JPH06205793A - Three-dimensional viewer system for operation - Google Patents

Three-dimensional viewer system for operation

Info

Publication number
JPH06205793A
JPH06205793A JP5195631A JP19563193A JPH06205793A JP H06205793 A JPH06205793 A JP H06205793A JP 5195631 A JP5195631 A JP 5195631A JP 19563193 A JP19563193 A JP 19563193A JP H06205793 A JPH06205793 A JP H06205793A
Authority
JP
Japan
Prior art keywords
image
dimensional
monitor
direct
patient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5195631A
Other languages
Japanese (ja)
Other versions
JP2693702B2 (en
Inventor
Kyojiro Nanbu
恭二郎 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5195631A priority Critical patent/JP2693702B2/en
Publication of JPH06205793A publication Critical patent/JPH06205793A/en
Application granted granted Critical
Publication of JP2693702B2 publication Critical patent/JP2693702B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Surgical Instruments (AREA)

Abstract

PURPOSE:To clearly grasp the positional relation of the site to be operated and efficiently and surely perform an operation by providing a memory device storing the data regarding the internal structure of a testee, and providing a processor synthesizing the three-dimensional image of the site to be operated based on the direct-view image and data of the testee and sending it to a monitor. CONSTITUTION:The voxel data obtained when a patient 4 is scanned by a CT system in advance are stored in a three-dimensional memory 1, and the direct-view image of the patient 4 can be observed by a doctor 6 with viewers 2 via an arm 5. The synthetic image of a three-dimensional image displayed on a monitor 7 and the direct-view image can be observed via a half-mirror 8. A three-dimensional processor 3 synthesizes the three-dimensional image in response to the position and direction of the viewers 2 with the voxel data 1 of the three-dimensional memory 1 and displays it on the monitor 7. A pair of the right and left viewers 2 are provided to make the synthetic image a stereoscopic image. An internal structure and a virtual line can be observed as if they are located in the body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、手術計画情報を得るた
めの手術用3次元ビューアーシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surgical three-dimensional viewer system for obtaining surgical plan information.

【0002】[0002]

【従来の技術】医師が被検体の必要な部位を手術するに
あたっては、作業を効率的に且つ確実に行うために予め
手術計画が立てられる。このためには例えば被検体を予
めCT装置によってスキャンしてボクセルデータを確保
しておき、このボクセルデータに基いた3次元像をモニ
タに表示して、このモニタ像を観察しながら手術計画を
立てることが行われている。
2. Description of the Related Art When a doctor performs a surgery on a necessary part of a subject, a surgery plan is prepared in advance in order to perform the work efficiently and surely. For this purpose, for example, a subject is scanned in advance by a CT apparatus to secure voxel data, a three-dimensional image based on this voxel data is displayed on a monitor, and a surgery plan is made while observing this monitor image. Is being done.

【0003】しかしながら、従来の方法では手術予定部
位が直接目で観察しにくいような場合には、この部位の
位置関係を把握するのに手間がかかるという問題があ
る。このため特に予定部位を直接目で見ることなく手術
する、いわゆるブラインドオペレーションを行う場合に
は効率的に作業を進めるのが困難であった。
However, in the conventional method, when it is difficult to directly observe the planned surgical site with the eyes, there is a problem that it takes time to grasp the positional relationship of this site. For this reason, it is difficult to efficiently perform the work particularly when performing a so-called blind operation, in which a surgery is performed without directly looking at the planned site.

【0004】[0004]

【発明が解決しようとする課題】本発明は以上のような
問題に対処してなされたもので、効率的に且つ確実に作
業を進めることができる手術用3次元ビューアーシステ
ムを提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above problems, and an object of the present invention is to provide a surgical three-dimensional viewer system capable of efficiently and surely advancing work. It is what

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明は、予め被検体の内部構造に関するデータを格
納する記憶装置と、前記被検体の直視像と前記データに
基いてモニタに表示された3次元像とを合成する合成手
段と、前記データを用い、手術予定部位の観察する位置
及び観察する向きに応じた3次元像を合成してモニタに
送るプロセッサとを備えたことを特徴とするものであ
る。
In order to achieve the above object, the present invention provides a storage device for storing in advance data relating to the internal structure of a subject, and a direct view image of the subject and a display on a monitor based on the data. A synthesizing means for synthesizing the three-dimensional image thus obtained, and a processor for synthesizing a three-dimensional image according to the observed position and the observing direction of the planned surgical site by using the data and sending it to the monitor. It is what

