JPS63240779A - Novel microorganism and production of glutamic acid therewith - Google Patents

Novel microorganism and production of glutamic acid therewith

Info

Publication number
JPS63240779A
JPS63240779A JP62075727A JP7572787A JPS63240779A JP S63240779 A JPS63240779 A JP S63240779A JP 62075727 A JP62075727 A JP 62075727A JP 7572787 A JP7572787 A JP 7572787A JP S63240779 A JPS63240779 A JP S63240779A
Authority
JP
Japan
Prior art keywords
glutamic acid
culture
producing bacteria
fermentation
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62075727A
Other languages
Japanese (ja)
Other versions
JPH0763383B2 (en
Inventor
Kazuhiko Yamada
和彦 山田
Hikari Seto
光 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP62075727A priority Critical patent/JPH0763383B2/en
Priority to AU11614/88A priority patent/AU616168C/en
Priority to MYPI88000138A priority patent/MY102317A/en
Priority to BR8801289A priority patent/BR8801289A/en
Priority to PH36679A priority patent/PH25252A/en
Priority to FR888803884A priority patent/FR2612937B1/en
Priority to KR1019880003283A priority patent/KR960006580B1/en
Publication of JPS63240779A publication Critical patent/JPS63240779A/en
Priority to US07/702,111 priority patent/US5250434A/en
Publication of JPH0763383B2 publication Critical patent/JPH0763383B2/en
Priority to BR1100229-8A priority patent/BR1100229A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/14Glutamic acid; Glutamine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

NEW MATERIAL:Corynebacterium thermoaminogenes which has the optimal growing temperature higher than 43 deg.C, resists to 55 deg.C for more than 10min and produces a considerable amount of glutamic acid. EXAMPLE:Corynebacterium thermoaminogenes AJ 12308 (FERM-9244). USE:The production of glutamic acid by fermentation. The microorganism improves the economy of industrial production of glutamic acid, since it can accumulate a large amount of glutamic acid in a high-temperature range. PREPARATION:Microorganisms which can grow at 43 deg.C is separated from a variety of naturally occurring samples.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は発酵法によるグルタミン酸を著量に蓄積する新
規な微生物、およびその微生物を培養して目的物を製造
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a novel microorganism that accumulates a significant amount of glutamic acid by fermentation, and a method for producing a desired product by culturing the microorganism.

〔従来の技術〕[Conventional technology]

微生物を用いてグルタミン酸全署量蓄積せしめ、これを
採取する方法、すなわちグルタミン酸発酵の工業生産で
は、グルタミン酸を培地中に著量に蓄積する能力を有す
る微生物、いわゆるグルタミン酸生産菌を発酵タンク中
で適当な培地を用い ゝ−1温度、溶存酸素量などの培
養条件を適切な条件下にコントロールして行れている。
In industrial production of glutamic acid fermentation, which uses microorganisms to accumulate and collect the entire amount of glutamic acid, microorganisms that have the ability to accumulate a significant amount of glutamic acid in a culture medium, so-called glutamic acid producing bacteria, are used in fermentation tanks. The culture is carried out using a suitable medium and controlling the culture conditions such as -1 temperature and the amount of dissolved oxygen under appropriate conditions.

従来知られているグルタミン酸生産菌の分類については
数多くの報告があシ、例えば以下のものを挙げることが
出来る。
There are many reports regarding the classification of conventionally known glutamic acid producing bacteria, including the following.

1、木下らAm1noAcids 242(1960)
、(以下文献■)2、奥行ら農化誌36 141(19
62)、(以下文献■)3、高山ら農化誌39 328
(1965)、(以下文献■)4、高山ら農化誌39 
335(1965)、(以下文献■)5、高山ら農化誌
39 342(1965)、(以下文献■)6、駒形ら
J、 Gen、 Appl、 Microblol、 
、 15243(1969) 。
1. Kinoshita et al. Am1noAcids 242 (1960)
, (Reference ■) 2, Oku et al. Agricultural Journal 36 141 (19
62), (Reference ■) 3, Takayama et al. Agricultural Journal 39 328
(1965), (Reference ■) 4, Takayama et al. Agricultural Journal 39
335 (1965), (Reference ■) 5, Takayama et al. Agricultural Journal 39 342 (1965), (Reference ■) 6, Komagata et al. J, Gen, Appl, Microblol,
, 15243 (1969).

(以下文献■) 7、山田らJ、 Gen、 Appl、 Microb
iol、 、 16103(1970) 。
(Reference ■ below) 7. Yamada et al. J, Gen, Appl, Microb
iol, 16103 (1970).

(以下文献の) 8、山田らJ、 Gen、 Appl、 Werabi
ol、 、16215(1970)。
(References below) 8. Yamada et al. J, Gen, Appl, Werabi
ol, , 16215 (1970).

(以下文献■) 9、山田らJ、 Gsn、 Appl、 Mierob
lol、 、 18399(1972) 。
(Reference ■) 9. Yamada et al. J, Gsn, Appl, Mierob
lol, 18399 (1972).

