JPS63240851A - Three-dimensional pure system for operation - Google Patents
Three-dimensional pure system for operationInfo
- Publication number
- JPS63240851A JPS63240851A JP62074385A JP7438587A JPS63240851A JP S63240851 A JPS63240851 A JP S63240851A JP 62074385 A JP62074385 A JP 62074385A JP 7438587 A JP7438587 A JP 7438587A JP S63240851 A JPS63240851 A JP S63240851A
- Authority
- JP
- Japan
- Prior art keywords
- dimensional
- viewer
- image
- patient
- monitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 description 13
- 238000001356 surgical procedure Methods 0.000 description 8
- 239000013598 vector Substances 0.000 description 7
- 239000002131 composite material Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
Landscapes
- Microscoopes, Condenser (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は、手術計画情報を得るための手術用3次元ビュ
ーア−システムに関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a surgical three-dimensional viewer system for obtaining surgical planning information.
(従来の技術)
医師が被検体の必要な部位を手術するにあたっては、作
業を効率的に且つ確実に行うために予め手術計画が立て
られる。このためには例えば被検体を予めCT装置によ
ってスキャンしてボクセルデータを確保しておき、この
ボクセルデータに基いた3次元像をモニタに表示して、
このモニタ像を観察しながら手術計画を立てることが行
われている。(Prior Art) When a doctor performs surgery on a necessary part of a subject, a surgical plan is made in advance in order to perform the operation efficiently and reliably. For this purpose, for example, the subject is scanned in advance with a CT device to obtain voxel data, and a three-dimensional image based on this voxel data is displayed on a monitor.
A surgical plan is made while observing this monitor image.
(発明が解決しようとする問題点)
しかしながら、従来の方法では手術予定部位が直接目で
観察しにくいような場合には、この部位の位置関係を把
握するのに手間がかかるという問題がある。このため特
に予定部位を直接目で見ることなく手術する、いわゆる
ブラインドオペレーションを行う場合には効率的に作業
を進めるのが困難であった。(Problems to be Solved by the Invention) However, in the conventional method, there is a problem in that when the scheduled surgery site is difficult to directly observe with the naked eye, it takes time and effort to grasp the positional relationship of this site. For this reason, it has been difficult to proceed with the work efficiently, especially when performing a so-called blind operation, in which surgery is performed without directly seeing the planned site.
本発明は以上のような問題に対処してなされたもので、
効率的に且つ確実に作業を進めることができる手術用3
次元ビューア−システムを提供することを目的とするも
のである。The present invention has been made in response to the above-mentioned problems.
Surgical grade 3 that allows you to proceed with your work efficiently and reliably
The purpose is to provide a dimensional viewer system.
[発明の構成]
(問題点を解決するための手段)
上記目的を達成するために本発明は、予め被検体をスキ
ャンして得られたデータを格納する記憶装置と、任意方
向に対し位置及び向きが移動可能であり前記被検体の直
視像と前記データに基いてモニタに表示された3次元像
とを合成するビューア−と、データを用いて前記ビュー
ア−の位置及び向きに応じた3次元像を合成してモニタ
に送る3次元プロセッサとを備えたことを特徴とするも
のである。[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention includes a storage device that stores data obtained by scanning a subject in advance, and a storage device that stores data obtained by scanning a subject in advance; a viewer whose orientation is movable and which combines a direct image of the subject with a three-dimensional image displayed on a monitor based on the data; The device is characterized by comprising a three-dimensional processor that synthesizes images and sends them to a monitor.
(作 用)
ビューア−の位置及び向きに応じた3次元像がモニタに
表示されこれに直視像が合成されるので、常に被検体の
手術予定部位の位置関係を把握することができる。よっ
て効率的に且つ確実に手術作業を進めることができる。(Function) Since a three-dimensional image corresponding to the position and orientation of the viewer is displayed on the monitor and a direct view image is combined with this, the positional relationship of the subject's scheduled surgery site can be always grasped. Therefore, the surgical work can be carried out efficiently and reliably.
(実施例)
第1図は本発明実施例の手術用3次元ビューア−システ
ムを示す構成図で、1は3次元メモリでX線CT装置、
MRI装置などのCT装置によって予め患者4をスキャ
ンして得られたボクセルデータが格納されている。この
ボクセルデータは、体軸方向に沿ってスキャンして得ら
れた複数のスライス@(2次元データを積層して構成し
た3次元データを基に、所定部位の抽出処理を行うこと
により任意のものを得ることができる。2はビューア−
でアーム5を介して任意方向に対し位置及び向きが移動
可能に任意位置に取付けられている。(Embodiment) FIG. 1 is a configuration diagram showing a surgical three-dimensional viewer system according to an embodiment of the present invention, in which 1 is a three-dimensional memory, an X-ray CT device,
Voxel data obtained by scanning the patient 4 in advance with a CT device such as an MRI device is stored. This voxel data is generated by extracting a predetermined region based on multiple slices @ (3D data composed of stacked 2D data) obtained by scanning along the body axis direction. 2 is the viewer
It is attached to an arbitrary position via an arm 5 so that its position and orientation can be moved in any direction.
