満では流動性耐衝撃性が低く外観が不良となる。該R
1の電子顕微鏡写真における体積平均粒子径は0.3〜
4.0ルでなければならない、好ましくは0.4〜2.
0 ル、より好ましくは0.4〜1.5 ル、特に好ま
しくは0.4〜1.0体である。該R2の電子顕微鏡写
真における体積平均粒子径が0.1〜0.4pでなけれ
ばならない、かかるR1.R2の面積及び体積平均粒子
径の組み合わせにより、アニオン重合でつくられるゴム
状重合体を含むスチレン系単量体及びアクリロニトリル
系単量体の共重合体よりなるRMCの耐衝撃強度が著し
く高くなる。流動性が高く保持される理由は明確ではな
いが、従来の知見よりして、驚くべきことである。
In the RMC of the present invention, when the area of all rubber particles in an electron micrograph is taken as 100%, the area ratio of rubber particles (R1) whose maximum cell diameter within the rubber particles is o, tuL or more is 2. ~60%, and the area proportion of rubber particles (R2) of less than 0.1 l should be 98-40%, the area of R1 is preferably 2-50%, more preferably 2-45%. %, and the area of R2 is preferably 98 to 50%, more preferably H to 55%. If the area of R1 exceeds 60%, the fluidity and impact resistance will be low and the appearance will be poor, and if it is less than 2%, the impact resistance will be low.
If the area of R2 exceeds 88%, the impact resistance will be low, and 50%
If it is less than that, the fluidity and impact resistance will be low and the appearance will be poor. The R
The volume average particle diameter in the electron micrograph of No. 1 is 0.3~
Should be 4.0 l, preferably 0.4 to 2.0 l.
0 l, more preferably 0.4 to 1.5 l, particularly preferably 0.4 to 1.0 l. The R1.R2 must have a volume average particle size of 0.1 to 0.4p in an electron micrograph. The combination of the area and volume average particle diameter of R2 significantly increases the impact strength of RMC made of a copolymer of styrene monomer and acrylonitrile monomer containing a rubbery polymer produced by anionic polymerization. The reason why liquidity remains so high is not clear, but it is surprising based on conventional knowledge.

体積平均粒子径Xは次のようにして測定される。The volume average particle diameter X is measured as follows.

すなわち、共重合体の超薄切片法による1万倍の電子顕
微鏡写真を撮影し、写真中のゴム粒子の500〜700
個の粒子径を測定、次式により平均したものである。D
iは第i (II目の平均径である。  ・ 平均粒子径 x(IL) =ΣDつ/ΣD苧n l n
 1 (但し、nは全ゴム粒子の個数である。)なお、RMC
中のゴム粒子には、細胞径が0.1ル以上のゴム粒子(
R1)及び0.1g未満のゴム粒子(R2)が存在し得
るが、上記の方法で体積平均粒子径を求めるにあたって
はあらかじめゴム粒子をR1及びR2に区別した後、体
積平均径を求める。電子顕微鏡写真においてゴム粒子像
及び細胞が楕円形をなす場合は、長径aと短径すの平均
値をもって径αとする。即ちα= (a+b)/22本
発明RMC中のR1,R2の生成は、ゴム状重合体とし
て、アニオン重合で製造されたものを用い、例えば、2
段の連続塊状重合法による場合は、前述の工程において
、一段目の単量体の共重合体への転化率を調整し、かか
る一段目の重合反応において単量体100重量部に対し
て、0.001〜0.2重量部の有機過酸化物を用いる
ことによってなされる。一般に少量の溶剤及び連鎖移動
剤を用いることが好ましいが、細胞径は、攪拌が小さい
ほど、溶剤及び連鎖移動剤が多い、はど、有機過酸化物
が少ないほど、ゴム状重合体の分子量が大きいほど、転
化率が大きいほど大きくなる傾向があり、この調整は、
当業者においてトライアンドエラー法においてなされ得
る。ゴム状重合体としては、細胞を小さくする目的にお
いて、好ましくはスチレンブタジェン共重合体、より好
ましくはスチレンブタジェンのブロック共重合体が用い
られ得る。
That is, an electron micrograph of the copolymer was taken at a magnification of 10,000 times using an ultra-thin section method, and 500 to 700 of the rubber particles in the photograph were taken.
The particle diameter of each particle was measured and averaged using the following formula. D
i is the average diameter of the i-th (II-th particle). Average particle diameter x (IL) = ΣD / ΣD 苧n l n
1 (However, n is the number of total rubber particles.) Furthermore, RMC
The rubber particles inside have a cell diameter of 0.1 l or more (
Rubber particles (R1) and rubber particles (R2) of less than 0.1 g may exist, but when determining the volume average particle diameter by the above method, the volume average particle diameter is determined after distinguishing the rubber particles into R1 and R2 in advance. When a rubber particle image and a cell form an elliptical shape in an electron micrograph, the average value of the major axis a and the minor axis is defined as the diameter α. That is, α=(a+b)/22 In the production of R1 and R2 in the RMC of the present invention, a rubbery polymer produced by anionic polymerization is used, for example, 2
In the case of a continuous stage bulk polymerization method, the conversion rate of the first stage monomer to the copolymer is adjusted in the above-mentioned step, and in the first stage polymerization reaction, for 100 parts by weight of the monomer, This is done by using 0.001 to 0.2 parts by weight of organic peroxide. In general, it is preferable to use a small amount of solvent and chain transfer agent, but the smaller the agitation, the larger the amount of solvent and chain transfer agent, the smaller the amount of organic peroxide, the smaller the molecular weight of the rubbery polymer. The larger the conversion rate, the greater the tendency for this adjustment to be.
This can be done in a trial and error manner by those skilled in the art. As the rubbery polymer, preferably a styrene-butadiene copolymer, more preferably a styrene-butadiene block copolymer can be used for the purpose of reducing the size of cells.