(以下文献■) 10、山田らJ、 Gan、 Appl、 Micro
biol、 、 18417(1972) 。
(Reference ■ below) 10. Yamada et al. J, Gan, Appl, Micro
biol, 18417 (1972).

(以下文献■) これらの報告でグルタミン酸生産菌とはグルタミン酸を
培地中に著量に蓄積する菌であるが厳密な定義がなされ
ている訳ではない。しかしその量的目安としては1文献
■に述べられているように培地中に301/1以上、か
つ対グルコース収率が30%以上のグルタミン酸を蓄積
する工業的に利用可能な微生物をさすものと解釈出来る
(Reference ■) In these reports, glutamic acid-producing bacteria are bacteria that accumulate a significant amount of glutamic acid in the culture medium, but a strict definition has not been made. However, as a quantitative guideline, it refers to industrially usable microorganisms that accumulate glutamic acid in the culture medium with a yield of 301/1 or more and a yield of 30% or more relative to glucose, as stated in 1. It can be interpreted.

これらの既知のグルタミン酸生産菌はすべて好気性、ダ
ラム陽性、胞子を形成しない桿菌でありコリネフォルム
細菌とよばれている菌群に含まれるが、さらにグルタミ
ン酸を培地中に著量に蓄積する能力を有する、ビオチン
要求性である。細胞壁中にメゾジアミノピメリン酸を含
有する。DNAのGet、tが55%付近にある、形態
的特徴および生理・生化学的性状が相互に類似している
などの事実が知られておシ、これらのことからグルタミ
ン酸生産菌と呼ばれているF=−一一一=−==δ7既
知の微生物は分類学的には相互に近縁のものであること
は広く認められているところである。
All of these known glutamate-producing bacteria are aerobic, Durham-positive, non-spore-forming rods and are included in a group of bacteria called coryneform bacteria, but they also have the ability to accumulate significant amounts of glutamate in the culture medium. It is biotin-requiring. Contains mesodiaminopimelic acid in the cell wall. It is known that the Get and t of DNA are around 55%, and that their morphological characteristics and physiological and biochemical properties are similar to each other, and for these reasons, they are called glutamate-producing bacteria. It is widely accepted that known microorganisms are taxonomically related to each other.

このように相互に近縁な微生物であると考えられている
にも拘らず、既知のグルタミン酸生産菌はブレビバクテ
リウム属(Brevibacterium属)、コリネ
バクテリウム属(Corynebacterium属)
或はミクロバクテリウムF4(Miarobacter
iumi )など異なった属に同定されている。これは
同定を行った時代の違い、なかんづく世界でもっとも権
威ある細菌の同定者であるバーデースマニュアルデタミ
ネイティブパクテリオロジーの同定時に於ける版 最新値の分類体系や分類基準の考え方の相違や。
Although these microorganisms are thought to be closely related to each other, the only known glutamate-producing bacteria are the genus Brevibacterium and the genus Corynebacterium.
Or Microbacterium F4
iumi) and have been identified in different genera. This is due to differences in the era of identification, and in particular, differences in the classification system and classification standards used in the latest edition of the Byrdes Manual Determined Native Pacteriology, the world's most authoritative bacterial identifier.

同定者の分類基準のウェイトの置き方の相違などがこの
ような現象をもたらした要因と考えられる。
Differences in the weighting of classification criteria among identifiers are thought to be the cause of this phenomenon.

また木下ら(文献■)は約20株のグルタミン酸生産菌
だついて分類学的な研究を行ないこれらの菌のもつ共通
的性質を分類基準としてグルタミン酸生産菌属の設定を
主張しているが、現在までこの主張は広く採用されるに
は至っていない。
In addition, Kinoshita et al. (Reference ■) conducted a taxonomic study on about 20 strains of glutamate-producing bacteria, and advocated the establishment of a genus of glutamate-producing bacteria based on the common characteristics of these bacteria. Until now, this argument has not been widely adopted.

一方、グルタミン酸発酵の工業生産では上述したグルタ
ミン酸生産菌をブドー塘、蔗糖や酢酸などの成分を含む
培地で窒素源としてアンモニア。
On the other hand, in the industrial production of glutamic acid fermentation, the above-mentioned glutamic acid-producing bacteria are grown in a medium containing ingredients such as sucrose and acetic acid, and ammonia is used as a nitrogen source.

尿素或は硫安などを用いて好気条件下で培養し培地中に
グルタミン酸を著量蓄積せしめる。グルタミン酸の蓄積
量は培地の組成、培養−,培養温度溶存酸素量および菌
体内に生成したグルタミン酸を培地中に排出せしめる手
段などにょ力異なってくるが、これらの因子を至適に設
定することにょシ答易に対ブドー糖収率30%以上かつ
培養液中のグルタミン酸の蓄積濃度309/1以上でグ
ルタミン酸を蓄積させることが可能である。
Cultivate under aerobic conditions using urea or ammonium sulfate to accumulate a significant amount of glutamic acid in the medium. The amount of glutamic acid accumulated depends on factors such as medium composition, culture temperature, amount of dissolved oxygen, and means of excreting glutamic acid produced within the bacterial cells into the medium, but it is important to optimally set these factors. It is possible to easily accumulate glutamic acid at a glucose yield of 30% or more and an accumulation concentration of glutamic acid in the culture solution of 309/1 or more.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

グルタミン酸は上述せる発酵法により我が国はもとより
世界の多くの国々で工業生産されている。
Glutamic acid is industrially produced in Japan and many other countries around the world by the above-mentioned fermentation method.