このビューア−2は第2図のように、医師6などによっ
て患者4の直視像が観察可能になっており、これと共に
ボクセルデータに基いてモニタ7に表示された3次元像
と直視像とがハーフミラ−8を介して合成された合成像
が観察可能になっている。As shown in FIG. 2, this viewer 2 allows a doctor 6 or the like to observe a direct image of a patient 4, and also displays a three-dimensional image and a direct image displayed on a monitor 7 based on voxel data. A composite image can be observed through the half mirror 8.
3は3次元プロセッサで3次元メモリ1のボクセルデー
タを用いてビューア−2の位置及び向きに応じた3次元
像を合成して前記モニタ7に表示する。ビューア−2は
観察者が合成像をステレオ像として観察できるように、
左右一対が用意されている。第3図(a>、(b)はモ
ニタ7に表示された3次元像の例を示すもので、(a)
は病巣11の表示例、(b)は臓器表面を表わすワイヤ
フレーム12に重ねて病巣11を表示した例を示すもの
である。これらの像はいずれもステレオ像(左右で少し
ずれた像)として表示される。また第4図は直視像を示
すものである。これら3次元像と直視像はハーフミラ−
8によって合成され、第5図ような合成像が観察できる
。3 is a three-dimensional processor that uses the voxel data in the three-dimensional memory 1 to synthesize a three-dimensional image according to the position and orientation of the viewer 2, and displays it on the monitor 7. Viewer 2 allows the viewer to observe the composite image as a stereo image.
A pair of left and right are available. Figures 3 (a) and (b) show examples of three-dimensional images displayed on the monitor 7;
(b) shows an example in which the lesion 11 is displayed superimposed on a wire frame 12 representing the surface of an organ. All of these images are displayed as stereo images (images slightly shifted left and right). Moreover, FIG. 4 shows a direct view image. These three-dimensional images and direct images are half mirrors.
8, and a composite image as shown in FIG. 5 can be observed.
ビューア−2の位置及び向きはアーム5によって検出さ
れてこの情報が3次元プロセッサ3へ送られる。これに
基いて3次元プロセッサ3はボクセルデータを用いて、
第6図のPl 、P2のようにその位置及び向きに応じ
て観察される3次元像をモニタ7に送って表示させる。The position and orientation of the viewer 2 is detected by the arm 5 and this information is sent to the three-dimensional processor 3. Based on this, the three-dimensional processor 3 uses voxel data to
A three-dimensional image, which is observed according to its position and orientation, as shown by Pl and P2 in FIG. 6, is sent to the monitor 7 and displayed.
この3次元プロセッサ3は3次元メモリ1に格納されて
いる3次元データ(ボクセルデータ、ワイヤフレームデ
ータ、サーフェスデータなどの各種のデータ)を使って
、このようにビューア−3の任意の位置及び向きから見
たときの3次元像を合成する。ビューア−3によって観
察される患者4は患者固定フレーム10によってその位
置が固定されている。This 3D processor 3 uses the 3D data (various types of data such as voxel data, wire frame data, and surface data) stored in the 3D memory 1 to process the arbitrary position and orientation of the viewer 3. Composes a three-dimensional image when viewed from. The position of the patient 4 observed by the viewer 3 is fixed by a patient fixation frame 10.
第7図はアーム系の構成例を示すもので、ビューア−3
は0点を中心として首を撮ることによりその位置及び向
きが変えられる。また、第8図(a>、(b)はビュー
ア−3の光学系におけるベクトルの関係を示すもので、
1:ビューア−3の首振り中心Cと患者固定フレーム1
0の原点Oとの間のベクトル
a:首撮り中心Cから光軸tへ下ろした垂線ベクトル
d:光軸ベクトル
であるとする。Figure 7 shows an example of the configuration of the arm system.
The position and orientation of the head can be changed by taking a picture of the neck with the 0 point as the center. Moreover, FIG. 8 (a>, (b) shows the relationship of vectors in the optical system of the viewer 3. 1: The swing center C of the viewer 3 and the patient fixation frame 1
0 and origin O: vector a perpendicular drawn from the neck photography center C to the optical axis t: optical axis vector.
第7図のA1の位置自由度に属する各可動部に取付けた
角度センサーを用いて0点の位置を測定することにより
、ベクトルlがわかる。また0点の持つ3つの自由度(
x、y、z方向)の可動部を角度センサーで測定するこ
とにより首振り自由度がわかるので、ベクトルa、dが
わかる。By measuring the position of the zero point using angle sensors attached to each movable part belonging to the positional degree of freedom A1 in FIG. 7, the vector l can be found. In addition, the three degrees of freedom of the 0 point (
By measuring the movable part in the x, y, and z directions with an angle sensor, the degree of freedom of swinging can be determined, so vectors a and d can be determined.
第9図(a)、(b)は各々直視光学系及びモニタ光学
系を示し、第10図は合成像の光学系を示すものである
。9(a) and 9(b) respectively show a direct viewing optical system and a monitor optical system, and FIG. 10 shows an optical system for a composite image.
