JPS63241015A - Dispersion of graft rubber particle - Google Patents

Dispersion of graft rubber particle

Info

Publication number
JPS63241015A
JPS63241015A JP7298487A JP7298487A JPS63241015A JP S63241015 A JPS63241015 A JP S63241015A JP 7298487 A JP7298487 A JP 7298487A JP 7298487 A JP7298487 A JP 7298487A JP S63241015 A JPS63241015 A JP S63241015A
Authority
JP
Japan
Prior art keywords
rubber
rubber particles
styrene
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7298487A
Other languages
Japanese (ja)
Other versions
JPH0819195B2 (en
Inventor
So Iwamoto
岩本 宗
Noribumi Ito
伊藤 紀文
Kazuo Sugazaki
菅崎 和男
Tetsuyuki Matsubara
松原 徹行
Toshihiko Ando
敏彦 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP7298487A priority Critical patent/JPH0819195B2/en
Priority to KR1019880010148A priority patent/KR910008280B1/en
Publication of JPS63241015A publication Critical patent/JPS63241015A/en
Publication of JPH0819195B2 publication Critical patent/JPH0819195B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE:To obtain a dispersion of rubber particles comprising a rubber-like butadiene polymer produced by anionic polymerization, which has a high gloss and excels in, especially, low-temperature impact resistance. CONSTITUTION:This graft rubber particle dispersion comprises a rubber-like butadiene polymer produced by anionic polymerization, has a styrene-insoluble component content <0.1wt.%, and satisfies the following requirements A-C: [A] these rubber particles contain an occluded and/or grafted copolymer (M) of a styrene monomer with an acrylonitrile monomer, and the amount of copolymer M is 10-100pts.wt. per 100pts.wt. rubber-like polymer [B] these rubber-like particles contain rubber particles having a maximum diameter of a cell within a rubber particle <0.1mu in an electron-microscopic photograph of an ultra-thin slice of the rubber particle dispersion, and [C] the volume-average particle diameter of these specified rubber particles is 0.1-0.4mum, and the number of these specified rubber particles amounts to 80% of that of the entire particles observed in the ultra-thin slice electron-microscopic photograph.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は成形加工材料として用いられる樹脂に関係し成
形加工物の耐衝撃性、外観、耐摩耗性。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to resins used as molding materials, and relates to the impact resistance, appearance, and abrasion resistance of molded products.

耐熱老化性に優れた材料に関する。本発明のゴム粒子の
分散体(以降RDRと称す)は、例えば電気機器、自動
車等の部品用の成形材料に用いられ、具体的には、例え
ば電話機やコンピューターのハウジング、自動内装部品
、外装部品等として用いられる。
Concerning materials with excellent heat aging resistance. The rubber particle dispersion (hereinafter referred to as RDR) of the present invention is used, for example, as a molding material for parts of electrical equipment, automobiles, etc., and specifically, for example, housings of telephones and computers, automobile interior parts, and exterior parts. It is used as such.

〔従来の技術〕[Conventional technology]

上記各部品用の好ましい成形材料として、スチレン系単
量体及びアクリロニトリル系単量体の共重合体を吸蔵お
よび/またはグラフトしたゴム状重合体の粒子(以降ゴ
ム粒子と称す)を分散した材料、例えば”ABS樹脂”
、  P、79.  P、80(1970)、高分子機
械材料委員会綿に電子顕微鏡写真で示されているよりな
ABS樹脂が従来用いられている。
Preferred molding materials for each of the above parts include a material in which particles of a rubbery polymer (hereinafter referred to as rubber particles) in which a copolymer of a styrene monomer and an acrylonitrile monomer is occluded and/or grafted (hereinafter referred to as rubber particles) are dispersed; For example, “ABS resin”
, P, 79. P, 80 (1970), Polymer Mechanical Materials Committee. Electron micrographs show that more ABS resins have been used in the past.

しかしながら、近年電気機器分野、自動車分野等では、
樹脂の使用範囲が拡大し、これ−で以上に使用樹脂に対
する要求性能が高度化してきている。
However, in recent years, in the electrical equipment field, automobile field, etc.
The scope of use of resins has expanded, and the performance requirements for the resins used have become more sophisticated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

これらの要求性能として、著しく高い光沢を有し、なお
かつ薄肉の複雑な形状の成形物においても高い衝撃強度
を有し、特に低温での衝撃強度が高く、また、更に高温
で成形される場合の耐劣化性が高く保持されることが重
要に々っできている。
These required performances include extremely high gloss, high impact strength even in thin-walled molded products with complex shapes, particularly high impact strength at low temperatures, and even higher impact strength when molded at higher temperatures. It is becoming increasingly important to maintain high resistance to deterioration.

本発明はかかる要請に対しなされたものであり、その目
的Fi特別のゴム粒子の分散体を提供することにより解
決することが可能であることがわかった。
The present invention has been made in response to such a need, and it has been found that the problem can be solved by providing a dispersion of rubber particles special for the purpose Fi.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明者らは、上記の目的の重要性に鑑み鋭意検討した
結果、従来の知見よりして全く新しいアニオン重合法の
ゴム状重合体を含有する特別々内部構造のゴム状重合体
粒子の集合体により目的が達成される事を発見し本発明
を完成するに至った。
As a result of intensive studies in view of the importance of the above objectives, the present inventors have discovered a collection of rubbery polymer particles with a special internal structure containing a rubbery polymer produced by an anionic polymerization method that is completely new from conventional knowledge. He discovered that the purpose can be achieved by the body and completed the present invention.