【0006】[0006]

【作用】手術予定部位の観察する位置及び観察する向き
に応じた3次元像がモニタに表示されこれに直視像が合
成されるので、常に被検体の手術予定部位の位置関係を
把握することができる。よって効率的に且つ確実に手術
作業を進めることができる。
[Function] Since the three-dimensional image corresponding to the observed position and the observing direction of the planned surgical site is displayed on the monitor and the direct-view image is combined with this, the positional relationship of the surgical planned site of the subject can be always grasped. it can. Therefore, the surgical operation can be advanced efficiently and reliably.

【0007】[0007]

【実施例】第1図は本発明実施例の手術用3次元ビュー
アーシステムを示す構成図で、1は3次元メモリでX線
CT装置,MRI装置などのCT装置によって予め患者
4をスキャンして得られたボクセルデータが格納されて
いる。このボクセルデータは、体軸方向に沿ってスキャ
ンして得られた複数のスライス像(2次元データを積層
して構成した3次元データ)を基に、所定部位の抽出処
理を行うことにより任意のものを得ることができる。2
はビューアーでアーム5を介して任意方向に対し位置及
び向きが移動可能に任意位置に取付けられている。この
ピューアー2は第2図のように、医師6などによって患
者4の直視像が観察可能になっており、これと共にボク
セルデータに基いてモニタ7に表示された3次元像と直
視像とがハーフミラー8を介して合成された合成像が観
察可能になっている。3は3次元プロセッサで3次元メ
モリ1のボクセルデータを用いてビューアー2の位置及
び向きに応じた3次元像を合成して前記モニタ7に表示
する。ビューアー2は観察者が合成像をステレオ像とし
て観察できるように、左右一対が用意されている。第3
図(a),(b)はモニタ7に表示された3次元像の例
を示すもので、(a)は病巣11の表示例、(b)は臓
器表面を表わすワイヤフレーム12に重ねて病巣11を
表示した例を示すものである。これらの像はいずれもス
テレオ像(左右で少しずれた像)として表示される。ま
た第4図は直視像を示すものである。これら3次元像と
直視像はハーフミラー8によって合成され、第5図のよ
うな合成像が観察できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a configuration diagram showing a three-dimensional viewer system for surgery according to an embodiment of the present invention. Reference numeral 1 is a three-dimensional memory in which a patient 4 is scanned in advance by a CT device such as an X-ray CT device or an MRI device The obtained voxel data is stored. This voxel data is extracted by performing a process of extracting a predetermined region based on a plurality of slice images (three-dimensional data formed by stacking two-dimensional data) obtained by scanning along the body axis direction. You can get things. Two
Is attached to an arbitrary position by a viewer so as to be movable in position and direction with respect to an arbitrary direction via an arm 5. As shown in FIG. 2, a doctor 6 or the like can observe a direct-view image of the patient 4 on the pure 2 and, at the same time, the 3D image and the direct-view image displayed on the monitor 7 based on the voxel data are half-viewed. The composite image composited through the mirror 8 can be observed. A three-dimensional processor 3 synthesizes a three-dimensional image corresponding to the position and orientation of the viewer 2 using the voxel data of the three-dimensional memory 1 and displays it on the monitor 7. A pair of left and right viewers 2 is prepared so that an observer can observe the combined image as a stereo image. Third
Figures (a) and (b) show an example of a three-dimensional image displayed on the monitor 7. (a) is a display example of a lesion 11, (b) is a lesion superimposed on a wire frame 12 representing the surface of an organ. 11 shows an example in which 11 is displayed. All of these images are displayed as stereo images (images that are slightly deviated on the left and right). Further, FIG. 4 shows a direct view image. The three-dimensional image and the direct-view image are combined by the half mirror 8, and a combined image as shown in FIG. 5 can be observed.