工業生産を実施するに当9最も重要な因子の一つに経済
性がある。本発明は発酵法によるグルタミン酸の工業生
産の経済性を高める技術を提供するものである。
One of the most important factors in implementing industrial production is economy. The present invention provides a technology that improves the economic efficiency of industrial production of glutamic acid by fermentation.

〔問題点を解決するための手段〕[Means for solving problems]

グルタミン酸発酵の工業生産において経済性を高める技
術的な要因はいくつかある。例えば対糖収率の向上、グ
ルタミン酸の蓄積濃度の向上、培養時間の短縮化等々で
ある。其の他に要因として重要なものに培養温度の高温
化がある。培養温度はグルタミン酸発酵至適温度で行れ
るが従来のグルタミン酸生産菌全使用する場合、この温
度は通常31〜32°である。培養が開始されると発酵
熱が発生するためにそのまま放置すれば培養液の温度は
上昇しグルタミン酸の生成は著しるしく低下する。培養
液の温度を至適に維持するためには、発酵槽内に熱交換
機を設置し、これに冷水を循還させることが必要となる
。冷水を得るためには冷凍機を使用しなければならない
が発生する発酵熱が美大であるため冷凍機で消費する電
気エネルギーも大きなものとなっている。従ってグルタ
ミン酸発酵の培養温度を従来より上昇させることが出来
れば冷却負担が減少し、もって本工業生産の経済性を高
めるものである。
There are several technical factors that increase the economics of industrial production of glutamic acid fermentation. For example, improvements in sugar yield, accumulation of glutamic acid concentration, shortening of culture time, etc. Another important factor is the increase in culture temperature. The culture temperature can be set to the optimum temperature for glutamic acid fermentation, but when all conventional glutamic acid producing bacteria are used, this temperature is usually 31 to 32°. When the culture is started, fermentation heat is generated, so if the culture is left as is, the temperature of the culture solution will rise and the production of glutamic acid will decrease significantly. In order to optimally maintain the temperature of the culture solution, it is necessary to install a heat exchanger in the fermenter and circulate cold water through it. To obtain cold water, a refrigerator must be used, but since the fermentation heat generated is high, the electrical energy consumed by the refrigerator is also large. Therefore, if the culture temperature for glutamic acid fermentation can be raised higher than before, the cooling burden will be reduced, thereby increasing the economic efficiency of this industrial production.

本発明者らは叙上の問題点を解決するため種々の研究を
行った結果、従来のグルタミン酸生産菌では生育し得な
い45°で生育出来る微生物の中に。
The present inventors conducted various studies to solve the above-mentioned problems, and as a result, we found a microorganism that can grow at 45 degrees, which conventional glutamic acid-producing bacteria cannot grow.

従来のグルタミン酸生産菌と同等のグルタミン酸生産能
(対糖収率36%以上、グルタミン酸蓄積量301/1
以上)を有し、かつ従来のグルタミン酸生産菌では生育
せずグルタミン酸発酵の実施不能な高温領域(例えば4
3°C)で著量のグルタミン酸を蓄積する能力を有する
新規な微生物を見出し、その微生物を用いてグルタミン
酸発酵を行ない培地中に著量のグルタミン酸を蓄積せし
める条件を見出すことにより本発明を完成するに至った
Glutamic acid production ability equivalent to conventional glutamic acid producing bacteria (sugar yield 36% or more, glutamic acid accumulation 301/1)
above), and in a high temperature range where conventional glutamate-producing bacteria cannot grow and glutamate fermentation cannot be carried out (for example, 4
The present invention was completed by discovering a new microorganism that has the ability to accumulate a significant amount of glutamic acid at 3°C), performing glutamic acid fermentation using the microorganism, and finding conditions for accumulating a significant amount of glutamic acid in the medium. reached.

以下に本発明の詳細について述べる。The details of the present invention will be described below.