すなわち本発明は、スチレン不溶成分が0.1重量幅未
満であるアニオン重合によって製造されるプタジエ/系
ゴム状重合体から成るゴム粒子の分散体であって A 該ゴム粒子がスチレン系単量体及びアクリロニトリ
ル系単量体の共重合体を吸蔵および/またはグラフトし
ており、かかる吸蔵および/またはグラフトした共重合
体の量がゴム状重合体100重量部に対して10〜10
0重量部であって、 B 該ゴム粒子の分散体の超薄切片電子顕微鏡写真にお
いて、ゴム粒子内の細胞径の最大値が01μ未満である
ゴム粒子(以下かかるゴム粒子をRXと称す)を有し、
かつ C該RXの体積平均粒子径が0.1〜0.4μmであっ
て、該超薄切片電子顕微鏡写真に撮影された全ゴム粒子
の個数を100%とするとき、RXの個数が少くとも8
0係を占めることを特徴とするゴム粒子の分散体である
That is, the present invention provides a dispersion of rubber particles made of a Poutadier/type rubbery polymer produced by anionic polymerization in which a styrene-insoluble component is less than 0.1 weight range, wherein A: the rubber particles are a styrene monomer; and a copolymer of an acrylonitrile monomer is occluded and/or grafted, and the amount of the occluded and/or grafted copolymer is 10 to 10 parts by weight per 100 parts by weight of the rubbery polymer.
0 parts by weight, B Rubber particles whose maximum cell diameter within the rubber particles is less than 01μ in an ultra-thin section electron micrograph of a dispersion of the rubber particles (hereinafter such rubber particles are referred to as RX) have,
and C, the volume average particle diameter of the RX is 0.1 to 0.4 μm, and when the number of all rubber particles taken in the ultra-thin section electron micrograph is taken as 100%, the number of RX is at least 8
This is a dispersion of rubber particles characterized by occupying a coefficient of 0.

本発明のゴム粒子の分散体は、スチレン不溶成分が0.
1重量幅未満であるアニオン重合によって製造されるゴ
ム状重合体からなるゴム粒子の分散体である。かかるゴ
ム粒子の分散体の形態についていえば、それは本発明の
共重合体とは異なるスチレン重合体を吸蔵および/また
はグラフトした耐衝撃性ポリスチレン(通常HIP8と
呼称されている)で例示され得る。かかるHIPSの例
示は、M、M、Bikale4 ed、、 Encyc
lopedia of Po17merScience
 and Technology 、 vol、 13
 、 John Wiley &5ons 、 New
 York 、 1970 、 P、 217のFig
 、 5 に示されている。この例示においては、アク
リロニトリルは重合体の構成要素として含まれていない
が、ゴム粒子と細胞についての概念は、本発明と同じで
ある。すなわち、ゴム粒子FiFig 、 5 のほぼ
全体を占めているものであり、細胞は該ゴム粒子の中に
さらに分散しており、Ftg、5  はゴム粒子内の細
胞の径の最大値が0.1μm以上であるゴム粒子を例示
している。
The rubber particle dispersion of the present invention has a styrene-insoluble component of 0.
A dispersion of rubber particles of a rubbery polymer produced by anionic polymerization having a width of less than 1 weight. Regarding the form of such a dispersion of rubber particles, it may be exemplified by high impact polystyrene occluded and/or grafted with a styrene polymer different from the copolymer of the present invention (commonly referred to as HIP8). An example of such a HIPS is M, M, Bikale4 ed, Encyc
ropedia of Po17merScience
and Technology, vol. 13
, John Wiley & 5ons, New
Fig of York, 1970, P, 217
, 5. In this example, acrylonitrile is not included as a component of the polymer, but the concept of rubber particles and cells is the same as in the present invention. That is, the cells occupy almost the entirety of the rubber particle FiFig,5, and the cells are further dispersed within the rubber particle. The above rubber particles are exemplified.

本発明でいうアニオン重合によって製造されるプタジエ
y系のゴム状重合体は、ラジカル重合で製造さり、るゴ
ム状重合体と区別される。後者においては、本発明の光
沢、耐衝撃性、低温での衝撃性において本発明の目的を
満足し得ない。かかるアニオン重合によって製造される
ゴム状重合体としては、溶液重合のチーグラー系触媒、
CO系触媒、Li系触媒で製造されるゴム状重合体であ
って、Li系触媒によるものが好ましく用いらhるが、
例えば、佐伯原油”ポリマー製造プロセス”、P、21
9〜272 (1971)、  工業調査会に例示さh
ている。ポリブタジェンゴム、ブタジェンスチレン共重
合体その他の共重合体等が例示され、好ましくはブタジ
ェンスチレン共重合体、特に好ましくは、ブタジェン・
スチレンのブロック共重合体が例示される。ブタジェン
・スチレンのブロック共重合体では、スチレン含有量が
3〜28重量部のものが本発明の目的を達成する上で好
ましく用いられる。また、その5重量幅のスチレン溶液
粘度は、30 ’Oで測定して100〜2センチポイズ
、好ましくは60〜2センチボイス、より好ましくは4
0〜5センチポイズ、特に好ましくは19〜5センチポ
イズのものが用いられ得る。
The Petadier type rubbery polymer produced by anionic polymerization in the present invention is distinguished from the rubbery polymer produced by radical polymerization. In the latter case, the object of the present invention cannot be satisfied in terms of gloss, impact resistance, and impact resistance at low temperatures. Rubbery polymers produced by such anionic polymerization include solution polymerization Ziegler catalysts,
A rubber-like polymer produced using a CO-based catalyst or a Li-based catalyst, and those using a Li-based catalyst are preferably used.
For example, Saiki crude oil “Polymer production process”, P. 21
9-272 (1971), exemplified by Industrial Research Council h
ing. Examples include polybutadiene rubber, butadiene styrene copolymer and other copolymers, preferably butadiene styrene copolymer, particularly preferably butadiene styrene copolymer, etc.
An example is a styrene block copolymer. Among the butadiene-styrene block copolymers, those having a styrene content of 3 to 28 parts by weight are preferably used to achieve the object of the present invention. Also, the 5 weight range styrene solution viscosity is 100 to 2 centipoise, preferably 60 to 2 centipoise, more preferably 4 centipoise, as measured at 30'O.
0 to 5 centipoise, particularly preferably 19 to 5 centipoise can be used.

従来、スチレン系単量体及びアクリロニトリル系単量体
の共重合体を吸蔵および/またはグラフトしたブタジェ
ン系のゴム状重合体より成るゴム粒子はラジカル重合に
より製造されている。本発明のゴム粒子の分散体(以下
RDRと称す)の卓越した性能の由来するところは明確
ではないが、かかるラジカル重合によるゴム状重合体と
はミクロ構造、スチレン不溶成分の量、重合体に含まれ
る乳化剤等の不純物に差異があり、又特にブロック型の
ブタジェン・スチレン共重合体の場合はラジカル重合で
は実質的に到達され得ないものであって、これらの構造
に関連することが推察される。
Conventionally, rubber particles made of a butadiene-based rubbery polymer occluded and/or grafted with a copolymer of a styrene monomer and an acrylonitrile monomer have been produced by radical polymerization. The origin of the outstanding performance of the rubber particle dispersion (hereinafter referred to as RDR) of the present invention is not clear, but the rubber-like polymer obtained by such radical polymerization is characterized by its microstructure, amount of styrene-insoluble components, and polymer composition. There are differences in impurities such as emulsifiers contained, and especially in the case of block-type butadiene-styrene copolymers, they cannot be substantially reached by radical polymerization, and it is assumed that these impurities are related to the structure. Ru.