【0008】ビューアー2の位置及び向きはアーム5に
よって検出されてこの情報が3次元プロセッサ3へ送ら
れる。これに基いて3次元プロセッサ3はボクセルデー
タを用いて、第6図のP1 ,P2 のようにその位置及び
向きに応じて観察される3次元像をモニタ7に送って表
示させる。この3次元プロセッサ3は3次元メモリ1に
格納されている3次元データ(ボクセルデータ,ワイヤ
フレームデータ,サーフェスデータなどの各種のデー
タ)を使って、このようにピューアー3の任意の位置及
び向きから見たときの3次元像を合成する。ビューアー
3によって観察される患者4は患者固定フレーム10に
よってその位置が固定されている。
The position and orientation of the viewer 2 are detected by the arm 5 and this information is sent to the three-dimensional processor 3. Based on this, the three-dimensional processor 3 uses the voxel data to send a three-dimensional image observed according to its position and orientation to P1 and P2 in FIG. 6 and display it on the monitor 7. This three-dimensional processor 3 uses the three-dimensional data (various data such as voxel data, wireframe data, surface data) stored in the three-dimensional memory 1 from an arbitrary position and orientation of the pure 3 in this way. A three-dimensional image when viewed is synthesized. The position of the patient 4 observed by the viewer 3 is fixed by the patient fixing frame 10.

【0009】第7図はアーム系の構成例を示すもので、
ビューアー3はC点を中心として首を振ることによりそ
の位置及び向きが変えられる。また、第8図(a),
(b)はビューアー3の光学系におけるベクトルの関係
を示すもので、 L :ビューアー3の首振り中心Cと患者固定フレーム1
0の原点0との間のベクトル a:首振り中心Cから光軸tへ下ろした垂線ベクトル d:光軸ベクトル であるとする。
FIG. 7 shows an example of the structure of the arm system.
The position and direction of the viewer 3 can be changed by shaking the head around the point C. In addition, FIG.
(B) shows the relationship of the vectors in the optical system of the viewer 3, L: the swing center C of the viewer 3 and the patient fixed frame 1
A vector between 0 and the origin 0 is assumed to be a: a perpendicular vector drawn from the swing center C to the optical axis t, and d: an optical axis vector.

【0010】第7図のA1 の位置自由度に属する各可動
部に取付けた角度センサーを用いてC点の位置を測定す
ることにより、ベクトルL がわかる。またC点を持つ3
つの自由度(x,y,z方向)の可動部を角度センサー
で測定することにより首振り自由度がわかるので、ベク
トルa,dがわかる。
The vector L can be found by measuring the position of the point C using the angle sensor attached to each movable part belonging to the position freedom degree A1 in FIG. Also has a C point 3
By measuring the movable part with two degrees of freedom (x, y, z directions) with the angle sensor, the swinging degree of freedom can be known, and thus the vectors a and d can be known.

【0011】第9図(a),(b)は各々直視光学系及
びモニタ光学系を示し、第10図は合成像の光学系を示
すものである。
9A and 9B show a direct-view optical system and a monitor optical system, respectively, and FIG. 10 shows an optical system of a composite image.

【0012】L1 ,L2 ,L3 はレンズの位置,Kは虚
像(合成像)の位置,Hはハーフミラーの位置,Mf ,
Mは実像の位置,Eは観察の位置を示している。又、m
はK位置の像の大きさ,pはMf 位置の像の大きさを示
している。Mf −HとM−Hの距離は同じに設定され、
第9図(a),(b)のK位置は同じ位置になるように
調整される。
L1, L2 and L3 are lens positions, K is a virtual image (composite image) position, H is a half mirror position, Mf,
M indicates the position of the real image, and E indicates the position of observation. Also, m
Indicates the size of the image at the K position, and p indicates the size of the image at the Mf position. The distance between Mf-H and M-H is set to the same,
The K positions in FIGS. 9 (a) and 9 (b) are adjusted to be the same position.

【0013】第11図は他の光学系を示すもので、簡単
な構成例を示している。
FIG. 11 shows another optical system and shows a simple configuration example.

【0014】このような各光学系は公知技術を用いて任
意の構成とすることができる。
Each of such optical systems can be configured arbitrarily by using a known technique.