本発明のRMC中のSA共重合体の単量体組成は、スチ
レン系単量体とアクリロニトリル系単量体の比は130
/1G≦ST/AN <55/45でなければならない
、好ましくはBe/14<S↑/AM <85/35 
、より好ましくは8B/14≦ST/AN <89/3
1である。
In the monomer composition of the SA copolymer in the RMC of the present invention, the ratio of styrene monomer to acrylonitrile monomer is 130.
/1G≦ST/AN <55/45, preferably Be/14<S↑/AM <85/35
, more preferably 8B/14≦ST/AN<89/3
It is 1.

ST/AMが90/10未満では、耐衝撃強度が著しく
低下し、55/45を越えると流動性が極端に悪くなり
本発明の目的が達成され得ない。
If ST/AM is less than 90/10, the impact strength will be significantly reduced, and if it exceeds 55/45, the fluidity will be extremely poor and the object of the present invention cannot be achieved.

本発明のRMC中の連続相をなすSA共重合体100重
量部に対して、分子量が1,000,000を越える割
り合いが0.5重量部未満であり、1,200,000
を越える割り合いが0.01重量部未満でなければなら
ない、好ましくは、1,000,000を越える割り合
いが、 0.2重量部未満、より好ましくは0.01重
量部未満でなければならない、 1,000.000を
越える割り合いが0.5重量部以上あるいは、 1,2
00,000を越える割り合いが0,01重量部以上で
あれば1本発明の他の要件を満足していても、外観及び
流動性が低下する。従来1分子量を増大させることによ
りスチレン系樹脂の強度の増強が図られてきたが、本発
明者らは、流動性と耐衝撃性の見地からは、過大な分子
量が不要であり、外観上の見地からは有害であることを
見出した。これらの要件を満足することにより、高い耐
衝撃強度を維持してなおかつ外観及び流動性を高く保持
できるのであり、この理由は明確ではないが、本発明の
ゴム粒子の性質と連続相のSA共重合体の性質の相互作
用によるものと思われる。連続相のSA共重合体の分子
量の割り合いは次の様にして、通常の方法で測定される
With respect to 100 parts by weight of the SA copolymer constituting the continuous phase in the RMC of the present invention, the proportion with a molecular weight exceeding 1,000,000 is less than 0.5 parts by weight, and the proportion of 1,200,000 parts by weight is less than 0.5 parts by weight.
The proportion exceeding 1,000,000 should be less than 0.01 parts by weight, preferably the proportion exceeding 1,000,000 should be less than 0.2 parts by weight, more preferably less than 0.01 parts by weight. , the proportion exceeding 1,000.000 is 0.5 parts by weight or more, or 1,2
If the proportion exceeding 0.00,000 is 0.01 part by weight or more, the appearance and fluidity will deteriorate even if the other requirements of the present invention are satisfied. Conventionally, attempts have been made to increase the strength of styrenic resins by increasing the molecular weight, but the present inventors believe that excessive molecular weight is unnecessary from the viewpoint of fluidity and impact resistance, and that it improves the appearance. I found it harmful from my point of view. By satisfying these requirements, it is possible to maintain high impact strength and high appearance and fluidity.The reason for this is not clear, but the properties of the rubber particles of the present invention and the SA coexistence of the continuous phase can be maintained. This seems to be due to the interaction of polymer properties. The molecular weight ratio of the SA copolymer in the continuous phase is determined by a conventional method as follows.

RMCをメチルエチルケトン/メタノール7/3の混合
溶剤に分散し、遠心分離により混合溶剤不溶分を除き、
可溶成分を含む溶剤を約20倍量のメタノールに投入し
、再沈澱させる。この沈澱物をpi過、乾燥後測定する
。測定には、ゲルパーミェーションクロマトグラフィ法
を用いる。あらかじめ、ポリスチレンの標準サンプルで
、エリューションボリュームと分子量の検量線を作成し
、上記の乾燥物の分子量の基準とする。なお、計測にあ
たっては分子量1000以下の重合体は除外する。
Disperse RMC in a mixed solvent of methyl ethyl ketone/methanol 7/3, remove insoluble matter by centrifugation,
The solvent containing the soluble components is poured into about 20 times the amount of methanol and reprecipitated. This precipitate is subjected to PI filtration, dried, and then measured. Gel permeation chromatography is used for the measurement. A calibration curve of elution volume and molecular weight is prepared in advance using a polystyrene standard sample and used as a reference for the molecular weight of the above-mentioned dry product. Note that polymers with a molecular weight of 1000 or less are excluded from the measurement.

本発明の分子量の分布は連続塊状もしくは溶液状重合法
によって好ましく達成され得る。
The molecular weight distribution of the present invention can preferably be achieved by continuous bulk or solution polymerization methods.

本発明のRMCにおいて、連続相のSA共重合体の30
℃、 o、swt%のジメチルホルムアミド(DMF)
溶液の還元粘度は好ましくは0.5〜1.0dl/g、
より好ましくはO6θ〜0.9dl/g、とくに好まし
くは0.6〜0.85dl/gテある。カカる値がi、
In the RMC of the present invention, 30% of the continuous phase SA copolymer
°C, o, swt% dimethylformamide (DMF)
The reduced viscosity of the solution is preferably 0.5 to 1.0 dl/g,
More preferably O6θ to 0.9 dl/g, particularly preferably 0.6 to 0.85 dl/g. The value that appears is i,
.