本発明のRDRはゴム粒子内の細胞径の最大値が0.1
μm未満、好ましくは0.07μm未満であるゴム粒子
(RX)を有さなければなら々い。細胞径の最大値が0
.1μm以上であれば本発明の効果は得られない。
The RDR of the present invention has a maximum cell diameter of 0.1 within the rubber particles.
It must have rubber particles (RX) that are less than μm, preferably less than 0.07 μm. Maximum cell diameter is 0
.. If the thickness is 1 μm or more, the effect of the present invention cannot be obtained.

本発明のRDR,においては、RXの体積平均粒子径は
0.1μm 〜0.4μm、好ましくは0.15〜0.
35μm、特に好ましくは0.18〜0.32μmであ
る。0.1μm未満では耐衝撃性に劣り、0.4μmを
越えても耐衝撃性に劣り、また、成形物の光沢が低下す
る。
In the RDR of the present invention, the volume average particle diameter of RX is 0.1 μm to 0.4 μm, preferably 0.15 to 0.1 μm.
It is 35 μm, particularly preferably 0.18 to 0.32 μm. If it is less than 0.1 μm, the impact resistance will be poor, and if it exceeds 0.4 μm, the impact resistance will be poor, and the gloss of the molded product will be reduced.

本発明のRDRにおいては、RDRの超薄切片電子顕微
鏡写真に撮影される全ゴム粒子の数を100係とすると
き、上記RXの数は少なくとも80係を占めねば々らな
い。本発明の効果は、アニオン重合によって製造される
ブタジェン系ゴム状重合体から々るRXによって発現さ
れるものであって、かかる個数が80%未満であれば本
発明の目的は達し得々いものである。
In the RDR of the present invention, when the number of all rubber particles taken in an ultrathin section electron micrograph of RDR is taken as a factor of 100, the number of RXs must account for at least a factor of 80. The effects of the present invention are manifested by RX of butadiene-based rubbery polymers produced by anionic polymerization, and if the number is less than 80%, the object of the present invention cannot be achieved. .

本発明のRDR中のゴム粒子は、スチレン系単量体およ
びアクリロニトリル系単量体の共重合体全吸蔵および/
またはグラフトしておらねばならず、かかる吸蔵および
/またはグラフトした共電、合体の量は、ゴム状重合体
100重量部に対して10〜100重量部、好ましくI
I′i15〜45重量部、特に好ましくは20〜45重
量部である。
The rubber particles in the RDR of the present invention are made of a copolymer of styrene monomer and acrylonitrile monomer and/or
The amount of such occluded and/or grafted electrolyte, coalescence is 10 to 100 parts by weight, preferably I
I'i is 15 to 45 parts by weight, particularly preferably 20 to 45 parts by weight.

10i量部未満では耐衝撃性が低く又100重量部を超
えると外観特に光沢において目的を達し得ないものであ
る。
If it is less than 10 parts by weight, the impact resistance will be low, and if it exceeds 100 parts by weight, the desired appearance, especially gloss, will not be achieved.

RDR中のゴム粒子が吸蔵および/またはグラフトして
いるスチレン系単量体およびアクリロニトリル系単量体
の共重合体のゴム状重合体100重量部に対する割り合
いWは、次の様にして求める。即ち、R,DR(約1)
を精秤)atをメチルエチルケトン/メタノールの切の
混合溶剤に分散し、不溶分を遠心分離法にて分離して乾
燥し、不溶分の重量(b?)を精秤し次の式で求められ
る。但しCはRDR中のゴム状重合体の含有率(重量係
)を示す。
The ratio W of the copolymer of styrene monomer and acrylonitrile monomer occluded and/or grafted by the rubber particles in RDR to 100 parts by weight of the rubbery polymer is determined as follows. That is, R, DR (approximately 1)
Disperse (accurately weigh) at in a mixed solvent of methyl ethyl ketone/methanol, separate the insoluble matter by centrifugation and dry it, accurately weigh the weight of the insoluble matter (b?), and calculate it using the following formula. . However, C indicates the content (weight ratio) of the rubbery polymer in RDR.

なおRDRが上記溶剤に不溶の添加剤を含む場合は、a
、bの値より添加剤分を差し引いた値をa、bの値とす
る。CはRDR中のゴム状重合体とスチレン系単量体お
よびアクリロニトリル系単量体の共重合体の合計量に対
する割合いである。
In addition, if RDR contains additives that are insoluble in the above solvent, a
The values of a and b are obtained by subtracting the additive from the values of , b. C is the ratio of the rubber-like polymer, styrene monomer, and acrylonitrile monomer to the total amount of the copolymer in RDR.

かかるWの値の調整方法について例示すれば、重合開始
剤、攪拌の強度、ゴム状重合体の使用量、単量体の量と
種類、分子量調節剤、最終到達重合率あるいは脱揮発分
工程の条件によって調整され、一般に重合開始剤の量が
多い程、又攪拌の程度が低い程、ゴム状重合体中のジエ
ン成分が多い程、ゴム状重合体が少ない程、スチレン系
単量体が多い程、脱揮発分工程の温度が高い程Wの量は
増大する傾向があるが、当業者においてはかかる量を調
整することによりトライエンドエラー法で任意のWの値
が調整できる。
Examples of methods for adjusting the value of W include the polymerization initiator, the intensity of stirring, the amount of rubbery polymer used, the amount and type of monomer, the molecular weight regulator, the final polymerization rate, or the devolatilization step. It is adjusted depending on the conditions, and in general, the larger the amount of polymerization initiator, the lower the degree of stirring, the more diene component in the rubbery polymer, the less rubbery polymer, the more styrenic monomer. Although the amount of W tends to increase as the temperature of the devolatilization step increases, those skilled in the art can adjust the desired value of W by adjusting this amount using the trial-end error method.