【0015】3次元プロセッサ3は以上のような各ベク
トルL ,a,dに基いて、第12図のように距離KB,
KEを知ることにより適切な3次元像を合成し、モニタ
7に表示させる。この3次元プロセッサ3によって合成
される像は、第13図のように直視光学系をシミュレー
トしたときにMf にできる実像にほかならない。シミュ
レーションする場合に計算量が大きくなるなら、次のよ
うな方法をとることができる。
The three-dimensional processor 3 is based on the respective vectors L, a, d as described above, and as shown in FIG.
By knowing KE, an appropriate three-dimensional image is synthesized and displayed on the monitor 7. The image synthesized by the three-dimensional processor 3 is nothing but a real image which can be Mf when the direct-view optical system is simulated as shown in FIG. If the amount of calculation becomes large when performing simulation, the following method can be used.

【0016】先ず、点Eを中心にして光軸tに垂直で且
つ点Kを通る面Sにできる仮想物体の投影像Jを第14
図のように作成し、次にこれを縮小する。この縮小の度
合は第9図を参照すると(p/m)倍に設定すればよ
い。
First, a projected image J of a virtual object formed on a plane S centering on the point E and perpendicular to the optical axis t and passing through the point K
Create it as shown and then reduce it. The degree of this reduction may be set to (p / m) times with reference to FIG.

【0017】3次元プロセッサ3は以上のような動作に
より左右一対のモニタに3次元像を送ることになる。患
者固定フレーム10は予め手術台13に第15図のよう
に取付けておき、患者4に患者フレーム14を取付けて
位置決めすることによりCT装置によってスキャンを行
う。これによれば予め患者固定フレーム10とアーム系
の位置関係は初めから決められているので、患者固定フ
レーム10と患者フレーム14の位置関係が決り、患者
とアーム系の位置関係を決めることができる。他の例と
してCT装置の方にも患者固定フレームを設けるように
してもよく、これによって常に患者固定フレームを基準
座標系にしてスキャン、手術を行うことができる。
The three-dimensional processor 3 sends the three-dimensional image to the pair of left and right monitors by the above operation. The patient fixing frame 10 is attached to the operating table 13 in advance as shown in FIG. 15, and the patient frame 14 is attached to the patient 4 for positioning, so that the CT apparatus scans. According to this, since the positional relationship between the patient fixing frame 10 and the arm system is previously determined, the positional relationship between the patient fixing frame 10 and the patient frame 14 is determined, and the positional relationship between the patient and the arm system can be determined. . As another example, the CT apparatus may also be provided with a patient fixing frame, which allows the patient fixing frame to be always used as a reference coordinate system for scanning and surgery.

【0018】以上のような本発明実施例によれば、直視
像である実物像と3次元プロセッサによって合成された
モニタ像とが合成された像がステレオ像として観察でき
るので、直接外からは見えない内部構造や、手術計画の
際決めた仮想的な線などを実際に空中(患者の体内)に
描かれているかのように見ることができる。
According to the embodiment of the present invention as described above, an image obtained by synthesizing a real image which is a direct-view image and a monitor image synthesized by a three-dimensional processor can be observed as a stereo image, so that it can be seen directly from the outside. It can be seen as if it were actually drawn in the air (patient's body) such as the internal structure that is not present or the virtual line that was decided during the surgery plan.

【0019】よってこれらを利用することにより手術予
定部位の位置関係を明瞭に把握できるので、効率的に且
つ確実に手術を進めることができる。
Therefore, by utilizing these, it is possible to clearly grasp the positional relationship of the planned surgery site, so that the surgery can be advanced efficiently and surely.