を越えると、極端に流動性が悪化し、又0.5未満では
耐衝撃強度が低下する。還元粘度は上記の乾燥物を測定
するものである。
If it exceeds 0.5, the fluidity will be extremely deteriorated, and if it is less than 0.5, the impact strength will decrease. Reduced viscosity is a measurement of the above-mentioned dry product.

本発明のRMCにおいて、分散相の架橋度指数は8〜1
6倍が好ましく、より好ましくは9〜14倍、特に好ま
しくは10〜14倍である。かかる分散相の架橋度指数
は、次の方法により測定される。
In the RMC of the present invention, the degree of crosslinking index of the dispersed phase is 8 to 1.
It is preferably 6 times, more preferably 9 to 14 times, particularly preferably 10 to 14 times. The crosslinking degree index of such a dispersed phase is measured by the following method.

RM C0,4gをトルエン/メチルエチルケトンの混
合比7/3液30ccに部分溶解させる。
Partially dissolve 0.4 g of RM CO in 30 cc of a 7/3 mixture of toluene/methyl ethyl ketone.

遠心分離後、溶剤にて膨潤した不溶分の重量を秤量(W
+ )する、秤量後、該不溶分を真空乾燥し再度秤量(
W2)する、架橋度指数は、臀、÷讐2で得られる。か
かる架橋度指数は、重合開始剤の量、種類、および脱揮
発処理時の温度、滞留時間に依存するが、更にマレイミ
ド系単量体の量にも依存する。当業者においては、製造
プロセスの条件をトライアンドエラー法で選定すること
により適当な架橋度指数を設定できる。かかる架橋度指
数が8未満では衝撃強度は著しく低く、また流動性も低
い、また16を越えても実用衝撃強度が小さくなる。
After centrifugation, the weight of the insoluble matter swollen with the solvent is weighed (W
+) After weighing, vacuum dry the insoluble matter and weigh again (
W2) The degree of crosslinking index is obtained by dividing ÷2. The crosslinking degree index depends on the amount and type of polymerization initiator, the temperature and residence time during devolatilization treatment, and further depends on the amount of maleimide monomer. Those skilled in the art can set an appropriate degree of crosslinking index by selecting manufacturing process conditions by trial and error. If the crosslinking degree index is less than 8, the impact strength is extremely low and fluidity is also low, and if it exceeds 16, the practical impact strength is low.

本発明でいうスチレン系単量体とは、スチレン、α−メ
チルスチレン、α−エチルスチレンのような側鎖アルキ
ル置換スチレン、モノクロルスチレン、ジクロルスチレ
ン、ビニルトルエン、ビニルキシレン、o−t−ブチル
スチレン、p−を−ブチルスチレン、p−メチルスチレ
ンのような核アルキル置換スチレン、トリブロムスチレ
ン、テトラブロムスチレン等のハロゲン化スチレン及び
p−ヒドロキシスチレン、0−メトキシスチレン、ビニ
ルナフタレン等が挙げられるが、特に好ましくは、スチ
レンおよびα−メチルスチレンであり、かかるスチレン
系単量体の一種以上が用いられ得る。
The styrenic monomers used in the present invention include styrene, α-methylstyrene, side-chain alkyl-substituted styrene such as α-ethylstyrene, monochlorostyrene, dichlorostyrene, vinyltoluene, vinylxylene, o-t-butyl Examples include styrene, p-butylstyrene, nuclear alkyl-substituted styrenes such as p-methylstyrene, halogenated styrenes such as tribromustyrene and tetrabromostyrene, and p-hydroxystyrene, 0-methoxystyrene, vinylnaphthalene, etc. However, styrene and α-methylstyrene are particularly preferred, and one or more of these styrenic monomers may be used.

本発明でいうアクリロこトリル系単量体とは、アクリロ
ニトリル、メタクリロニトリル、フマロニトリル、マレ
オニトリル、α−グクロアクリロニトリル等が挙げられ
、特にアクリロニトリルが好ましい。かかる単量体の一
種以上が用いられる。
The acrylonitrile monomer used in the present invention includes acrylonitrile, methacrylonitrile, fumaronitrile, maleonitrile, α-glyloacrylonitrile, and the like, with acrylonitrile being particularly preferred. One or more such monomers may be used.

本発明においては、共重合体構成成分のスチレン系単量
体及びアクリロニトリル系単量体の一部を、スチレン系
単量体及びアクリロニトリル系単量体の総和に対して3
0重量%以下の割合いで、メチルメタクリレート等のメ
タクリルエステル系単量体、メチルアクリレート等のア
クリル酸エステル系単量体等、更にマレイミド、N−フ
ェニルマレイミド等のマレイミド系単量体の一種以上と
置き換えて構成してもよい、耐熱性を向上させる目的に
おいては、1〜30重量部のマレイミド系単量体に置き
換えて構成することが好ましい。
In the present invention, a portion of the styrene monomer and acrylonitrile monomer of the copolymer constituents is set at 3% relative to the total of the styrene monomer and acrylonitrile monomer.
0% by weight or less of methacrylic ester monomers such as methyl methacrylate, acrylic ester monomers such as methyl acrylate, and one or more maleimide monomers such as maleimide and N-phenylmaleimide. For the purpose of improving heat resistance, it is preferable to replace the maleimide monomer with 1 to 30 parts by weight.

本発明のアニオン重合ゴム変性共重合体には通常のヒン
ダードフェノール系酸化防止剤、リン系酸化防止剤およ
びイオウ系酸化防止剤等の酸化防止剤を添加して熱安定
性を向上させたり、滑剤を添加して流動性をさらによく
することもできる。
The anionically polymerized rubber-modified copolymer of the present invention may be added with an antioxidant such as a normal hindered phenol antioxidant, a phosphorus antioxidant, or a sulfur antioxidant to improve thermal stability. A lubricant can also be added to further improve fluidity.