Ll、L2 、L3はレンズの位置、には虚像(合成像
)の位置、Hはハーフミラ−の位置。Ll, L2, and L3 are the positions of the lenses, H is the position of the virtual image (synthetic image), and H is the position of the half mirror.
M’、Mは実像の位置、Eは観察の位置を示している。M' and M indicate the position of the real image, and E indicates the observation position.
又、mはに位置の像の大きざ、pはM′位置の像の大き
ざを示している。M’−HとM−Hの距離は同じに設定
され、第9図(a>、(b)のに位置は同じ位置になる
ように調整される。Furthermore, m indicates the size of the image at position M, and p indicates the size of the image at position M'. The distances M'-H and M-H are set to be the same, and the positions in FIGS. 9(a> and (b)) are adjusted to be the same.
第11図は他の光学系を示すもので、簡単な構成例を示
している。FIG. 11 shows another optical system, showing a simple configuration example.
このような各光学系は公知技術を用いて任意の構成とす
ることができる。Each of these optical systems can have an arbitrary configuration using known techniques.
3次元プロセッサ3は以上のような各ベクトルA、a、
dに基いて、第12図のように距@に8゜KEを知るこ
とにより適切な3次元像を合成し、モニタ7に表示させ
る。この3次元プロセッサ3によって合成される像は、
第13図のように直視光学系をシミュレートしたときに
M′にできる実像にほかならない。シミュレーションす
る場合に計算量が大きくなるなら、次のような方法をと
ることができる。The three-dimensional processor 3 processes each vector A, a,
d, an appropriate three-dimensional image is synthesized by knowing the distance @8°KE as shown in FIG. 12, and is displayed on the monitor 7. The image synthesized by this three-dimensional processor 3 is
This is nothing but a real image that can be formed at M' when a direct viewing optical system is simulated as shown in FIG. If the amount of calculation required for simulation becomes large, the following method can be used.
先ず、点Eを中心にして光軸tに垂直で且つ点Kを通る
面Sにできる仮想物体の投影像Jを第14図のように作
成し、次にこれを縮小する。この縮小の度合は第9図を
参照すると(p/m)倍に設定すればよい。First, as shown in FIG. 14, a projected image J of a virtual object is created on a plane S that is perpendicular to the optical axis t and passes through point K with point E as the center, and then this is reduced. Referring to FIG. 9, the degree of reduction may be set to (p/m) times.
3次元プロセッサ3は以上のような動作により左右一対
のモニタに3次元像を送ることになる。The three-dimensional processor 3 sends a three-dimensional image to a pair of left and right monitors through the operations described above.
患者固定フレーム10は予め手術台13に第15図のよ
うに取付けておき、患者4に患者フレーム14を取付け
て位置決めすることによりCT装置によってスキャンを
行う。これによれば予め患者固定フレーム10とアーム
系の位置関係は初めから決められているので、患者固定
フレーム10と患者フレーム14の位置関係が決り、患
者とアーム系の位置関係を決めることができる。他の例
としてCT装置の方にも患者固定フレームを設けるよう
にしてもよく、これによって常に患者固定フレームを基
準座標系にしてスキャン、手術を行うことができる。The patient fixation frame 10 is attached to the operating table 13 in advance as shown in FIG. 15, and the patient frame 14 is attached and positioned to the patient 4 to be scanned by the CT apparatus. According to this, the positional relationship between the patient fixation frame 10 and the arm system is determined in advance from the beginning, so the positional relationship between the patient fixation frame 10 and the patient frame 14 is determined, and the positional relationship between the patient and the arm system can be determined. . As another example, the CT apparatus may also be provided with a patient fixation frame, thereby allowing scanning and surgery to be performed using the patient fixation frame as the reference coordinate system.
以上のような本発明実施例によれば、直視像でおる実物
像と3次元プロセッサによって合成されたモニタ像とが
合成された像がステレオ像として観察できるので、直接
外からは見えない内部構造や、手術計画の際決めた仮想
的な線などを実際に空中(患者の体内)に描かれている
かのように見ることができる。According to the embodiments of the present invention as described above, an image obtained by combining the real image as a direct view image and a monitor image synthesized by a three-dimensional processor can be observed as a stereo image, so that internal structures that are not directly visible from the outside can be observed. This allows you to see virtual lines drawn during surgical planning as if they were actually drawn in the air (inside the patient's body).
よってこれらを利用することにより手術予定部位の位置
関係を明瞭に把握できるので、効率的に且つ確実に手術
を進めることができる。Therefore, by using these, it is possible to clearly grasp the positional relationship of the scheduled surgery site, so that the surgery can be carried out efficiently and reliably.
第16図は本発明の他の実施例を示すもので、3次元デ
ジタイザを併用する場合を示している。FIG. 16 shows another embodiment of the present invention, in which a three-dimensional digitizer is also used.