【0020】第16図は本発明の他の実施例を示すもの
で、3次元デジタイザを併用する場合を示している。x
方向のコイル15a,15b(y,z方向コイルは省略
する)を配置して傾斜磁場を形成し、この磁場内の患者
4の所望部位に磁場計測素子16aを設けたデジタイザ
16を接してこの磁場強度を計ることにより素子の空間
的位置(x,y,z)を知るようにしたものである。こ
の空間的位置を座標としてステレオ表示させれば、第1
7図に示すように直接にその部位が見えなくとも、ある
ものとして観察することができる。それ故、磁場計測素
子を深触子先端や電気メス先端に取付けておけば手術を
行う際に、直接外から見えない器具先端の位置、手術計
画による線や患部の位置,患者外観などを一度に見るこ
とができるので、その位置関係を明瞭に把握することが
できる。従って本実施例によっても前記実施例と同様な
効果を得ることができる。
FIG. 16 shows another embodiment of the present invention, and shows a case where a three-dimensional digitizer is also used. x
Directional coils 15a and 15b (y and z direction coils are omitted) are arranged to form a gradient magnetic field, and a digitizer 16 provided with a magnetic field measuring element 16a is brought into contact with a desired portion of the patient 4 within this magnetic field to contact this magnetic field. The spatial position (x, y, z) of the element is known by measuring the intensity. If this spatial position is used as coordinates for stereo display, the first
Even if the site is not directly visible as shown in FIG. 7, it can be observed as something. Therefore, if the magnetic field measurement element is attached to the tip of the deep probe or the tip of the electric knife, the position of the instrument tip that cannot be seen directly from the outside, the line of the surgery plan, the position of the affected area, the patient's appearance, etc. will be displayed once during surgery. Since it can be seen in, the positional relationship can be clearly understood. Therefore, according to this embodiment, the same effect as that of the above embodiment can be obtained.

【0021】[0021]

【発明の効果】以上述べたように本発明によれば、手術
予定部位の観察する位置及び観察する向きに応じた3次
元像がモニタに表示されこれに直視像が合成された像が
観察でき、手術予定部位の位置関係を明瞭に把握できる
ので、効率的に且つ確実に手術作業を進めることができ
る。以上詳述した本発明によれば、データ収集時の被検
体送りに要する時間を短縮して被検体を束縛する時間を
減少させることができると共に、複数スライス面の収集
時間の短縮化を図ることのできるX線CT装置を提供す
ることができる。
As described above, according to the present invention, a three-dimensional image corresponding to the observation position and the observation direction of the planned surgical site is displayed on the monitor, and the image in which the direct-view image is combined can be observed. Since the positional relationship of the planned surgery site can be clearly understood, the surgical operation can be efficiently and reliably advanced. According to the present invention described in detail above, it is possible to shorten the time required for feeding the subject at the time of data collection and reduce the time for restraining the subject, and to shorten the collection time of multiple slice planes. It is possible to provide an X-ray CT apparatus capable of performing the above.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の手術用3次元ビューアーシステ
ムを示す構成図。
FIG. 1 is a configuration diagram showing a surgical three-dimensional viewer system according to an embodiment of the present invention.

【図2】ビューアーの断面図。FIG. 2 is a sectional view of a viewer.

【図3】モニタ像の表示例。FIG. 3 is a display example of a monitor image.

【図4】直視像の表示例。FIG. 4 is a display example of a direct-view image.

【図5】合成像の表示例。FIG. 5 is a display example of a composite image.

【図6】モニタ像の異なった表示例。FIG. 6 is a display example in which different monitor images are displayed.

【図7】アーム系の概略図。FIG. 7 is a schematic diagram of an arm system.

【図8】光学系のベクトル図。FIG. 8 is a vector diagram of an optical system.

【図9】前記他の実施例によるX線源の相対軌道説明
図。
FIG. 9 is an explanatory diagram of a relative orbit of the X-ray source according to the other embodiment.

【図10】光学系の構成例。FIG. 10 is a configuration example of an optical system.

【図11】光学系の構成例。FIG. 11 is a configuration example of an optical system.

【図12】光学系のベクトル図。FIG. 12 is a vector diagram of an optical system.

【図13】光学系のシミュレーション例。FIG. 13 is a simulation example of an optical system.

【図14】光学系のシミュレーション例。FIG. 14 is a simulation example of an optical system.

【図15】患者の固定例。FIG. 15 shows a fixed example of a patient.

【図16】本発明の他の実施例の構成例。FIG. 16 is a configuration example of another embodiment of the present invention.

【図17】本発明の他の実施例の構成例。FIG. 17 is a configuration example of another embodiment of the present invention.