従来のグルタミン酸生産菌の生育温度に関しては、上述
の引用した報告の中で触れられている限り、いずれの報
告でもグルタミン酸生産菌の共通の性質であるとして1
文献■では28°−37°で良好な生育をする。文献■
では30°−37°で良好な生育を示し42°では極め
て悪く生育しないものが多い、文献■では至適生育温度
25°−37°、42゜では微かな生育、文献■では4
2e′で生育するものはない、と報告されている。それ
ぞれの報告では実施方法の違い、生育の判定基準の違い
があるとしても、従来のグルタミン酸生産菌の最高生育
温度はせいぜい42°程度であると、類推される。そこ
で発明者らは、従来のグルタミン酸生産菌として取扱わ
れている菌株中より入手し得るものの殆どを網羅した表
−1に示し7’j20株を用い、ニュートリエンドブロ
スを培地として振盪式液体恒温槽による方法、及びニュ
ートリエンドアガーを培地とし友平板培養を高精度気体
恒温槽による方法の2法を用いて最高生育温度を検定し
友。その結果供試菌株はすべて42°では液体培養及び
平板培養の何れでも、生育は認められたかつ友。すなわ
ち従来のグルタばン酸生産菌の最高生育温度は42c′
以下と判定した。
Regarding the growth temperature of conventional glutamate-producing bacteria, as far as the above-mentioned reports mention, all of the reports cited 1 as a common property of glutamate-producing bacteria.
According to literature ■, it grows well at 28°-37°. Literature■
There are many plants that grow well at 30°-37° and do not grow very well at 42°. In literature ■, the optimal growth temperature is 25°-37°, and at 42°, there is slight growth, and in literature ■, 4.
It has been reported that nothing grows on 2e'. Although there are differences in implementation methods and growth criteria in each report, it can be inferred that the maximum growth temperature of conventional glutamic acid-producing bacteria is approximately 42° at most. Therefore, the inventors used the 7'j20 strain shown in Table 1, which covers most of the strains currently available as glutamic acid-producing bacteria, and used Nutriendo broth as a medium in a shaking liquid constant temperature bath. The maximum growth temperature was determined using two methods: one using nutriendo agar as a medium, and the other using plate culture in a high-precision gas constant temperature bath. As a result, all of the tested bacterial strains were observed to grow at 42° in both liquid culture and plate culture. In other words, the maximum growth temperature of conventional glutabanic acid producing bacteria is 42c'
It was determined as follows.

Brevibacterium ammoniagen
es      ATCC13745Brevibac
terium divaricatum      N
RRL  B2312Brevibacterium 
flavum          ATCC13826
Brevibacterium flavum    
      ATCC14067Brevibacte
rium glutamigenes     ATC
C13747Brevibacterium imma
riophllum    ATCC14068Bre
vibacterium  lactoferment
um    ATCC13869Brevi’bact
erium roseum          ATC
C13825Brevibacterium sacc
harolyticum   ATCC14066Br
evibacterium taipei      
   ATCC13744Brevibacteriu
m thiogenjtaljs   ATCC192
40Corynebacterium  acetoa
cidophilum   ATCC13870Cor
ynebacterium callunae    
   NRRL  B2244Corynebacte
rium glutamicum     ATCC1
3032Corynebacterium gluta
micum     ATCC13761Coryne
bacterium herculis      A
TCC13868Corynebacterium l
ilium        NRRL  B2243C
orynebacterium melassecol
a     ATCC17965Corynebact
erium sp、ATCC14747Microba
cterlum ammoniaphilum    
ATCC15354本発明者らは従来の培養温度よυも
高温領域でグルタミン酸発酵を行うためには少くとも従
来のグルタミン酸生産菌より最高生育温度が高い微生物
であることが要件となるであろうとの仮説のもとに自然
界の各種のサングル″fI−ta生物分離源として43
℃で生育する微生物を分離し、その中から著量のグルタ
ミン酸を培地中に蓄積する能力のある菌株を探索し、異
なっ危機生物分離源よ914株を取得した。これらの菌
株の菌学的性質を検定し同定を行っ危結果、分離株は相
互に類似しており同一種に含まれるものと判定した。以
下に代表的な4株(菌株番号、AJ12308 、 A
J12309 。
Brevibacterium ammonium
es ATCC13745Brevibac
terium divaricatum N
RRL B2312Brevibacterium
flavum ATCC13826
Brevibacterium flavum
ATCC14067Brevibacte
rium glutamigenes ATC
C13747Brevibacterium imma
riophllum ATCC14068Bre
vibacterium lactoferment
um ATCC13869Brevi'bact
erium roseum ATC
C13825Brevibacterium sacc
halolyticum ATCC14066Br
evibacterium taipei
ATCC13744 Brevibacterium
m thiogenjtaljs ATCC192
40Corynebacterium acetoa
cidophilum ATCC13870Cor
ynebacterium callunae
NRRL B2244Corynebacte
rium glutamicum ATCC1
3032Corynebacterium gluta
micum ATCC13761Coryne
bacterium herculis A
TCC13868Corynebacterium l
ilium NRRL B2243C
orynebacterium melassecol
a ATCC17965Corynebact
erium sp, ATCC14747 Microba
cterlum ammoniaphilum
ATCC 15354 The present inventors hypothesized that in order to carry out glutamic acid fermentation at temperatures higher than conventional culture temperatures, it would be necessary for the microorganism to have a maximum growth temperature higher than that of conventional glutamic acid producing bacteria. Originally, various types of samples in the natural world were used as biological isolation sources.
We isolated microorganisms that grow at ℃ and searched for strains capable of accumulating significant amounts of glutamic acid in the culture medium, and obtained 914 strains from different sources of endangered organisms. The mycological properties of these strains were tested and identified, and the results were positive. As a result, it was determined that the isolated strains were similar to each other and included in the same species. Below are four representative strains (strain numbers: AJ12308, A
J12309.