本発明のRDRはスチレン不溶成分が0.1重量係未満
であるアニオン重合によって製造されるブタジェン系ゴ
ム状重合体存在下で、例えば溶液もしくは塊状重合法に
てスチレン系単量体及びアクリロニトリル系単量体を重
合させて製造され、好ましくは連続式の溶液もしくは塊
状重合法で製造されるものであり、ゴム状重合体ラテッ
クスを用いて製造される乳化重合法のABS樹脂とは区
別される。かかる重合において、スチレン系単量体(以
下Sと称する)とアクリロニトリル系単量体C以下Aと
称すΣ)は共存下において用いられ、S/Aの比は10
/90〜90/10、より好ましくけ10/90〜50
150が好ましく用いられる。又連鎖移動剤が分子量調
整剤として用いられ、特に反応の初期段階、重合転化率
が30重量係未満の段階で、単量体のa量に対し10〜
1000 ppmの割合いで例えばn又はt−ドデシル
メルカプタン等のメルカプタン類が好ましく用いられる
。また有機過酸化物が単量体の10〜1ooo ppm
用いられ、反応は50〜ioo゛c  において好まし
〈実施される。連続溶液もしくは塊状重合法においては
、単量体及び場合によっては溶剤に本発明のゴム状重合
体全溶解した後、連続的にまたは多段の直列もしくは並
列の反応器に該溶液を送入して連続的に重合反応を行う
。かかる例において、いわゆる相転換(phase 1
nversion )の段階での分子量調節剤、有機過
酸化物、重合率、温度、溶剤量、攪拌強度をトライアン
ドエラーで選定することにより、装置の大きさに応じて
本発明のRXの粒子径及び細胞径が調整され得る。攪拌
強度は翼の径D(m)と攪拌数n (r、p、m、)及
び単位体積当りの攪拌動力P (KW / m−の積D
nPが10 Kvsm*r、p、m、/ m’以上であ
ることが好ましい。前述したS/Aの比は10/90未
満では極端に耐衝撃性が低く、90/10を超えると粒
子形成が困難となる。
In the RDR of the present invention, styrene monomers and acrylonitrile monomers are produced by solution or bulk polymerization in the presence of a butadiene rubber polymer produced by anionic polymerization in which styrene-insoluble components are less than 0.1 weight percent. It is produced by polymerizing polymers, preferably by a continuous solution or bulk polymerization method, and is distinguished from ABS resin produced by an emulsion polymerization method using a rubbery polymer latex. In such polymerization, a styrene monomer (hereinafter referred to as S) and an acrylonitrile monomer C (hereinafter referred to as A) are used in the coexistence, and the S/A ratio is 10.
/90 to 90/10, more preferably 10/90 to 50
150 is preferably used. A chain transfer agent is also used as a molecular weight regulator, especially at the initial stage of the reaction, when the polymerization conversion rate is less than 30% by weight.
Mercaptans such as n- or t-dodecyl mercaptan are preferably used in a proportion of 1000 ppm. In addition, the organic peroxide is 10 to 100 ppm of monomer.
and the reaction is preferably carried out at 50 to 100 °C. In the continuous solution or bulk polymerization method, after the rubbery polymer of the present invention is completely dissolved in the monomer and optionally the solvent, the solution is fed continuously or into a multi-stage series or parallel reactor. Polymerization reaction is carried out continuously. In such examples, the so-called phase transformation (phase 1
By selecting the molecular weight regulator, organic peroxide, polymerization rate, temperature, amount of solvent, and stirring intensity at the step of 1. Cell diameter can be adjusted. The stirring intensity is the product D of the blade diameter D (m), the stirring number n (r, p, m,), and the stirring power per unit volume P (KW / m-).
It is preferable that nP is 10 Kvsm*r,p,m,/m' or more. If the aforementioned S/A ratio is less than 10/90, the impact resistance will be extremely low, and if it exceeds 90/10, particle formation will become difficult.

本発明において、RXの体積平均径は次の様にして測定
される。
In the present invention, the volume average diameter of RX is measured as follows.

すなわち、RDRの超薄切片法による2万倍の電子顕微
鏡写真を撮影し、写真中のRXのゴム粒子の500〜8
00個の粒子径を測定し、次式により平均したものであ
る。Diは第1個目の平均径である。
That is, an electron micrograph of RDR at 20,000 times magnification was taken using the ultra-thin section method, and 500 to 80% of the RX rubber particles in the photograph were
00 particle diameters were measured and averaged using the following formula. Di is the average diameter of the first piece.

体積平均粒子径=ΣD1/ΣD13 n         n (但しnは全ゴム粒子の個数である。)またRDRの超
薄切片法による電子顕微鏡において上記D1及び細胞径
を求めるに際して、ゴム粒子及び細胞がだ円形をなす場
合においては、長径aと短径すの平均値全もって径αと
する。即ち、a = (a + b ) / 2である
。また細胞径0,1μm未満の個数の占める割合いの算
出にあたっては、少なくとも200個以上のゴム粒子の
撮影された写真を1枚以上用い合計500〜700個以
上のゴム粒子についてランダムに計測を行って求めるも
のである。
Volume average particle diameter = ΣD1/ΣD13 n n (However, n is the number of all rubber particles.) Also, when determining the above D1 and cell diameter using an electron microscope using the ultrathin section method of RDR, it was found that the rubber particles and cells were elliptical. In this case, the average value of the major axis a and the minor axis a is taken as the diameter α. That is, a = (a + b) / 2. In addition, when calculating the proportion of cells with a diameter of less than 0.1 μm, we randomly measured a total of 500 to 700 rubber particles using at least one photograph of at least 200 rubber particles. This is what I am looking for.

本発明のRDRにおいて、分散相の架橋度指数は8〜1
6倍が好ましく、より好ましくは9〜14倍、特に好ま
しくは10〜14倍である。かかる分散相の架橋度指数
は、次の方法により測定される。
In the RDR of the present invention, the crosslinking degree index of the dispersed phase is 8 to 1.
It is preferably 6 times, more preferably 9 to 14 times, particularly preferably 10 to 14 times. The crosslinking degree index of such a dispersed phase is measured by the following method.