X方向のコイル15a、15b (y、Z方向コイルは
省略する)を配置して傾斜磁場を形成し、この磁場内の
患者4の所望部位に磁場計測素子16aを設けたデジタ
イザ16を接してこの磁場強度を計ることにより素子の
空間的位置(X、 ’i/。Coils 15a and 15b in the X direction (y and Z direction coils are omitted) are arranged to form a gradient magnetic field, and a digitizer 16 equipped with a magnetic field measuring element 16a is placed in contact with a desired part of the patient 4 within this magnetic field. The spatial position of the element (X, 'i/) is determined by measuring the magnetic field strength.
2)を知るようにしたものである。この空間的位置を座
標としてステレオ表示させれば、第17図に示すように
直接にその部位が見えなくとも、あるものとして観察す
ることができる。それ故、磁場計測素子を探触子先端や
電気メス先端に取付けておけば手術を行う際に、直接外
から見えない器具先端の位置1手術計画による線や患部
の位置。2). If this spatial position is used as a coordinate and stereo display is performed, as shown in FIG. 17, even if the part cannot be seen directly, it can be observed as if it were there. Therefore, if a magnetic field measuring element is attached to the tip of the probe or electric knife, it will be possible to measure the position of the tip of the instrument, which is not directly visible from the outside, during surgery.1 The position of the line or affected area according to the surgical plan.
患者外観などを一度に見ることができるので、その位置
関係を明瞭に把握することができる。従って本実施例に
よっても前記実施例と同様な効果を得ることができる。Since the external appearance of the patient can be seen at once, the positional relationship can be clearly understood. Therefore, this embodiment can also provide the same effects as those of the previous embodiment.
[発明の効果]
以上述べたように本発明によれば、ビューア−の位置及
び向きに応じた3次元像がモニタに表示されこれに直視
像が合成された像が観察でき、手術予定部位の位置関係
を明瞭に把握できるので、効率的に且つ確実に手術作業
を進めることができる。[Effects of the Invention] As described above, according to the present invention, a three-dimensional image corresponding to the position and orientation of the viewer is displayed on the monitor, and an image in which a direct view image is synthesized can be observed, and the area to be operated can be viewed. Since the positional relationship can be clearly understood, the surgical work can be carried out efficiently and reliably.
第1図は本発明実施例の手術用3次元ビューア−システ
ムを示す構成図、第2図はビューア−の断面図、第3図
(a)、l)はモニタ像の表示例、第4図は直視像の表
示例、第5図は合成像の表示例、第6図はモニタ像の異
なった表示例、第7図はアーム系の概略図、第8図(a
)、(b)。
第12図は光学系のベクトル図、第9図(a)。
(b)、第10図、第11図は光学系の構成例、第13
図及び第14図は光学系のシミュレーション例、第15
図は患者の固定例、第16図及び第17図は本発明の他
の実施例の構成例である。
1・・・3次元メモリ、2・・・ビューア−13・・・
3次元プロセッサ、
5.5a、5b・・・アーム、7・・・モニタ、8・・
・ハーフミラ−110・・・患者固定フレーム。
代理人 弁理士 則 近 憲 缶周 大
胡 典 夫(a)
(b)
第3図
第4図 弔5図
10で名園ヱ
(b)
第8図
第11図
第12図
第14図Fig. 1 is a configuration diagram showing a three-dimensional surgical viewer system according to an embodiment of the present invention, Fig. 2 is a cross-sectional view of the viewer, Figs. 3(a) and l) are examples of monitor image display, and Fig. 4 5 is an example of displaying a direct image, FIG. 5 is an example of displaying a composite image, FIG. 6 is an example of different display of a monitor image, FIG. 7 is a schematic diagram of the arm system, and FIG.
), (b). FIG. 12 is a vector diagram of the optical system, and FIG. 9(a). (b), FIG. 10, and FIG. 11 are examples of the configuration of the optical system, and FIG.
Figures 14 and 14 are simulation examples of optical systems, and Figure 15.
The figure shows an example of fixing a patient, and FIGS. 16 and 17 show configuration examples of other embodiments of the present invention. 1... Three-dimensional memory, 2... Viewer-13...
3D processor, 5.5a, 5b...arm, 7...monitor, 8...