AJ12310 、 AJ12340 )について菌学
的性質全記載する。
The mycological properties of AJ12310, AJ12340) are fully described.

ここに示したようにこれらの菌株(以下本発明菌という
)はいずれも好気的に生育するダラム陽性の無胞子桿菌
であるところからコリネフォノL/ム細菌群に属する。
As shown here, all of these strains (hereinafter referred to as the present invention bacteria) belong to the Corynephono L/mu bacterial group because they are Durham-positive, non-spore bacilli that grow aerobically.

さらに、細胞分裂の様式がスナツピングタイプである、
細胞壁に含1れる2塩基アミノ酸がメゾジアミノピメリ
ン酸である、5%食塩含有培地で生育出来る耐滲透圧性
菌である、生育にビオチンを必要とする、後述する実施
例で示すように糖から高収率で著1のグルタミン酸を生
成し培地中に蓄積する、などの待機的性質を有するが、
これらの性質は従来知られているグルタミン酸生産萌と
同一である。また其の他の形態的性質、生理生化学的性
質においても多くの性状が既知のグルタミン酸生産菌と
共通である。以上のことから、本発明菌は既知のグルタ
ミン1夜生産菌と属のレベルでは同一の属に属せしめる
のが妥当でおろうと考えられる0既知のグルタミン酸生
産菌をどの属に分類するかは前述の通り見解のわかれる
ところであるが、文献■〜■なとを参考にした上で編さ
んされたコリネフォルム細菌群にかかわる最新のパーソ
ースマニュアル第8版では既知のグルタミン酸生産菌は
コリネバクテリウム属とプレビパクテリクムB客とにわ
けられて記載さnている。しかし本マニュアルではブレ
ビバクf I)ラム属そのものを分類学的に不確定な属
(Genu@1ncertae 5idis)として扱
い、コリネバクテリウム属は正規な属として扱っている
こと全考慮すれば本発明菌をコリネバクテリウム属に属
せしめるのが現時点ではもつとも妥当であると考えられ
る。
Furthermore, the mode of cell division is a snapping type.
The dibasic amino acid contained in the cell wall is mesodiaminopimelic acid. It is an osmotic resistant bacterium that can grow in a medium containing 5% salt. It requires biotin for growth. Although it has standby properties such as producing a remarkable amount of glutamic acid in high yield and accumulating it in the medium,
These properties are the same as those of the conventionally known glutamic acid producing moe. In addition, many of its other morphological and physiological and biochemical properties are common to known glutamate-producing bacteria. Based on the above, it is considered appropriate that the strain of the present invention belongs to the same genus as the known glutamine-producing bacteria. Although opinions are divided, the latest 8th edition of the source manual for the Coryneform bacteria group, which was compiled with reference to the literature ■~■, states that the known glutamate-producing bacteria are of the genus Corynebacterium. It is described separately from Plevipactericum B. However, in this manual, the genus Brevibacterium itself is treated as a taxonomically indeterminate genus (Genu@1ncertae 5idis), and the genus Corynebacterium is treated as a regular genus. Considering all of the above, it is not possible to use the bacterium of the present invention. At present, it is considered appropriate to assign it to the genus Corynebacterium.

次に本発明菌の拙レベルでの分類学的考察を行う。Next, a taxonomic discussion of the present invention bacteria will be made at my level.

本発明菌と既知のグルタミン酸生産菌との菌学的性質面
で共通して異なるものは以下の3性質である。第1は明
瞭な生育を示す最高温度が43°以上であるという点で
ある。前述し次ように既知のグルタミン酸生産菌の最高
生育温度は文献的にも、ま次発明者らは実施した試験結
果からも42°程度ないし42°以下であり43°以上
で生育するものは存在しない。第二は温度抵抗性である
。温度抵抗性は試験管など大容量で試験する場合には熱
の伝導時間などのばらつきから正しい結果が得られに<
<、スキムミルク中に菌を懸濁しこれをガラスキャピラ
リーに封入してテストする方法が最良とさ几ている(文
献■)本発明菌はすべての菌株がスキムミルク中、キャ
ピラリーチューブ検定法で55°−10分の処理で生残
する。これに対し既知グルタミン酸菌は本性で行えば5
5°−10分処理で大部分の菌株は死滅するが、微かな
生残金する菌株もおるとの報告(文献■)がおる。
Commonly different mycological properties between the present bacterium and known glutamic acid producing bacteria are the following three properties. The first is that the maximum temperature at which clear growth occurs is 43° or higher. As mentioned above, the maximum growth temperature of known glutamic acid-producing bacteria is around 42° or below 42°, both from the literature and from the test results conducted by the inventors, and there are no bacteria that grow at temperatures above 43°. do not. The second is temperature resistance. When testing temperature resistance in a large capacity test tube, it is difficult to obtain accurate results due to variations in heat conduction time, etc.
The best method is to test by suspending the bacteria in skim milk and sealing it in a glass capillary. Survive after 10 minutes of treatment. On the other hand, if the known glutamic acid bacteria are used in their natural state, 5
There is a report (Reference ■) that most bacterial strains are killed by treatment for 5° to 10 minutes, but some strains leave a trace of survival.