RDRo、4?Qトルエン/メチルエチルケトンの混合
比7/3液30 cc  に部分溶解させる。
RDRo, 4? Q Partially dissolve in 30 cc of toluene/methyl ethyl ketone mixture ratio 7/3 liquid.

遠心分離後、溶剤にて膨潤した不溶分の重量を秤量(W
l)する。秤量後、該不溶分を真空乾燥し再度秤量(W
2)する。架橋度指数は、Wl÷W2で得られる。かか
る架橋度指数は、重合開始剤の量、種類、および脱揮発
処理時の温度、滞留時間に依存するが、更にマレイミド
系単量体の量にも依存する。当業者においては、製造プ
ロセスの条件をトライアンドエラー法で選定することに
より適当な架橋度指数を設定できる。かかる架橋度指数
が8未満では衝撃強度は著しく低く、貰た流動性も低い
。また16を越えても実用衝撃強度が小さくなる。
After centrifugation, the weight of the insoluble matter swollen with the solvent is weighed (W
l) Do. After weighing, the insoluble matter is vacuum dried and weighed again (W
2) Do. The crosslinking degree index is obtained by Wl÷W2. The crosslinking degree index depends on the amount and type of polymerization initiator, the temperature and residence time during devolatilization treatment, and further depends on the amount of maleimide monomer. Those skilled in the art can set an appropriate degree of crosslinking index by selecting manufacturing process conditions by trial and error. When the crosslinking degree index is less than 8, the impact strength is extremely low and the fluidity obtained is also low. Moreover, even if it exceeds 16, the practical impact strength becomes small.

本発明でいうスチレン系単量体とは、スチレン、α−メ
チルスチレン、α−エチルスチレンのような側鎖アルキ
ル置換スチレン、モノクロルスチレン、ジクロルスチレ
ン、ビニルトルエン、ビニル7ゝゝ キシレン、0−t−ブチルスチレン、p−t−ブチルス
チレン、p−メチルスチレンのような核アルキル置換ス
チレン、トリブロムスチレン、テト7″ ラブロムスチレン等のハロゲン化スチレン及ヒp−ヒド
ロキシスチレン、0−メトキシスチレン、ビニルナフタ
レン等が挙げられるが、特に好ましくハ、スチレンおよ
びα−メチルスチレンであり、かかるスチレン系単量体
の一種以上が用いられ得る。
The styrenic monomers used in the present invention include styrene, styrene substituted with side chain alkyl such as α-methylstyrene, α-ethylstyrene, monochlorostyrene, dichlorostyrene, vinyltoluene, vinyl 7ゝxylene, 0- Nuclear alkyl-substituted styrenes such as t-butylstyrene, pt-butylstyrene, p-methylstyrene, halogenated styrenes such as tribromustyrene, tetra7'' labromstyrene, and p-hydroxystyrene, 0-methoxystyrene , vinylnaphthalene, etc., and particularly preferred are styrene and α-methylstyrene, and one or more of these styrenic monomers may be used.

本発明でいうアクリロニトリル系単甜体とは、アクリロ
ニトリル、メタクリロニトリル、フマロニトリル、マレ
オニトリル、α−クロロアクリロニトリル等が挙げられ
、特にアクリロニトリルが□  好ましい。かかる単量
体の一種以上が用いられる。
Examples of the acrylonitrile monopolymer used in the present invention include acrylonitrile, methacrylonitrile, fumaronitrile, maleonitrile, and α-chloroacrylonitrile, with acrylonitrile being particularly preferred. One or more such monomers may be used.

本発明においては、共重合体構成成分のスチレン系単量
体及びアクリロニ) IJル系単量体の一部を、スチレ
ン系単量体及びアクリロニトリル系単量体の総和に対し
て30重量%以下の割合いでメチルメタクリレート等の
メタクリルエステル系単量体、メチルアクリレート等の
アクリル酸エステル系単量体等、さらにマレイミド、N
−フェニルマレイミド等のマレイミド系単量体の一種以
上と置き換えて構成してもよい。耐熱性を向上させる目
的においては、1〜30重量部のマレイミド系単量体に
置き換えて構成することが好ましい。
In the present invention, a part of the styrene monomer and acrylonitrile monomer of the copolymer component is 30% by weight or less based on the total of the styrene monomer and the acrylonitrile monomer. methacrylic ester monomers such as methyl methacrylate, acrylic ester monomers such as methyl acrylate, maleimide, N
- It may be constructed by replacing it with one or more maleimide monomers such as phenylmaleimide. For the purpose of improving heat resistance, it is preferable to replace the maleimide monomer with 1 to 30 parts by weight.

本発明の几DRには通常のヒンダードフェノ−向上させ
たり、滑剤を添化して流動性をさらによくすることもで
きる。また目的に合わせてガラス繊維等の繊維補強剤、
無機充填剤、着色剤、顔料を配合することもできる。ま
た本発明のRDRにテトラプロモスビフェニールA、デ
カグロモビフエニールエーテル、臭素化ポリカーボネー
ト等の一部ハロゲン化有機化合物系難燃剤を酸化アンチ
モンとともに混合することによって難燃化が可能である
The DR of the present invention can be improved with ordinary hindered phenol or a lubricant can be added to further improve the fluidity. In addition, fiber reinforcing agents such as glass fiber,
Inorganic fillers, colorants, and pigments can also be blended. Further, flame retardation can be achieved by mixing a partially halogenated organic compound flame retardant such as tetrapromosbiphenyl A, decaglomobiphenyl ether, brominated polycarbonate, etc. with antimony oxide in the RDR of the present invention.

本発明のRDRにはAB8樹脂、ポリ塩化ビニル、スチ
レン−アクリロニトリル樹脂、ポリカーボネート、ポリ
ブチレンテレフタレート、ポリエチレンテレフタレート
、ナイロン6、ナイロン66、ナイロン12、ポリフェ
ニレンオキシドおよびポリフェニレンスルフィド等の樹
脂にブレンドして成形に供することもできる。
The RDR of the present invention can be molded by blending with resins such as AB8 resin, polyvinyl chloride, styrene-acrylonitrile resin, polycarbonate, polybutylene terephthalate, polyethylene terephthalate, nylon 6, nylon 66, nylon 12, polyphenylene oxide, and polyphenylene sulfide. You can also donate.