また目的に合わせてガラス繊維等の繊維補強剤、無機充
填剤、着色剤、顔料を配合することもできる。また本発
明の7ニオン重合ゴム変性スチレン系共重合体にテトラ
プロモスビフェニールA、デカブロモビフェニールエー
テル、臭素化ポリカーボネート等の一部ハロゲン化有機
化合物系難燃剤を酸化アンチモンとともに混合すること
によって難燃化が可能である。
Further, fiber reinforcing agents such as glass fibers, inorganic fillers, colorants, and pigments may be added depending on the purpose. In addition, by mixing partially halogenated organic compound flame retardants such as tetrapromos biphenyl A, decabromo biphenyl ether, brominated polycarbonate, etc. with the 7-ion polymerized rubber-modified styrenic copolymer of the present invention together with antimony oxide, flame retardation can be achieved. It is possible to

本発明のアニオン重合ゴム変性スチレン系共重合体は、
ABS樹脂、ポリ塩化ビニル、スチレン−アクリロニト
リル樹脂、ポリカーボネート、ポリブチレンテレフタレ
ート、ポリエチレンテレフタレート、ナイロン6、ナイ
ロン66、ナイロン12、ポリフェニレンオキシドおよ
びポリフェニレンスルフィド等の樹脂にブレンドして成
形に供することもできる。
The anionically polymerized rubber-modified styrenic copolymer of the present invention is
It can also be blended with resins such as ABS resin, polyvinyl chloride, styrene-acrylonitrile resin, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, nylon 6, nylon 66, nylon 12, polyphenylene oxide, and polyphenylene sulfide for molding.

以下、実施例、比較例により本発明の具体的実施態様を
示すが、これは本発明を限定するものではない。
Hereinafter, specific embodiments of the present invention will be shown by Examples and Comparative Examples, but these are not intended to limit the present invention.

実施例1 A、細胞径大のゴム粒子含有スチレン系共重合体(RM
C−A)の製造: 3基の直列の攪拌機付反応器の出口に予熱器ついで真空
槽を連結した連続塊状重合装置を用いてゴム変性スチレ
ン系共重合体を製造した。ゴム状重合体として、ブロッ
クSBR(メチ9フ22%ブタジェン78%;ブタジェ
ン部分のミクロ構造は、ビニルが18モル%、トランス
47モル%、シス35モル%、5wt%のスチレン溶液
粘度が25℃で11センチポイズ)を用いた。ゴム状重
合体4.81i部ヲエチルベンゼン32重量部 メチ1
フ45重量部アクリロニトリル15重量部の混合液に投
入しゴム溶液を作成した。このゴム溶液を第−薄目の反
応器に連続的に送入し重合を行い、第3基目の反応器を
経て230〜250℃の温度に保持した予熱器を通して
、真空度120torrの真空槽で未反応モノマーと溶
剤を除去し、真空槽より樹脂を連続的に抜き出し、ゴム
変性スチレン系共重合体を得た。
Example 1 A, styrenic copolymer containing rubber particles with large cell diameter (RM
Production of C-A): A rubber-modified styrenic copolymer was produced using a continuous bulk polymerization apparatus in which a preheater and a vacuum tank were connected to the outlet of three reactors equipped with agitators in series. As a rubbery polymer, block SBR (Methi 9F 22% butadiene 78%; the microstructure of the butadiene moiety is vinyl 18 mol%, trans 47 mol%, cis 35 mol%, 5 wt% styrene solution viscosity at 25 ° C. (11 centipoise) was used. 4.81 i parts of rubbery polymer 32 parts by weight of ethylbenzene 1 part by weight
A rubber solution was prepared by adding 45 parts by weight of rubber to a mixed solution of 15 parts by weight of acrylonitrile. This rubber solution is continuously fed into a first thin reactor for polymerization, passed through a third reactor, passed through a preheater maintained at a temperature of 230 to 250°C, and then placed in a vacuum chamber at a vacuum degree of 120 torr. Unreacted monomers and solvent were removed, and the resin was continuously extracted from the vacuum tank to obtain a rubber-modified styrenic copolymer.

重合開始剤として有機過酸化物1509Pmを用い、分
子量調節剤としてドデシルメルカプタンを使用した。送
入原料の供給量と得られた共重合体の量よりゴム変性ス
チレン系共重合体中のゴム状重合体の量を算出した。第
1反応器の攪拌数は、17Orp閣とした。
Organic peroxide 1509Pm was used as a polymerization initiator, and dodecyl mercaptan was used as a molecular weight regulator. The amount of rubber-like polymer in the rubber-modified styrenic copolymer was calculated from the amount of feed raw materials supplied and the amount of the obtained copolymer. The stirring number of the first reactor was 17 or higher.

B、細胞径小のゴム粒子含有スチレン系共重合体(RM
C−B)の製造: 本実施例のAより、ゴム溶液の組成をゴム状重合体5重
量部、エチルベンゼン25重量部、スチレン52.5重
量部、アクリロニトリル17.5重量部に変更した混合
液とし、第1反応器の攪拌数を350rp+s 、分子
量調節剤の量を減じた他は1本実施例のAと同様にして
、ゴム変性スチレン系共重合体を製造した。
B, styrenic copolymer containing rubber particles with small cell diameter (RM
Production of C-B): A mixed solution in which the composition of the rubber solution was changed from A of this example to 5 parts by weight of rubbery polymer, 25 parts by weight of ethylbenzene, 52.5 parts by weight of styrene, and 17.5 parts by weight of acrylonitrile. A rubber-modified styrenic copolymer was produced in the same manner as in Example A, except that the stirring speed in the first reactor was 350 rpm+s and the amount of the molecular weight regulator was reduced.