発明者らはこの点についても追試を行なった。The inventors conducted additional tests on this point as well.

表−1に示した既知のグルタミン酸生産菌のすべてにつ
いて本発明菌と同じ条件下で温度抵抗性試験を行った結
果、既知のグルタミン酸生産菌はすべて55°−10分
の処理で死滅し友。これに対し本発明菌は55°−10
分の処理で分離株14株のすべてが生残し、さらにこの
うち11株は60°−10分の処理でも生残した。
A temperature resistance test was conducted on all of the known glutamic acid producing bacteria shown in Table 1 under the same conditions as the present invention, and all of the known glutamic acid producing bacteria were killed by treatment at 55° for 10 minutes. In contrast, the bacteria of the present invention are 55°-10
All 14 isolates survived after 10 minutes of treatment, and 11 of these also survived after 10 minutes of treatment at 60°.

第三の特徴的性質は、本発明菌は43°においても著量
のグルタミン酸を蓄積することである。本試験の条件及
びグルタミン酸の蓄積量は実施例に示した通りである。
The third characteristic property is that the bacterium of the present invention accumulates a significant amount of glutamic acid even at 43°. The conditions of this test and the amount of glutamic acid accumulated are as shown in the Examples.

同条件で衣−1に示した既知ダルタミン酸生産菌株のグ
ルタミン酸の蓄積性を検足したがすべての菌株が生育せ
ず、蓄積したグルタミン酸も実質的に無であった。以上
述べた本発明菌の性質は既知のグルタミン酸生産菌にみ
られない性質で、特に最高生育温度や温度抵抗性の性質
は微生物変異操作によって上昇させることは不可能な安
定した性質と考えらnているので本発明菌は既知のグル
メばン酸生産菌の何nとも別種であるとするに充分な根
拠を有するものと解釈できる。また、本発明菌分離株1
4株の菌株相互間では生育状態やコロニーの色調などの
形態的性質の僅かな差異1例えばシヨ糖、麦芽砧、トレ
ノ・ロース、マンニット、イノジットなどからの酸生成
The glutamic acid accumulation properties of the known daltamic acid producing strains shown in Cloth-1 were examined under the same conditions, but none of the strains grew, and virtually no glutamic acid was accumulated. The above-mentioned properties of the present bacterium are not found in known glutamic acid-producing bacteria, and in particular, the properties of maximum growth temperature and temperature resistance are considered to be stable properties that cannot be increased by microbial mutation manipulation. Therefore, it can be interpreted that there is sufficient evidence that the bacterium of the present invention is a different species from any known glumebanoic acid producing bacterium. In addition, the present invention bacterial isolate 1
Slight differences in morphological properties such as growth status and colony color among the four strains 1. Acid production from sucrose, malt, tolenose, mannitol, inosit, etc.

MR,VP、硝酸塩還元及びウレアーゼ、などで生理生
化学的性質の差異#孝がみられたが、これすべて同一種
に属するものと認定した。
Differences in physiological and biochemical properties were observed in MR, VP, nitrate reduction, urease, etc., but all were recognized as belonging to the same species.

なお、本発明Δをグルタミン酸生産菌以外のコリネフォ
ルム細菌群に属する3種と対比して倹素を行ったが、該
当する@種は存在しなかりた。以上の考察より本発明直
に何れの3株もコリネバクテリウム属に属する新[種と
認め、コリネパクテリウムーサーモアミノダネス(Co
rynabacteriumthermoaminog
enes nov、 ip)と命名した。本11に属す
る代表的菌株はAJ12308 、 AJ12309 
In addition, a comparison was made by comparing the Δ of the present invention with three species belonging to the Coryneform bacteria group other than glutamic acid producing bacteria, but no corresponding @ species was found. Based on the above considerations, we recognized that all three strains of the present invention are new species belonging to the genus Corynebacterium, and that Corynebacterium thermoaminodanes (Co
rynabacterium thermoaminog
enes nov, ip). Representative strains belonging to Book 11 are AJ12308 and AJ12309.
.

AJ12310 、 AJ12340  であシ、これ
らの張体はそれぞれFERM 9244 + 9245
.9246 p 9277として寄託されている。
AJ12310 and AJ12340, these tension bodies are FERM 9244 + 9245 respectively.
.. 9246 p 9277.