〔実施例〕〔Example〕

以下、実施例、比較例により本発明の具体的実施態様を
示すが、これは本発明を限定するものではない。
Hereinafter, specific embodiments of the present invention will be shown by Examples and Comparative Examples, but these are not intended to limit the present invention.

実施例I A ゴム粒子の分散体の製造 4基の直列の攪拌機付反応器の出口に予熱器ついで真空
槽を連結した連続塊状重合装置を用いてR,DR=i製
造した。ブロック8BFL(スチレン18係、ブタジェ
ン82係、ブタジェン部分のミクロ構造は、ビニルl 
6 mol %、トランス4 B mol係、シス36
 mol係、5重量係のスチレン溶液粘度が30°Cで
10センチポイズ、スチレン不溶分0.02重量部)7
重量部を、エチルベンゼン15重量部、スチレン55]
1−31部、アクリロニトリル23重量部の混合液に投
入し、有機過酸化物及び連鎖移動剤を加えて均一溶液と
した。このゴム溶液を第1基目の反応器に連続的に送入
し、連続重合を行い第4基目の反応器を経て210〜2
30 ’C!の温度に保持した予熱器を通して、真空度
150torr  の真空槽で未反応モノマーと溶剤を
除去し、真空槽より樹脂を連続的に抜き出しR,DRを
得た。重合開始剤として有機過酸化物185 ppm 
k用い、分子量調整剤としてn−ドデシルメルカプタン
150ppmを使用した。送入原料の供給量と得られた
RDRの量よりRDR,中のゴム状重合体の量を算出し
た。第1反応器の攪拌数は320 r、p、m。
Example I A Production of a dispersion of rubber particles R, DR=i was produced using a continuous bulk polymerization apparatus in which a preheater and a vacuum tank were connected to the outlets of four reactors equipped with agitators in series. Block 8BFL (styrene 18, butadiene 82, the microstructure of the butadiene part is vinyl l
6 mol %, trans 4 B mol, cis 36
Mol ratio, 5 weight ratio styrene solution viscosity is 10 centipoise at 30°C, styrene insoluble content 0.02 parts by weight)7
Parts by weight: 15 parts by weight of ethylbenzene, 55 parts by weight of styrene]
1 to 31 parts of acrylonitrile and 23 parts by weight of acrylonitrile, and an organic peroxide and a chain transfer agent were added thereto to form a homogeneous solution. This rubber solution is continuously fed into the first reactor for continuous polymerization and then passed through the fourth reactor.
30'C! The unreacted monomer and solvent were removed in a vacuum chamber at a vacuum degree of 150 torr through a preheater maintained at a temperature of 150 torr, and the resin was continuously extracted from the vacuum chamber to obtain R and DR. 185 ppm of organic peroxide as a polymerization initiator
150 ppm of n-dodecyl mercaptan was used as a molecular weight regulator. The amount of rubbery polymer in RDR was calculated from the amount of feed raw materials supplied and the amount of RDR obtained. The stirring number of the first reactor is 320 r, p, m.

であった。Met.

B  RDRの分析 B−1ゴム含有量:全樹脂を100重量部として樹脂中
のゴムの量をAに記載の如く反応系への送入ゴム量と生
成RDRの収支より得た。
Analysis of BRDR B-1 Rubber content: The amount of rubber in the resin was obtained from the balance between the amount of rubber fed to the reaction system and the RDR produced as described in A, assuming that the total resin was 100 parts by weight.

B−2細胞径および平均ゴム粒子径(X−):詳細々説
明に記載の方法による。
B-2 Cell diameter and average rubber particle diameter (X-): According to the method described in the detailed explanation.

B−3ゴム粒子が吸蔵および/またはグラフトしたスチ
レン系単量体およびアクリロニトリル系単量体の共重合
体の量:詳細な説明に記載の方法による。
B-3 Amount of copolymer of styrene monomer and acrylonitrile monomer occluded and/or grafted by rubber particles: according to the method described in the detailed description.

B−4:吸蔵および/またはグラフトした共重合体のス
チレン系単量体(S)及びアクリロニトリル系単量体(
5)の組成二元素分析法によって求めた。
B-4: Styrenic monomer (S) and acrylonitrile monomer (S) of occluded and/or grafted copolymer (
It was determined by the two-element composition analysis method described in 5).

C性能の評価 c−1成形:4らiたRDRを75’Oで2時間乾燥し
た後、成形温度200 ’C!、金型温度55゛Cで射
出成形機を用いて成形した。
Evaluation of performance C-1 Molding: After drying the 4-iron RDR at 75'O for 2 hours, the molding temperature was 200'C! , using an injection molding machine at a mold temperature of 55°C.

C−2物性の評価 ゛(1)アイゾツト衝撃強度: JISK −7110
に阜じて評価した。23°C及び−45°Cで評価した
C-2 Evaluation of physical properties (1) Izot impact strength: JISK-7110
It was evaluated accordingly. Evaluation was made at 23°C and -45°C.

(2)光沢: JISK −7105に準じて評価した
(2) Gloss: Evaluation was made according to JISK-7105.

50M11巾厚み2.5 mm長さ150 m11の長
方形の成形物を射出成形した。ゲートは巾501m+厚
みQ、l mmで長さ方向の一端にとり、ゲート部を流
動始点、ゲートの反対側の端が流動末端である。ゲート
部より25關の距離の中央を中心位置とした5 vi 
X 5 m正方形部の光沢をゲート部光沢とし、末端よ
り25顛の距離の中央を中心位置とした5 tm X 
51111の正方形部の光沢を束端部光沢とした。々お
、一般に異なったRDRについてのゲート部の光沢の差
異は末端部の差異より小さく、また末端部の光沢値はゲ
ート部の光沢より著しく低く、実用上米端部光沢が外観
上の重要点である。
A rectangular molded product with a width of 50M11, a thickness of 2.5 mm, and a length of 150 m11 was injection molded. The gate has a width of 501 m + a thickness of Q, 1 mm and is placed at one end in the length direction, with the gate portion serving as the flow starting point and the end opposite to the gate serving as the flow end. 5 vi with the center located at a distance of 25 meters from the gate part
5 tm X The gloss of the 5 m square part is taken as the gate gloss, and the center position is 25 meters from the end.
The gloss of the square part of 51111 was defined as the bundle end gloss. In general, the difference in the gloss of the gate part for different RDRs is smaller than the difference in the end part, and the gloss value of the end part is significantly lower than the gloss of the gate part.In practice, the gloss of the end part is the important point in terms of appearance. It is.