【符号の説明】 1…3次元メモリ 2…ビューアー 3…3次元プロセッサ 5,5a,5b…アーム 7…モニタ 8…ハーフミラー 10…患者固定フレーム[Explanation of Codes] 1 ... 3D memory 2 ... Viewer 3 ... 3D processor 5, 5a, 5b ... Arm 7 ... Monitor 8 ... Half mirror 10 ... Patient fixed frame

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被検体の手術予定部位を選択的に観察可
能に表示する手術用3次元ビューアーシステムにおい
て、予め被検体の内部構造に関するデータを格納する記
憶装置と、前記被検体の直視像と前記データに基いてモ
ニタに表示された3次元像とを合成する合成手段と、前
記データを用い、手術予定部位の観察する位置及び観察
する向きに応じた3次元像を合成してモニタに送るプロ
セッサとを備えたことを特徴とする手術用3次元ビュー
アーシステム。
1. A surgical three-dimensional viewer system for selectively observing a planned surgical site of a subject, a storage device for storing data on an internal structure of the subject in advance, and a direct-view image of the subject. A synthesizing means for synthesizing a three-dimensional image displayed on the monitor based on the data and a synthesizing means for synthesizing a three-dimensional image according to the observed position and the observing direction of the planned surgical site using the data. A surgical three-dimensional viewer system comprising a processor.
JP5195631A 1993-07-14 1993-07-14 3D viewer system for surgery Expired - Lifetime JP2693702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5195631A JP2693702B2 (en) 1993-07-14 1993-07-14 3D viewer system for surgery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5195631A JP2693702B2 (en) 1993-07-14 1993-07-14 3D viewer system for surgery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62074385A Division JPH0685784B2 (en) 1987-03-30 1987-03-30 Surgical three-dimensional viewer system

Publications (2)

Publication Number Publication Date
JPH06205793A true JPH06205793A (en) 1994-07-26
JP2693702B2 JP2693702B2 (en) 1997-12-24

Family

ID=16344382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5195631A Expired - Lifetime JP2693702B2 (en) 1993-07-14 1993-07-14 3D viewer system for surgery

Country Status (1)

Country Link
JP (1) JP2693702B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661571B1 (en) 1999-09-21 2003-12-09 Olympus Optical Co., Ltd. Surgical microscopic system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63240851A (en) * 1987-03-30 1988-10-06 株式会社東芝 Three-dimensional pure system for operation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63240851A (en) * 1987-03-30 1988-10-06 株式会社東芝 Three-dimensional pure system for operation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661571B1 (en) 1999-09-21 2003-12-09 Olympus Optical Co., Ltd. Surgical microscopic system

Also Published As

Publication number Publication date
JP2693702B2 (en) 1997-12-24

Similar Documents

Publication Publication Date Title
JPH0685784B2 (en) Surgical three-dimensional viewer system
US5526812A (en) Display system for enhancing visualization of body structures during medical procedures
US6049622A (en) Graphic navigational guides for accurate image orientation and navigation
US5740802A (en) Computer graphic and live video system for enhancing visualization of body structures during surgery
Adams et al. Computer-assisted surgery
JP3367663B2 (en) System for visualizing internal regions of anatomical objects
US9681925B2 (en) Method for augmented reality instrument placement using an image based navigation system
US5715836A (en) Method and apparatus for planning and monitoring a surgical operation
US8116848B2 (en) Method and apparatus for volumetric image navigation
US5868675A (en) Interactive system for local intervention inside a nonhumogeneous structure
EP0946886B1 (en) Apparatus and method for visualizing ultrasonic images
State et al. Technologies for augmented reality systems: Realizing ultrasound-guided needle biopsies
US20020082498A1 (en) Intra-operative image-guided neurosurgery with augmented reality visualization
US20040254454A1 (en) Guide system and a probe therefor
JPH11309A (en) Image processor
EP2438880A1 (en) Image projection system for projecting image on the surface of an object
Navab et al. Laparoscopic virtual mirror new interaction paradigm for monitor based augmented reality
WO2002080773A1 (en) Augmentet reality apparatus and ct method
Saucer et al. A head-mounted display system for augmented reality image guidance: towards clinical evaluation for imri-guided nuerosurgery
US20210353371A1 (en) Surgical planning, surgical navigation and imaging system
EP0629963A2 (en) A display system for visualization of body structures during medical procedures
Suthau et al. A concept work for Augmented Reality visualisation based on a medical application in liver surgery
JPH08280710A (en) Real time medical device,and method to support operator to perform medical procedure on patient
US20210128243A1 (en) Augmented reality method for endoscope
Bockholt et al. Augmented reality for enhancement of endoscopic interventions

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070905

Year of fee payment: 10