実施例−1 コリネバクテリウムψサーモアミノダネスAJ1230
8を用い、く表−2〉に示した培地組成を有する培養液
を容量11の小型発酵溝に300ゴ張り込み、培Waノ
pl(カフ、 5〜8. OK保たnるようにアンモニ
アガスを適宜加えつつ43°で培養し九。培養開始5時
間後、比濁が0.6に達したときにペニシリンe 3 
U7fnlの濃度になるように添加しさらに培養を継続
した。培養16時間後の培養液全高速液体クロマトグラ
フで分析した結果、39.IEl/lの製度でグルタば
ン酸が蓄積していた。なおこのとき併行して同条件でグ
レビパクテリヮム・フラブムATCC13826を用い
て行った場合のグルタミン酸の蓄積量は0.11/l以
下であった。
Example-1 Corynebacterium ψ Thermoaminodanes AJ1230
8, fill a small fermentation groove with a capacity of 11 with 300 cups of culture solution having the culture medium composition shown in Table 2, and add ammonia gas to keep it OK. 9. Incubate at 43° while adding appropriate amount of water. 5 hours after the start of culture, when the turbidity reaches 0.6, add penicillin e 3.
It was added to the concentration of U7fnl and the culture was continued. After 16 hours of culture, the entire culture solution was analyzed by high-performance liquid chromatography, and the result was 39. Glutabanic acid was accumulated at a production level of IEl/l. At this time, when Glevipacterium flavum ATCC 13826 was used in parallel under the same conditions, the amount of glutamic acid accumulated was 0.11/l or less.

〈表−2〉グルタミン酸発酵試験に 使用した培地の組成 グルコース          100I!大豆分解g
、(全窒素として)    0.36NKH2PO41
g MgSO4・7H20lF F−、Mnl+     各2■ ビタミン・B1.Hctl 00 r ビオチン           1001硫酸アンモニ
ウム          5II水         
         1.OOOmj実施例2 コリネバクテリウム・サーモアミノゲネスAJ1230
9を用い実施例1と同様な方法でグルタミン酸発酵を行
った結果、培養18時間後の培養液中に40.O1/l
ののト更でグルタミン酸が蓄積した。
<Table 2> Composition of medium used for glutamic acid fermentation test Glucose 100I! soybean decomposition g
, (as total nitrogen) 0.36NKH2PO41
g MgSO4・7H20lF F−, Mnl+ 2 each ■ Vitamin・B1. Hctl 00 r Biotin 1001 Ammonium Sulfate 5II Water
1. OOOmj Example 2 Corynebacterium thermoaminogenes AJ1230
As a result of carrying out glutamic acid fermentation in the same manner as in Example 1 using 40. O1/l
Glutamic acid accumulated during the course of the study.

実施例3 コリネバクテリウム・サーモアミノデネスAJ1231
0を用い実施例1と同様な方法でグルタミン酸発酵を行
った結果、培養18時間後の培養液中に35.29/l
の′a度でグルタミン酸が蓄積した。
Example 3 Corynebacterium thermoaminodenes AJ1231
As a result of carrying out glutamic acid fermentation in the same manner as in Example 1 using
Glutamic acid accumulated at 'a degree.

実施例4 コリネバクテリウム・サーモアミノゲネスAJ1234
0を用い実施例−1と同様な方法でグルタミン酸発酵を
行った結果、培養18時間後の培養液中に38.17j
/lの#度でグルタミン酸が蓄積した。
Example 4 Corynebacterium thermoaminogenes AJ1234
As a result of performing glutamic acid fermentation in the same manner as in Example 1 using 0.38.17j in the culture solution after 18 hours of culture.
Glutamic acid accumulated at # degree of /l.

実施例−5 コリネバクテリウム・サーモアミノダネスAJ1230
8を用い、〈表−2>K示した培地組成よりグルコース
と硫酸アンモニウムを除き酢酸アンモニウムを20gを
添加した培地組成を有する培養液を容量11の小型発酵
槽に300d張り込み、培養液の−が7.5〜8.0に
保たれるように酢酸或はアンモニアガスを適宜加えつつ
40°で培養した。
Example-5 Corynebacterium thermoaminodanes AJ1230
8, 300 d of culture solution having the culture medium composition shown in <Table 2> K except glucose and ammonium sulfate and addition of 20 g of ammonium acetate was poured into a small fermenter with a capacity of 11, and the - of the culture solution was 7. Culture was carried out at 40° while adding acetic acid or ammonia gas as appropriate to maintain the temperature between .5 and 8.0.

培養開始8時間後、比濁が0.6に達したときに梨ニジ
リンを3U/rnlの濃度になるように添加しさらに培
養を継続した。培養24時間後の培養液を高速液体クロ
マトグラフで分析した結果32y/lの濃度で蓄積して
い念が、これは対酢酸状$31.5%であった。
Eight hours after the start of the culture, when the turbidity reached 0.6, pear nigirin was added to the solution at a concentration of 3 U/rnl, and the culture was continued. After 24 hours of incubation, the culture solution was analyzed by high-performance liquid chromatography and found to have accumulated at a concentration of 32 y/l, which was 31.5% based on acetic acid.