C,アニオン重合ゴム変性スチレン系共重合体の分析評
価: C−t、  ゴム含有量二全樹脂を100重量部として
樹脂中のゴムの量をAに記載の如く反応系への送入ゴム
量と生成共重合体量の収支より得た。
C. Analytical evaluation of anionically polymerized rubber-modified styrenic copolymer: C-t. Rubber content: 2. The amount of rubber in the resin is 100 parts by weight, and the amount of rubber fed to the reaction system is as described in A. and the amount of copolymer produced.

C−2,平均ゴム粒子径(xIL):前記記載の方法に
よる。
C-2, average rubber particle diameter (xIL): according to the method described above.

C−3,スチレン系単量体(7重量部)と7クリロニト
リル系単量体(2重量部)の共重合体(y+z重量部)
中の7クリロニトリル系単量体の割り合い、y/z :
反応系へ送入した上記単量体量と真空槽経由で回収した
単量体量の物質収支より求めた。なお、確認の為、SA
共重合体につき、N元素の元素分析の値よりy/zを求
めたが、この値は物質収支の値と一致した。
C-3, copolymer of styrene monomer (7 parts by weight) and 7crylonitrile monomer (2 parts by weight) (y+z parts by weight)
Ratio of 7-crylonitrile monomer in y/z:
It was determined from the material balance of the amount of the monomer introduced into the reaction system and the amount of monomer recovered via the vacuum chamber. In addition, for confirmation, SA
For the copolymer, y/z was determined from the value of elemental analysis of N element, and this value coincided with the value of mass balance.

C−4゜分子量がt 、ooo 、ooo及び1.20
0 、000を越える割り合い:前記記載の方法による
C-4° molecular weight is t, ooo, ooo and 1.20
Ratio exceeding 0,000: according to the method described above.

C−5,細胞の大きさの判別:前記記載の方法による。C-5, determination of cell size: according to the method described above.

D、物性評価 D−1,成形 得られた共重合体を90℃で3時間乾燥した後、成形温
度240℃、金型温度40℃で射出成形機で成形した。
D. Evaluation of physical properties D-1, Molding The obtained copolymer was dried at 90°C for 3 hours, and then molded with an injection molding machine at a molding temperature of 240°C and a mold temperature of 40°C.

D−2,物性の評価 (1)アイゾツト衝撃強度: JIS K−7110に
準じて評価した。
D-2. Evaluation of physical properties (1) Izot impact strength: Evaluated according to JIS K-7110.

(2)光沢: JIS K−7105に準じて評価した
(2) Gloss: Evaluation was made according to JIS K-7105.

50mm幅 厚み2.5■■長さ150■の長方形の成
形物を射出成形した。ゲートは幅50m層  厚み0.
1履mで長さ方向の一端にとり、ゲート部を流動始点、
ゲートの反対側の端が流動末端である。ゲート部より2
5mmの距離の中央を中心位置とした5m■X5mmの
正方形部の光沢をゲート部光沢とし、末端より25履m
の距離の中央を中心位置とした5■■X5m+sの正方
形部の光沢を束端部光沢とした。なお、一般に異なった
RMCについてゲート部の光沢の差異は、末端部の差異
より小さく、又末端部の光沢値はゲート部の光沢より著
しく低く、実用上束端部光沢が外観上の重要点である。
A rectangular molded product with a width of 50 mm, a thickness of 2.5 mm, and a length of 150 mm was injection molded. The gate has a width of 50m and a thickness of 0.
Take 1 meter at one end in the length direction, and set the gate part as the starting point of the flow.
The end opposite the gate is the flow end. 2 from the gate part
The gloss of the 5m x 5mm square part with the center of the 5mm distance as the center is the gate gloss, and the distance is 25 m from the end.
The gloss of a square part of 5 x 5 m+s centered at the center of the distance was defined as the bundle end gloss. Generally, the difference in the gloss of the gate part for different RMCs is smaller than the difference in the end part, and the gloss value of the end part is significantly lower than the gloss of the gate part. be.

(3)実用衝撃強度の評価:射出成形により第1図(a
)、(b)で示される形状の成形物の3箇所の部位、部
位(1)、部位(2)、部位(3)について落錘衝撃強
度試験を行なった。落錘の先端部R= 8.ha/m、
受台の内径20m/mとした。
(3) Evaluation of practical impact strength: Fig. 1 (a)
A falling weight impact strength test was conducted on three parts of the molded product having the shapes shown in ) and (b), part (1), part (2), and part (3). Tip R of falling weight = 8. ha/m,
The inner diameter of the pedestal was 20 m/m.

部位(1)は厚みが変化する部位であり、部位(2)は
角の近辺の部位、部位(3)は標準な部位である。
Part (1) is a part where the thickness changes, part (2) is a part near the corner, and part (3) is a standard part.

(4)ゲート付近の成形模様:第1図(a)、(b)で
示される形状の成形物のゲート(Gで示す)付近にあら
れれる、ツヤのない部分の模様を本発明の実施例、比較
例で相対比較した。各共重合体につき10枚の成形物を
2点;模様はとんどなし、1点;模様があるで評価し、
 10枚の平均点でその程度を示した。なおゲート径は
1 m+s径のピンゲートである。
(4) Molding pattern near the gate: The pattern of the dull part near the gate (indicated by G) of the molded product having the shape shown in FIGS. 1(a) and 1(b) is an example of the present invention. , a comparative example was used for relative comparison. For each copolymer, 10 molded products were evaluated as 2 points; almost no pattern; 1 point; patterned;
The degree was shown by the average score of the 10 sheets. Note that the gate diameter is a pin gate with a diameter of 1 m+s.