・Half mirror 110...Patient fixation frame. Agent Patent Attorney Noriyuki Chika Kenshu Daiko Norio (a)
(b) Figure 3 Figure 4 Funeral 5 Figure 10 Meien (b) Figure 8 Figure 11 Figure 12 Figure 14
Claims (1)
術用3次元ビューアーシステムにおいて、予め被検体を
スキャンして得られたデータを格納する記憶装置と、任
意方向に対し位置及び向きが移動可能であり前記被検体
の直視像と前記データに基いてモニタに表示された3次
元像とを合成するビューアーと、データを用いて前記ビ
ューアーの位置及び向きに応じた3次元像を合成してモ
ニタに送る3次元プロセッサとを備えたことを特徴とす
る手術用3次元ビューアーシステム。A three-dimensional surgical viewer system that selectively displays the scheduled surgical site of a patient for observation includes a storage device that stores data obtained by scanning the patient in advance, and a system that moves in position and direction in any direction. a viewer that synthesizes a direct image of the subject and a three-dimensional image displayed on a monitor based on the data; and a viewer that synthesizes a three-dimensional image according to the position and orientation of the viewer using the data. A surgical three-dimensional viewer system characterized by comprising a three-dimensional processor that sends data to a monitor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62074385A JPH0685784B2 (en) | 1987-03-30 | 1987-03-30 | Surgical three-dimensional viewer system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62074385A JPH0685784B2 (en) | 1987-03-30 | 1987-03-30 | Surgical three-dimensional viewer system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5195631A Division JP2693702B2 (en) | 1993-07-14 | 1993-07-14 | 3D viewer system for surgery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63240851A true JPS63240851A (en) | 1988-10-06 |
JPH0685784B2 JPH0685784B2 (en) | 1994-11-02 |
Family
ID=13545649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62074385A Expired - Lifetime JPH0685784B2 (en) | 1987-03-30 | 1987-03-30 | Surgical three-dimensional viewer system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0685784B2 (en) |
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03267054A (en) * | 1990-03-16 | 1991-11-27 | Amayoshi Katou | Stationary lobotomy aid |
JPH03284252A (en) * | 1990-03-30 | 1991-12-13 | Medeirando:Kk | Apparatus for displaying in vivo three-dimensional position |
JPH03284253A (en) * | 1990-03-30 | 1991-12-13 | Medeirando:Kk | Apparatus for displaying in vivo three-dimensional position |
JPH04231034A (en) * | 1990-05-11 | 1992-08-19 | Internatl Business Mach Corp <Ibm> | Robot system for operation |
JPH06205793A (en) * | 1993-07-14 | 1994-07-26 | Toshiba Corp | Three-dimensional viewer system for operation |
JPH07104193A (en) * | 1993-10-04 | 1995-04-21 | Nagashima Ika Kikai Kk | Wide television integrated microscope system |
JPH08164217A (en) * | 1994-12-12 | 1996-06-25 | Toshiba Corp | Radiotherapy design device |
JPH08215211A (en) * | 1995-02-16 | 1996-08-27 | Hitachi Ltd | Apparatus and method for supporting remote operation |
JPH08509393A (en) * | 1993-02-16 | 1996-10-08 | ゲオルク クリーギス、ウルリッヒ | How to develop and control surgical procedures |
JP2001017408A (en) * | 1999-06-10 | 2001-01-23 | General Electric Co <Ge> | Mri system and method for mri scan |
JP2001137259A (en) * | 1999-09-07 | 2001-05-22 | Carl Zeiss:Fa | Image-aided subject processing apparatus |
WO2003094768A1 (en) * | 2002-05-07 | 2003-11-20 | Kyoto University | Medical cockpit system |
USRE42194E1 (en) | 1997-09-24 | 2011-03-01 | Medtronic Navigation, Inc. | Percutaneous registration apparatus and method for use in computer-assisted surgical navigation |
US7996064B2 (en) | 1999-03-23 | 2011-08-09 | Medtronic Navigation, Inc. | System and method for placing and determining an appropriately sized surgical implant |
US8046052B2 (en) | 2002-11-19 | 2011-10-25 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies |
US8060185B2 (en) | 2002-11-19 | 2011-11-15 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies |
USRE43328E1 (en) | 1997-11-20 | 2012-04-24 | Medtronic Navigation, Inc | Image guided awl/tap/screwdriver |
US8165658B2 (en) | 2008-09-26 | 2012-04-24 | Medtronic, Inc. | Method and apparatus for positioning a guide relative to a base |
US8175681B2 (en) | 2008-12-16 | 2012-05-08 | Medtronic Navigation Inc. | Combination of electromagnetic and electropotential localization |
USRE43952E1 (en) | 1989-10-05 | 2013-01-29 | Medtronic Navigation, Inc. | Interactive system for local intervention inside a non-homogeneous structure |
US8838199B2 (en) | 2002-04-04 | 2014-09-16 | Medtronic Navigation, Inc. | Method and apparatus for virtual digital subtraction angiography |
US8905920B2 (en) | 2007-09-27 | 2014-12-09 | Covidien Lp | Bronchoscope adapter and method |
US8932207B2 (en) | 2008-07-10 | 2015-01-13 | Covidien Lp | Integrated multi-functional endoscopic tool |