(3)実用衝撃強度の評価:射出成形により図1(a)
、図1(b)で示される形状の成形物の3箇所の部位、
部位(1)、部位(2)、部位(3)について落錘衝撃
強度試験を行なった。落錘の先端部R= 6.4 m/
m、受台の内径30 m/mとした。部位(1)は厚み
が変化する部位であり、部位(2)は角の近辺の部位、
部位(3)は標準な部位である。
(3) Evaluation of practical impact strength: Figure 1 (a) by injection molding
, three parts of the molded product having the shape shown in FIG. 1(b),
A falling weight impact strength test was conducted on portions (1), (2), and (3). Tip of falling weight R = 6.4 m/
m, and the inner diameter of the pedestal was 30 m/m. Part (1) is the part where the thickness changes, part (2) is the part near the corner,
Site (3) is a standard site.

温度23°C及び−45°Cで評価した。Evaluation was made at temperatures of 23°C and -45°C.

(4)加熱滞留−による熱劣化の評価=(2)の光沢用
平板の成形の際、通常条件は前述の通す200゛Cであ
るか、射出成形温度を2700とし、シリンダーに10
分滞留させ通常条件(滞留1分)をベースにして黄変度
を測定した。
(4) Evaluation of thermal deterioration due to heating retention = When molding the glossy flat plate in (2), the normal conditions are the above-mentioned 200°C, or the injection molding temperature is 2700°C, and the cylinder is heated to 10°C.
The degree of yellowing was measured based on normal conditions (retention time: 1 minute).

(5)成形加工時の流動性の評価:射出成形においてシ
ョートショットを生じ彦い最低の射出圧力に必要な成形
機の油圧(ショートショット油圧)により評価した。市
販の高剛性の乳化重合法で製造されたABS (参考例
)を基準とし、ショートショット油圧の差異で相対評価
した。差異の値が負の場合は参考例よりも油圧が低い側
を示し、成形加工時の流動性が良好な材料と判定される
(5) Evaluation of fluidity during molding process: Evaluation was made based on the oil pressure of the molding machine required for the lowest injection pressure (short shot oil pressure) to prevent short shots from occurring during injection molding. A commercially available high-rigidity ABS (reference example) manufactured by an emulsion polymerization method was used as a standard, and relative evaluation was performed based on the difference in short shot oil pressure. If the difference value is negative, it indicates that the oil pressure is lower than that of the reference example, and it is determined that the material has good fluidity during molding.

D 結果二表1に示す。D Results are shown in Table 1.

比較例1 実施例1において、エチルベンゼン量を25重量部とし
、スチレン量を48重量部、アクリロニトリル量を20
重量部として、第1基目の反応機の攪拌数を140 r
、p、m、にし、n−ドデシルメルカプタンを300 
ppmとして、実施例1と同様のRDR中のゴム量にな
る様にした他は、実施例1と同様にしてRDRを製造し
た。分析・性能評価結果を表1に示す。
Comparative Example 1 In Example 1, the amount of ethylbenzene was 25 parts by weight, the amount of styrene was 48 parts by weight, and the amount of acrylonitrile was 20 parts by weight.
In terms of parts by weight, the stirring number of the first reactor was 140 r.
, p, m, and n-dodecyl mercaptan to 300
RDR was produced in the same manner as in Example 1, except that the amount of rubber in RDR was the same as in Example 1 in terms of ppm. Table 1 shows the analysis and performance evaluation results.

比較例2 比較例1において、ゴム状重合体としてポリブタジェン
(ミクロ構造はビニル20 mol tly、トランス
47 mol %、シス33 mol %、5重量係の
スチレン溶液粘度が30゛Cで40センチポイズ、スチ
レン不溶分0.02重量部)を用いた他は比較例1と同
様にしてRDRを製造した。分析・性能評価結果を表1
に示す。
Comparative Example 2 In Comparative Example 1, the rubbery polymer was polybutadiene (microstructure: vinyl 20 mol tly, trans 47 mol %, cis 33 mol %, styrene solution viscosity of 5% by weight was 40 centipoise at 30°C, styrene insoluble). RDR was produced in the same manner as in Comparative Example 1 except that 0.02 parts by weight) was used. Table 1 shows the analysis and performance evaluation results.
Shown below.

比較例3 本発明のゴム状重合体とは異なるラジカル重合で製造さ
れたスチレンブタジェンランダム共重合ゴムラテックス
(スチレン不溶成分92係、スチレン成分組成19重量
部、ミクロ構造:ビニル20moatチ、シス12 m
ox係、トランス5 Q mol係、固形分20%、ラ
テックスの体積平均径0.25μm)e用いスチレン、
アクリロニトリルを連続的に添加しながら共重合を行い
、R,DRを得た。分析・物性評価結課を表1に示す。
Comparative Example 3 Styrene-butadiene random copolymer rubber latex produced by radical polymerization different from the rubbery polymer of the present invention (styrene insoluble component 92 parts, styrene component composition 19 parts by weight, microstructure: vinyl 20 moat, cis 12 parts) m
ox factor, transformer 5 Q mol factor, solid content 20%, volume average diameter of latex 0.25 μm) e using styrene,
Copolymerization was carried out while continuously adding acrylonitrile to obtain R and DR. Table 1 shows the analysis and physical property evaluation results.

実施例2 実施例1において攪拌速度を3倍とした他は実施例1と
同様にしてRDRを製造し、評価した。
Example 2 RDR was produced and evaluated in the same manner as in Example 1 except that the stirring speed was tripled.