(5)成形加工時の流動性の評価:射出成形においてシ
コートショットを生じない最低の射出圧力に必要な成形
機の油圧(ショートショット油圧)により評価した。市
販の高剛性の乳化重合方法で製造されたABS樹脂(参
考例)を基準とし、ショートショット油圧の差異で相対
評価した。差異の値が負の場合は参考例よりも油圧が低
い側を示し成形加工時の流動性が良好な材料と判定され
る。
(5) Evaluation of fluidity during molding processing: Evaluation was performed using the oil pressure of the molding machine (short shot oil pressure) required for the lowest injection pressure that does not cause sicoat shot during injection molding. A commercially available ABS resin (reference example) manufactured by a highly rigid emulsion polymerization method was used as a standard, and relative evaluation was performed based on the difference in short shot oil pressure. If the difference value is negative, it indicates that the oil pressure is lower than that of the reference example, and it is determined that the material has good fluidity during molding.

E1本実施例のアニオン重合ゴム変性スチレン系共重合
体の評価結果: RMC−Aを25重量部及びRMC−Bを75重量部混
合し成形して本発明のアニオン重合ゴム変性スチレン系
共重合体を得た。第1表に結果を示す0本実施例のアニ
オン重合ゴム変性スチレン系共重合体は外観、射出成形
時の流動性、耐衝撃強度につき著しく優れた性質を示し
た。
E1 Evaluation results of the anionically polymerized rubber-modified styrenic copolymer of this example: 25 parts by weight of RMC-A and 75 parts by weight of RMC-B were mixed and molded to form the anionically polymerized rubber-modified styrenic copolymer of the present invention. I got it. The results are shown in Table 1. The anionically polymerized rubber-modified styrenic copolymer of this example exhibited outstanding properties in terms of appearance, fluidity during injection molding, and impact strength.

比較例1 実施例1(7)RMC−Aについて単独で実施例1のC
,Dと同様の方法で評価を行った。外観、耐衝撃強度共
に実施例1に及ばなかった。
Comparative Example 1 Example 1 (7) Regarding RMC-A, C of Example 1 alone
, D was evaluated using the same method. Both appearance and impact strength were inferior to Example 1.

比較例2 実施例2のRMC−Hにつき、単独で実施例1のC,D
と同様の方法で評価を行った。耐衝撃強度が著しく低か
った。
Comparative Example 2 For RMC-H of Example 2, C and D of Example 1 alone
The evaluation was carried out in the same manner. Impact strength was extremely low.

実施例2,3.4 RMC−AとRMC−Bの混合比をかえてゴム変性スチ
レン系共重合体を得て、実施例1のC1Dと同様の方法
で評価を行った。結果を第1表に示す。
Examples 2 and 3.4 Rubber-modified styrenic copolymers were obtained by changing the mixing ratio of RMC-A and RMC-B, and evaluated in the same manner as C1D in Example 1. The results are shown in Table 1.

比較例3 実施例1のRMC−Aの製造において、ゴム状重合体と
してスチレン不溶成分が0.02wt%で溶液粘度60
センチボイズのアニオン重合で製造されたポリブタジェ
ンを用いる他は実施例1のAと同様にしてアニオン重合
ゴム変性スチレン系共重合体(RMC−C)を得た。実
施例1のC,Dと同様の方法で評価を行った。結果を第
1表に示す、外観、流動性、耐衝撃強度すべて劣ったも
のとなった。
Comparative Example 3 In the production of RMC-A of Example 1, the rubbery polymer contained 0.02 wt% of the styrene-insoluble component and the solution viscosity was 60.
An anionically polymerized rubber-modified styrenic copolymer (RMC-C) was obtained in the same manner as in Example 1A, except that polybutadiene produced by anionic polymerization of centiboids was used. Evaluation was performed in the same manner as in Example 1 C and D. The results are shown in Table 1, and the appearance, fluidity, and impact strength were all poor.

比較例4,5 RMC−CとRMC−Aを混合し、その混合比をかえて
2種のゴム変性スチレン系共重合体を得た。実施例1の
C,Dと同様の方法で評価した。
Comparative Examples 4 and 5 Two types of rubber-modified styrenic copolymers were obtained by mixing RMC-C and RMC-A and changing the mixing ratio. Evaluation was made in the same manner as in Example 1 C and D.

結果を第1表に示す、外観、流動性、耐衝撃強度がすべ
て劣ったものとなった。
The results are shown in Table 1, and the appearance, fluidity, and impact strength were all poor.

比較例6 本発明のゴム状重合体とは異なるポリブタジェンゴムラ
テックスを使用して、乳化重合によりゴム変性スチレン
系共重合体(RMC−D)を得た。ポリブタジェンゴム
ラテックス(固形分20%、ラテックスの体積平均径0
.20 h )を用い、スチレン、アクリロニトリルを
連続的に添加しながら重合した。実施例1のC,Dと同
様の方法で評価した。耐衝撃強度、流動性が低かった。
Comparative Example 6 A rubber-modified styrenic copolymer (RMC-D) was obtained by emulsion polymerization using a polybutadiene rubber latex different from the rubbery polymer of the present invention. Polybutadiene rubber latex (solid content 20%, volume average diameter of latex 0
.. 20 h) while continuously adding styrene and acrylonitrile. Evaluation was made in the same manner as in Example 1 C and D. Impact strength and fluidity were low.

用いたゴムラテックスのスチレン不溶成分は82%であ
った。
The styrene-insoluble component of the rubber latex used was 82%.