US9055881B2 (en) | 2004-04-26 | 2015-06-16 | Super Dimension Ltd. | System and method for image-based alignment of an endoscope |
US9089261B2 (en) | 2003-09-15 | 2015-07-28 | Covidien Lp | System of accessories for use with bronchoscopes |
US9117258B2 (en) | 2008-06-03 | 2015-08-25 | Covidien Lp | Feature-based registration method |
US9113813B2 (en) | 2009-04-08 | 2015-08-25 | Covidien Lp | Locatable catheter |
US9168102B2 (en) | 2006-01-18 | 2015-10-27 | Medtronic Navigation, Inc. | Method and apparatus for providing a container to a sterile environment |
US9271803B2 (en) | 2008-06-06 | 2016-03-01 | Covidien Lp | Hybrid registration method |
US9504530B2 (en) | 1999-10-28 | 2016-11-29 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
US9597154B2 (en) | 2006-09-29 | 2017-03-21 | Medtronic, Inc. | Method and apparatus for optimizing a computer assisted surgical procedure |
US9642514B2 (en) | 2002-04-17 | 2017-05-09 | Covidien Lp | Endoscope structures and techniques for navigating to a target in a branched structure |
US9675424B2 (en) | 2001-06-04 | 2017-06-13 | Surgical Navigation Technologies, Inc. | Method for calibrating a navigation system |
US9757087B2 (en) | 2002-02-28 | 2017-09-12 | Medtronic Navigation, Inc. | Method and apparatus for perspective inversion |
US9867721B2 (en) | 2003-01-30 | 2018-01-16 | Medtronic Navigation, Inc. | Method and apparatus for post-operative tuning of a spinal implant |
US10426555B2 (en) | 2015-06-03 | 2019-10-01 | Covidien Lp | Medical instrument with sensor for use in a system and method for electromagnetic navigation |
US10478254B2 (en) | 2016-05-16 | 2019-11-19 | Covidien Lp | System and method to access lung tissue |
US10582834B2 (en) | 2010-06-15 | 2020-03-10 | Covidien Lp | Locatable expandable working channel and method |
US10898153B2 (en) | 2000-03-01 | 2021-01-26 | Medtronic Navigation, Inc. | Multiple cannula image guided tool for image guided procedures |
US10952593B2 (en) | 2014-06-10 | 2021-03-23 | Covidien Lp | Bronchoscope adapter |
US11006914B2 (en) | 2015-10-28 | 2021-05-18 | Medtronic Navigation, Inc. | Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient |
US11219489B2 (en) | 2017-10-31 | 2022-01-11 | Covidien Lp | Devices and systems for providing sensors in parallel with medical tools |
US11331150B2 (en) | 1999-10-28 | 2022-05-17 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
US12089902B2 (en) | 2019-07-30 | 2024-09-17 | Coviden Lp | Cone beam and 3D fluoroscope lung navigation |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4633210B2 (en) * | 1999-11-02 | 2011-02-16 | オリンパス株式会社 | Surgical microscope equipment |
-
1987
- 1987-03-30 JP JP62074385A patent/JPH0685784B2/en not_active Expired - Lifetime
Cited By (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE43952E1 (en) | 1989-10-05 | 2013-01-29 | Medtronic Navigation, Inc. | Interactive system for local intervention inside a non-homogeneous structure |
JPH03267054A (en) * | 1990-03-16 | 1991-11-27 | Amayoshi Katou | Stationary lobotomy aid |
JPH03284252A (en) * | 1990-03-30 | 1991-12-13 | Medeirando:Kk | Apparatus for displaying in vivo three-dimensional position |
JPH03284253A (en) * | 1990-03-30 | 1991-12-13 | Medeirando:Kk | Apparatus for displaying in vivo three-dimensional position |
JPH069574B2 (en) * | 1990-03-30 | 1994-02-09 | 株式会社メディランド | 3D body position display device |
JPH069573B2 (en) * | 1990-03-30 | 1994-02-09 | 株式会社メディランド | 3D body position display device |
JPH04231034A (en) * | 1990-05-11 | 1992-08-19 | Internatl Business Mach Corp <Ibm> | Robot system for operation |
JPH08509393A (en) * | 1993-02-16 | 1996-10-08 | ゲオルク クリーギス、ウルリッヒ | How to develop and control surgical procedures |
JPH06205793A (en) * | 1993-07-14 | 1994-07-26 | Toshiba Corp | Three-dimensional viewer system for operation |
JP2693702B2 (en) * | 1993-07-14 | 1997-12-24 | 株式会社東芝 | 3D viewer system for surgery |
US5825532A (en) * | 1993-10-04 | 1998-10-20 | Nhk Engineering Services, Inc. | Microscopic system integrated with wide-screen television |
JPH07104193A (en) * | 1993-10-04 | 1995-04-21 | Nagashima Ika Kikai Kk | Wide television integrated microscope system |
JPH08164217A (en) * | 1994-12-12 | 1996-06-25 | Toshiba Corp | Radiotherapy design device |
JPH08215211A (en) * | 1995-02-16 | 1996-08-27 | Hitachi Ltd | Apparatus and method for supporting remote operation |
USRE42194E1 (en) | 1997-09-24 | 2011-03-01 | Medtronic Navigation, Inc. | Percutaneous registration apparatus and method for use in computer-assisted surgical navigation |
USRE42226E1 (en) | 1997-09-24 | 2011-03-15 | Medtronic Navigation, Inc. | Percutaneous registration apparatus and method for use in computer-assisted surgical navigation |