結果を表1に示す。The results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明のゴム粒子分散体は著しく高い
光沢と衝撃強度を有し、また低温衝撃性に優れ、流動末
端の光沢が高く、加熱安定性にもすぐれ、また、顔料で
の着色時の着色性にもすぐれている。更にまた、マレイ
ミド系の単量体を共重合したものについては、耐熱温度
が高く、電気機器、電子機器および自動車・事務機器等
の部品材料用の用途・等において、また他の樹脂とのブ
レンドしての用途等において産業上の利用価値は極めて
大きいものである。
As detailed above, the rubber particle dispersion of the present invention has extremely high gloss and impact strength, has excellent low-temperature impact resistance, has high gloss at the flow end, has excellent heat stability, and is colorable with pigments. It also has excellent coloring properties over time. Furthermore, copolymerized maleimide monomers have a high heat resistance and are suitable for use in parts materials for electrical equipment, electronic equipment, automobiles, office equipment, etc., and for blending with other resins. It has extremely great industrial value in applications such as industrial applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実用衝撃試験に用いた成形物の形状を示す。(
a)は平面図であり、価)は断面図である。Gはゲート
位置を示す。 特許出願人  三井東圧化学株式会社 4〜゛  哩  人    X  林     忠・第
1図
Figure 1 shows the shape of the molded product used in the practical impact test. (
Figure a) is a plan view, and figure a) is a cross-sectional view. G indicates the gate position. Patent applicant Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 1、スチレン不溶成分が0.1重量%未満であるアニオ
ン重合によって製造されるブタジエン系ゴム状重合体か
ら成るゴム粒子の分散体であって A 該ゴム粒子がスチレン系単量体及びアクリロニトリ
ル系単量体の共重合体を吸蔵および/またはグラフトし
ており、かかる吸蔵および/またはグラフトした共重合
体の量がゴム状重合体100重量部に対して10〜10
0重量部であって、 B 該ゴム粒子の分散体の超薄切片電子顕微鏡写真にお
いて、ゴム粒子内の細胞径の最大値が0.1μ未満であ
るゴム粒子を有し、かつ C 上記特定のゴム粒子の体積平均粒径が0.1〜0.
4μmであって、該超薄切片電子顕微鏡写真に撮影され
た全ゴム粒子の個数を100%とするとき、上記特定の
ゴム粒子の個数が少くとも80%を占めることを特徴と
するゴム粒子の分散体。
[Scope of Claims] 1. A dispersion of rubber particles made of a butadiene-based rubbery polymer produced by anionic polymerization and having a styrene-insoluble component of less than 0.1% by weight, wherein the rubber particles are a styrene-based monomer. and a copolymer of acrylonitrile monomer is occluded and/or grafted, and the amount of the occluded and/or grafted copolymer is 10 to 10 parts by weight per 100 parts by weight of the rubbery polymer.
0 parts by weight, B. Rubber particles having a maximum cell diameter within the rubber particles of less than 0.1 μ in an ultrathin section electron micrograph of the dispersion of the rubber particles, and C. The volume average particle diameter of the rubber particles is 0.1 to 0.
4 μm, and the number of the specific rubber particles accounts for at least 80% when the number of all rubber particles taken in the ultra-thin section electron micrograph is taken as 100%. Dispersion.
JP7298487A 1987-02-23 1987-03-28 Graft rubber particle dispersion Expired - Lifetime JPH0819195B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP7298487A JPH0819195B2 (en) 1987-03-28 1987-03-28 Graft rubber particle dispersion
KR1019880010148A KR910008280B1 (en) 1987-02-23 1988-08-09 Rubber - modified styren based copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7298487A JPH0819195B2 (en) 1987-03-28 1987-03-28 Graft rubber particle dispersion

Publications (2)

Publication Number Publication Date
JPS63241015A true JPS63241015A (en) 1988-10-06
JPH0819195B2 JPH0819195B2 (en) 1996-02-28

Family

ID=13505163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7298487A Expired - Lifetime JPH0819195B2 (en) 1987-02-23 1987-03-28 Graft rubber particle dispersion

Country Status (1)

Country Link
JP (1) JPH0819195B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241052A (en) * 1987-03-28 1988-10-06 Mitsui Toatsu Chem Inc Styrene copolymer modified with anionically polymerized rubber
JP2006257266A (en) * 2005-03-17 2006-09-28 Nippon A & L Kk Styrene-based copolymer modified with rubber having high gloss and impact resistance and method for continuous production of same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63241052A (en) * 1987-03-28 1988-10-06 Mitsui Toatsu Chem Inc Styrene copolymer modified with anionically polymerized rubber
JP2006257266A (en) * 2005-03-17 2006-09-28 Nippon A & L Kk Styrene-based copolymer modified with rubber having high gloss and impact resistance and method for continuous production of same

Also Published As

Publication number Publication date
JPH0819195B2 (en) 1996-02-28

Similar Documents

Publication Publication Date Title
KR900006041B1 (en) Dispersed multi-component gel containing copolymer
KR100837092B1 (en) Transparent Rubber Modified Styrene Resin and Method for Preparing the Same by Continuous Bulk Polymerization
GB1571014A (en) Graft copolymer and process for producing the same
EP0355665B1 (en) Block-copolymerized-rubber-modified styrene copolymers
JPS6351459B2 (en)
JPS6356895B2 (en)
EP0352383B1 (en) Anionically-polymerized-rubber-modified styrene copolymers
EP0393685A1 (en) Imidated copolymers and uses thereof
JPS63241015A (en) Dispersion of graft rubber particle
US5218069A (en) Imidated copolymers and uses thereof
JPH05194676A (en) Rubber modified aromatic vinyl-based copolymer resin and its production
JPH0216139A (en) Styrene copolymer modified with anionically polymerized rubber
KR910008280B1 (en) Rubber - modified styren based copolymer
JPH05247149A (en) Rubber-modified aromatic vinyl coopolymer resin and its production
JP2675781B2 (en) Anionic polymer rubber modified styrene copolymer
EP4101895B1 (en) Thermoplastic resin composition, preparation method therefor, and molded article comprising same
JP2650902B2 (en) Rubber-modified styrene copolymer resin composition
EP4108725A1 (en) Thermoplastic resin composition, method for preparing same, and molded product comprising same
JPH06166729A (en) Rubber-modified aromatic vinyl copolymer resin and its production
JP2632831B2 (en) Rubber-modified styrenic copolymer composition
JP2632830B2 (en) Rubber-modified styrenic copolymer composition
JPH0613635B2 (en) Method for producing polycarbonate resin composition
JP2908093B2 (en) Rubber modified styrenic resin composition
JPH1030047A (en) Rubber-modified styrene resin composition
JPS6129982B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080228

Year of fee payment: 12