比較例7 比較例6とは用いるポリブタジェンゴムラテックスの体
積平均径が0.6終とした他は比較例6と同様にして、
ゴム変性スチレン系共重合体(RMC−E)を得た。実
施例1のC,Dと同様の方法で評価した。耐衝撃強度、
外観、流動性が低かった。用いたゴムラテックスのスチ
レン不溶成分は50%であった。
Comparative Example 7 Comparative Example 6 was the same as Comparative Example 6 except that the volume average diameter of the polybutadiene rubber latex used was 0.6.
A rubber modified styrenic copolymer (RMC-E) was obtained. Evaluation was made in the same manner as in Example 1 C and D. impact strength,
Appearance and fluidity were low. The styrene-insoluble component of the rubber latex used was 50%.

比較例8 RMC−DとRMC−Eを混合して、ゴム変性スチレン
系共重合体を得た。実施例1のC,Dと同様の方法で評
価した。特に耐衝撃強度、流動性が劣った・ 実施例5 実施例1のRMC−A及びRMC−Bの製造において、
第1基目の反応器に供給する原料にN−フェニルマレイ
ミド1.8重量部を加えたことを除いて、実施例1のC
,Dと同様の方法で評価した。 JIS K−7208
に準じてビカット軟化点を測定した結果、111.5℃
の値を得た。比較例1では同様に試験した結果109℃
であった。耐熱性のすぐれたゴム変性スチレン系共重合
体であった。その他の結果を第1表に示す。
Comparative Example 8 RMC-D and RMC-E were mixed to obtain a rubber-modified styrenic copolymer. Evaluation was made in the same manner as in Example 1 C and D. In particular, the impact strength and fluidity were poor. Example 5 In the production of RMC-A and RMC-B of Example 1,
C of Example 1 except that 1.8 parts by weight of N-phenylmaleimide was added to the raw material fed to the first reactor.
, D was evaluated in the same manner. JIS K-7208
As a result of measuring the Vicat softening point according to
obtained the value of In Comparative Example 1, the result of the same test was 109°C.
Met. It was a rubber-modified styrenic copolymer with excellent heat resistance. Other results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明のアニオン重合ゴム変性スチ
レン系共重合体は、成形加工時の流動性が高く、なおか
つ高い耐衝撃強度を有し、射出成形時の流動末端の光沢
が高く、またゲート部と流動末端間の光沢の差異が少な
く、更に成形時にゲート付近に発生する成形模様が低減
された優れた外観を有しており、また更にマレイミド系
の単量体を共重合したものについては、耐熱温度が高く
、本発明の共重合体は電気機器、電子機器および自動車
、事務機器等の部品材料用の用途等において産業上の利
用価値は極めて大きいのものである。
As detailed above, the anionically polymerized rubber-modified styrenic copolymer of the present invention has high fluidity during molding, high impact strength, high gloss at the flow end during injection molding, and It has an excellent appearance with little difference in gloss between the gate part and the flow end, and the molding patterns that occur near the gate during molding are reduced, and it is also copolymerized with a maleimide monomer. has a high heat resistance temperature, and the copolymer of the present invention has extremely high industrial utility value in applications such as parts materials for electrical equipment, electronic equipment, automobiles, office equipment, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実用衝撃試験に用いた成形物の形状を示す、
(a)は平面図であり、(b)は断面図である。Gはゲ
ート位置を示す。 特許出願人   三井東圧化学株式会社代 理 人  
 弁理士 若 林  忠第1図
Figure 1 shows the shape of the molded product used in the practical impact test.
(a) is a plan view, and (b) is a sectional view. G indicates the gate position. Patent applicant Mitsui Toatsu Chemical Co., Ltd. Agent
Patent Attorney Tadashi Wakabayashi Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)A、ゴム変性スチレン系共重合体が(a)25℃
におけるスチレン溶液粘度が2〜250センチポイズで
あり(b)スチレン不溶成分が0.1wt%未満のアニ
オン重合によって製造されるゴム状重合体を耐衝撃性強
化剤として含有し、 B、該ゴム変性スチレン系共重合体中の該ゴム状重合体
は、粒子状に分散し、その超薄切片電子顕微鏡写真にお
いて、全ゴム粒子の面積を100%として、ゴム粒子内
の細胞径の最大値が0.1μ以上であるゴム粒子(R1
)の面積の割り合いが2〜50%であって、細胞径の最
大値が0.1μ未満のゴム粒子(R2)の面積の割り合
いが98〜40%であり、 C、該R1の超薄切片電子顕微鏡写真における体積平均
粒子径が0.3〜4.0μであって、該R2の超薄切片
電子顕微鏡写真における体積平均粒子径が0.1〜0.
4μであり、 D、ゴム変性スチレン系共重合体中のSA共重合体の単
量体組成がスチレン系単量体(ST)とアクリロニトリ
ル系単量体(AN)の比90/10≦ST/AN≦55
/45より成り、かつ E、連続相をなすSA共重合体100重量部に対して、
分子量が1,000,000を越える重合体の割り合い
が0.5重量部未満であり、1,200,000を越え
る重合体の割り合いが0.01重量部未満であることを
特徴とするアニオン重合ゴム変性スチレン系共重合体。
(1) A, rubber-modified styrenic copolymer (a) 25°C
(b) contains a rubber-like polymer produced by anionic polymerization with a styrene-insoluble component of less than 0.1 wt% as an impact-resistance reinforcing agent; B. the rubber-modified styrene; The rubber-like polymer in the system copolymer is dispersed in the form of particles, and in an ultra-thin section electron micrograph of the same, the maximum cell diameter within the rubber particles is 0.5%, assuming that the area of the entire rubber particle is 100%. Rubber particles (R1
) has an area ratio of 2 to 50%, and the area ratio of rubber particles (R2) having a maximum cell diameter of less than 0.1 μ is 98 to 40%; The volume average particle diameter in a thin section electron micrograph is 0.3 to 4.0μ, and the volume average particle diameter in an ultrathin section electron micrograph of R2 is 0.1 to 0.
D, the monomer composition of the SA copolymer in the rubber-modified styrenic copolymer has a ratio of styrene monomer (ST) to acrylonitrile monomer (AN) of 90/10≦ST/ AN≦55
/45 and E, for 100 parts by weight of the SA copolymer forming the continuous phase,
Characterized by the fact that the proportion of polymers with a molecular weight exceeding 1,000,000 is less than 0.5 parts by weight, and the proportion of polymers exceeding 1,200,000 is less than 0.01 parts by weight. Anionically polymerized rubber-modified styrenic copolymer.
(2)共重合体構成成分のスチレン系単量体及びアクリ
ロニトリル系単量体の総量を100重量部とするとき、
その1〜30重量部をマレイミド系単量体に置き換えて
構成した共重合体である特許請求の範囲第1項記載のア
ニオン重合ゴム変性スチレン系共重合体。
(2) When the total amount of styrene monomer and acrylonitrile monomer as copolymer constituent components is 100 parts by weight,
The anionically polymerized rubber-modified styrenic copolymer according to claim 1, which is a copolymer obtained by replacing 1 to 30 parts by weight of the maleimide monomer with a maleimide monomer.
JP62072983A 1987-02-23 1987-03-28 Anionic polymer rubber modified styrene copolymer Expired - Lifetime JP2675781B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62072983A JP2675781B2 (en) 1987-03-28 1987-03-28 Anionic polymer rubber modified styrene copolymer
KR1019880010148A KR910008280B1 (en) 1987-02-23 1988-08-09 Rubber - modified styren based copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62072983A JP2675781B2 (en) 1987-03-28 1987-03-28 Anionic polymer rubber modified styrene copolymer