USRE44305E1 (en) | 1997-09-24 | 2013-06-18 | Medtronic Navigation, Inc. | Percutaneous registration apparatus and method for use in computer-assisted surgical navigation |
USRE46409E1 (en) | 1997-11-20 | 2017-05-23 | Medtronic Navigation, Inc. | Image guided awl/tap/screwdriver |
USRE46422E1 (en) | 1997-11-20 | 2017-06-06 | Medtronic Navigation, Inc. | Image guided awl/tap/screwdriver |
USRE43328E1 (en) | 1997-11-20 | 2012-04-24 | Medtronic Navigation, Inc | Image guided awl/tap/screwdriver |
US7996064B2 (en) | 1999-03-23 | 2011-08-09 | Medtronic Navigation, Inc. | System and method for placing and determining an appropriately sized surgical implant |
JP2001017408A (en) * | 1999-06-10 | 2001-01-23 | General Electric Co <Ge> | Mri system and method for mri scan |
JP2001137259A (en) * | 1999-09-07 | 2001-05-22 | Carl Zeiss:Fa | Image-aided subject processing apparatus |
US11331150B2 (en) | 1999-10-28 | 2022-05-17 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
US9504530B2 (en) | 1999-10-28 | 2016-11-29 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
US10898153B2 (en) | 2000-03-01 | 2021-01-26 | Medtronic Navigation, Inc. | Multiple cannula image guided tool for image guided procedures |
US9675424B2 (en) | 2001-06-04 | 2017-06-13 | Surgical Navigation Technologies, Inc. | Method for calibrating a navigation system |
US9757087B2 (en) | 2002-02-28 | 2017-09-12 | Medtronic Navigation, Inc. | Method and apparatus for perspective inversion |
US8838199B2 (en) | 2002-04-04 | 2014-09-16 | Medtronic Navigation, Inc. | Method and apparatus for virtual digital subtraction angiography |
US10743748B2 (en) | 2002-04-17 | 2020-08-18 | Covidien Lp | Endoscope structures and techniques for navigating to a target in branched structure |
US9642514B2 (en) | 2002-04-17 | 2017-05-09 | Covidien Lp | Endoscope structures and techniques for navigating to a target in a branched structure |
WO2003094768A1 (en) * | 2002-05-07 | 2003-11-20 | Kyoto University | Medical cockpit system |
US8401616B2 (en) | 2002-11-19 | 2013-03-19 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies |
US8060185B2 (en) | 2002-11-19 | 2011-11-15 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies |
US8046052B2 (en) | 2002-11-19 | 2011-10-25 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies |
US11707363B2 (en) | 2003-01-30 | 2023-07-25 | Medtronic Navigation, Inc. | Method and apparatus for post-operative tuning of a spinal implant |
US9867721B2 (en) | 2003-01-30 | 2018-01-16 | Medtronic Navigation, Inc. | Method and apparatus for post-operative tuning of a spinal implant |
US11684491B2 (en) | 2003-01-30 | 2023-06-27 | Medtronic Navigation, Inc. | Method and apparatus for post-operative tuning of a spinal implant |
US10383509B2 (en) | 2003-09-15 | 2019-08-20 | Covidien Lp | System of accessories for use with bronchoscopes |
US9089261B2 (en) | 2003-09-15 | 2015-07-28 | Covidien Lp | System of accessories for use with bronchoscopes |
US10321803B2 (en) | 2004-04-26 | 2019-06-18 | Covidien Lp | System and method for image-based alignment of an endoscope |
US9055881B2 (en) | 2004-04-26 | 2015-06-16 | Super Dimension Ltd. | System and method for image-based alignment of an endoscope |
US9168102B2 (en) | 2006-01-18 | 2015-10-27 | Medtronic Navigation, Inc. | Method and apparatus for providing a container to a sterile environment |
US10597178B2 (en) | 2006-01-18 | 2020-03-24 | Medtronic Navigation, Inc. | Method and apparatus for providing a container to a sterile environment |
US9597154B2 (en) | 2006-09-29 | 2017-03-21 | Medtronic, Inc. | Method and apparatus for optimizing a computer assisted surgical procedure |
US10390686B2 (en) | 2007-09-27 | 2019-08-27 | Covidien Lp | Bronchoscope adapter and method |
US9986895B2 (en) | 2007-09-27 | 2018-06-05 | Covidien Lp | Bronchoscope adapter and method |
US9668639B2 (en) | 2007-09-27 | 2017-06-06 | Covidien Lp | Bronchoscope adapter and method |
US10980400B2 (en) | 2007-09-27 | 2021-04-20 | Covidien Lp | Bronchoscope adapter and method |
US8905920B2 (en) | 2007-09-27 | 2014-12-09 | Covidien Lp | Bronchoscope adapter and method |
US10096126B2 (en) | 2008-06-03 | 2018-10-09 | Covidien Lp | Feature-based registration method |
US9659374B2 (en) | 2008-06-03 | 2017-05-23 | Covidien Lp | Feature-based registration method |
US11783498B2 (en) | 2008-06-03 | 2023-10-10 | Covidien Lp | Feature-based registration method |
US11074702B2 (en) | 2008-06-03 | 2021-07-27 | Covidien Lp | Feature-based registration method |
US9117258B2 (en) | 2008-06-03 | 2015-08-25 | Covidien Lp | Feature-based registration method |
US9271803B2 (en) | 2008-06-06 | 2016-03-01 | Covidien Lp | Hybrid registration method |
US10285623B2 (en) | 2008-06-06 | 2019-05-14 | Covidien Lp | Hybrid registration method |
US10478092B2 (en) | 2008-06-06 | 2019-11-19 | Covidien Lp | Hybrid registration method |
US11931141B2 (en) | 2008-06-06 | 2024-03-19 | Covidien Lp | Hybrid registration method |
US10674936B2 (en) | 2008-06-06 | 2020-06-09 | Covidien Lp | Hybrid registration method |
US8932207B2 (en) | 2008-07-10 | 2015-01-13 | Covidien Lp | Integrated multi-functional endoscopic tool |
US11234611B2 (en) | 2008-07-10 | 2022-02-01 | Covidien Lp | Integrated multi-functional endoscopic tool |
US10912487B2 (en) | 2008-07-10 | 2021-02-09 | Covidien Lp | Integrated multi-function endoscopic tool |
US10070801B2 (en) | 2008-07-10 | 2018-09-11 | Covidien Lp | Integrated multi-functional endoscopic tool |
US11241164B2 (en) | 2008-07-10 | 2022-02-08 | Covidien Lp | Integrated multi-functional endoscopic tool |
US8165658B2 (en) | 2008-09-26 | 2012-04-24 | Medtronic, Inc. | Method and apparatus for positioning a guide relative to a base |
US8175681B2 (en) | 2008-12-16 | 2012-05-08 | Medtronic Navigation Inc. | Combination of electromagnetic and electropotential localization |
US10154798B2 (en) | 2009-04-08 | 2018-12-18 | Covidien Lp | Locatable catheter |
US9113813B2 (en) | 2009-04-08 | 2015-08-25 | Covidien Lp | Locatable catheter |
US10582834B2 (en) | 2010-06-15 | 2020-03-10 | Covidien Lp | Locatable expandable working channel and method |
US10952593B2 (en) | 2014-06-10 | 2021-03-23 | Covidien Lp | Bronchoscope adapter |
US10426555B2 (en) | 2015-06-03 | 2019-10-01 | Covidien Lp | Medical instrument with sensor for use in a system and method for electromagnetic navigation |
US11006914B2 (en) | 2015-10-28 | 2021-05-18 | Medtronic Navigation, Inc. | Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient |
US11801024B2 (en) | 2015-10-28 | 2023-10-31 | Medtronic Navigation, Inc. | Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient |
US10478254B2 (en) | 2016-05-16 | 2019-11-19 | Covidien Lp | System and method to access lung tissue |
US11786317B2 (en) | 2016-05-16 | 2023-10-17 | Covidien Lp | System and method to access lung tissue |
US11160617B2 (en) | 2016-05-16 | 2021-11-02 | Covidien Lp | System and method to access lung tissue |
US11219489B2 (en) | 2017-10-31 | 2022-01-11 | Covidien Lp | Devices and systems for providing sensors in parallel with medical tools |
US12089902B2 (en) | 2019-07-30 | 2024-09-17 | Coviden Lp | Cone beam and 3D fluoroscope lung navigation |
Also Published As
Publication number | Publication date |
---|---|
JPH0685784B2 (en) | 1994-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63240851A (en) | Three-dimensional pure system for operation | |
US6049622A (en) | Graphic navigational guides for accurate image orientation and navigation | |
US5526812A (en) | Display system for enhancing visualization of body structures during medical procedures | |
Fuchs et al. | Augmented reality visualization for laparoscopic surgery | |
JP3558104B2 (en) | Three-dimensional virtual object display apparatus and method | |
ES2292593T3 (en) | GUIDING SYSTEM | |
TW572748B (en) | A guide system and a probe therefor | |
CA2003497C (en) | Probe-correlated viewing of anatomical image data | |
EP0946886B1 (en) | Apparatus and method for visualizing ultrasonic images | |
BR112020022649A2 (en) | live 3d holographic navigation guidance system to perform intervention procedure | |
US20020082498A1 (en) | Intra-operative image-guided neurosurgery with augmented reality visualization | |
KR19990023201A (en) | Image display method and image display device | |
AU2018202682A1 (en) | Endoscopic view of invasive procedures in narrow passages | |
JPH11309A (en) | Image processor | |
JPH04336048A (en) | Displaying method for moving-body | |
JPH0919441A (en) | Image displaying device for assisting operation | |
JPH08511715A (en) | Surgical microscope | |
US5335173A (en) | Medical diagnosis image display method and apparatus | |
EP0629963A2 (en) | A display system for visualization of body structures during medical procedures | |
JP2001017422A (en) | Image processing device and marker member for the same | |
JP4603195B2 (en) | Medical three-dimensional image display control device and display program | |
JPH03231643A (en) | Image display device | |
JPH08280710A (en) | Real time medical device,and method to support operator to perform medical procedure on patient | |
JP2693702B2 (en) | 3D viewer system for surgery | |
US12023208B2 (en) | Method for operating a visualization system in a surgical application, and visualization system for a surgical application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071102 Year of fee payment: 13 |