Publications (2)

Publication Number Publication Date
JPS63241052A true JPS63241052A (en) 1988-10-06
JP2675781B2 JP2675781B2 (en) 1997-11-12

Family

ID=13505133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62072983A Expired - Lifetime JP2675781B2 (en) 1987-02-23 1987-03-28 Anionic polymer rubber modified styrene copolymer

Country Status (1)

Country Link
JP (1) JP2675781B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329353A (en) * 1976-08-31 1978-03-18 Daicel Chem Ind Ltd Preparation of high-impact resin compositions
JPS59217712A (en) * 1983-05-26 1984-12-07 Nippon Erasutomaa Kk Impact-resistant styrene resin
JPS61148213A (en) * 1984-12-21 1986-07-05 Asahi Chem Ind Co Ltd Impact-resistant polystyrene based resin and production thereof
JPS63241015A (en) * 1987-03-28 1988-10-06 Mitsui Toatsu Chem Inc Dispersion of graft rubber particle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5329353A (en) * 1976-08-31 1978-03-18 Daicel Chem Ind Ltd Preparation of high-impact resin compositions
JPS59217712A (en) * 1983-05-26 1984-12-07 Nippon Erasutomaa Kk Impact-resistant styrene resin
JPS61148213A (en) * 1984-12-21 1986-07-05 Asahi Chem Ind Co Ltd Impact-resistant polystyrene based resin and production thereof
JPS63241015A (en) * 1987-03-28 1988-10-06 Mitsui Toatsu Chem Inc Dispersion of graft rubber particle

Also Published As

Publication number Publication date
JP2675781B2 (en) 1997-11-12

Similar Documents

Publication Publication Date Title
US4659790A (en) Heat-resistant copolymer of alpha-methylstyrene and acrylonitrile, process for preparing the same, and thermoplastic resin composition containing the same
US4954571A (en) Rubber dispersed copolymer resin
JP2606895B2 (en) Block copolymer rubber-modified styrene copolymer
US4631307A (en) Heat-resistant high impact styrene resin, process for production thereof, and resin composition comprising said styrene resin
EP0393685A1 (en) Imidated copolymers and uses thereof
EP0352383B1 (en) Anionically-polymerized-rubber-modified styrene copolymers
US5218069A (en) Imidated copolymers and uses thereof
US5180780A (en) Rubber-modified styrene-based copolymer
JPS63241052A (en) Styrene copolymer modified with anionically polymerized rubber
JPH0216139A (en) Styrene copolymer modified with anionically polymerized rubber
JP3972526B2 (en) Styrenic resin composition and method for producing the same
JPH0616744A (en) Rubber-modified copolymer resin composition and production thereof
JPH05194676A (en) Rubber modified aromatic vinyl-based copolymer resin and its production
JP2650902B2 (en) Rubber-modified styrene copolymer resin composition
KR910008280B1 (en) Rubber - modified styren based copolymer
JP2632830B2 (en) Rubber-modified styrenic copolymer composition
JP2632831B2 (en) Rubber-modified styrenic copolymer composition
JPH05247149A (en) Rubber-modified aromatic vinyl coopolymer resin and its production
EP0378410B1 (en) Rubber-modified styrene-based copolymer
JPH0613635B2 (en) Method for producing polycarbonate resin composition
JPS63241015A (en) Dispersion of graft rubber particle
KR19990075609A (en) Manufacturing method of high gloss and high impact rubber modified styrene resin
JPS6248712A (en) Rubber-dispersed copolymer resin
JPS59193950A (en) Delustered polycarbonate based resin composition
JPH04266915A (en) Rubber modified vinyl aromatic resin composition and production thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070718

Year of fee payment: 10