Claims (2)

【特許請求の範囲】[Claims] (1)最高生育温度が43℃以上、温度抵抗性が55°
−10分以上かつ著量のグルタミン酸を蓄積する能力を
有する新規な微生物;コリネバクテリウム・サーモアミ
ノゲネス(Corynebacteriumtherm
oanimogenes)
(1) Maximum growth temperature is 43℃ or higher, temperature resistance is 55℃
- A novel microorganism with the ability to accumulate significant amounts of glutamate for more than 10 minutes;
oanimogenes)
(2)コリネバクテリウム・サーモアミノゲネスを用い
てグルタミン酸発酵を行ない培養液中よりグルタミン酸
を採取することを特徴とするグルタミン酸の製造法。
(2) A method for producing glutamic acid, which comprises performing glutamic acid fermentation using Corynebacterium thermoaminogenes and collecting glutamic acid from the culture solution.
JP62075727A 1987-03-27 1987-03-27 Novel microorganism and method for producing glutamic acid using the same Expired - Lifetime JPH0763383B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP62075727A JPH0763383B2 (en) 1987-03-27 1987-03-27 Novel microorganism and method for producing glutamic acid using the same
AU11614/88A AU616168C (en) 1987-03-27 1988-02-10 Novel microorganisms and a method for production of glutamic acid using the same
MYPI88000138A MY102317A (en) 1987-03-27 1988-02-10 Novel microorganisms and a method for production of glutamic acid using the same.
BR8801289A BR8801289A (en) 1987-03-27 1988-03-22 MICROORGANISM AND PROCESS FOR THE PRODUCTION OF GLUTAMIC ACID
PH36679A PH25252A (en) 1987-03-27 1988-03-23 Novel microorganism and method for production of glutamic acid using the same
FR888803884A FR2612937B1 (en) 1987-03-27 1988-03-24 NOVEL MICROORGANISMS AND METHOD FOR THE PRODUCTION OF GLUTAMIC ACID USING THESE MICROORGANISMS
KR1019880003283A KR960006580B1 (en) 1987-03-27 1988-03-26 New microorganisms and processing method of giutamic acid using it
US07/702,111 US5250434A (en) 1987-03-27 1991-05-16 Microorganisms for production of glutamic acid
BR1100229-8A BR1100229A (en) 1987-03-27 1997-04-07 Microorganism and process for the production of glutamic acid.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62075727A JPH0763383B2 (en) 1987-03-27 1987-03-27 Novel microorganism and method for producing glutamic acid using the same

Publications (2)

Publication Number Publication Date
JPS63240779A true JPS63240779A (en) 1988-10-06
JPH0763383B2 JPH0763383B2 (en) 1995-07-12

Family

ID=13584588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62075727A Expired - Lifetime JPH0763383B2 (en) 1987-03-27 1987-03-27 Novel microorganism and method for producing glutamic acid using the same

Country Status (6)

Country Link
JP (1) JPH0763383B2 (en)
KR (1) KR960006580B1 (en)
BR (1) BR8801289A (en)
FR (1) FR2612937B1 (en)
MY (1) MY102317A (en)
PH (1) PH25252A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6905819B1 (en) 1999-08-12 2005-06-14 Ajinomoto Co., Inc. Plasmid autonomously replicable in coryneform bacteria

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2990735B2 (en) * 1990-04-20 1999-12-13 味の素株式会社 Fermentative production of L-lysine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3355359A (en) * 1964-07-18 1967-11-28 Asahi Chemical Ind Process for producing l-glutamic acid by using corynebacterium melassecola
US3338793A (en) * 1964-09-18 1967-08-29 Asahi Chemical Ind Method for production of l-glutamic acid by microbacteria
JPS6248393A (en) * 1985-08-24 1987-03-03 Ajinomoto Co Inc Production of l-glutamic acid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6905819B1 (en) 1999-08-12 2005-06-14 Ajinomoto Co., Inc. Plasmid autonomously replicable in coryneform bacteria
KR100714107B1 (en) * 1999-08-12 2007-05-07 아지노모토 가부시키가이샤 Plasmid autonomously replicable in Coryneform bacteria
US7244569B2 (en) 1999-08-12 2007-07-17 Ajinomoto Co., Inc. Plasmid autonomously replicable in coryneform bacteria

Also Published As

Publication number Publication date
AU1161488A (en) 1988-09-29
FR2612937B1 (en) 1990-01-12
PH25252A (en) 1991-03-27
FR2612937A1 (en) 1988-09-30
BR8801289A (en) 1988-10-25
AU616168B2 (en) 1991-10-24
KR880011324A (en) 1988-10-27
KR960006580B1 (en) 1996-05-20
JPH0763383B2 (en) 1995-07-12
MY102317A (en) 1992-05-28

Similar Documents

Publication Publication Date Title
Satoh et al. Rhodopseudomonas sphaeroides forma sp. denitrificans, a denitrifying strain as a subspecies of Rhodopseudomonas sphaeroides
Kandler et al. Lactobacillus kefir sp. nov., a component of the microflora of kefir
US5250434A (en) Microorganisms for production of glutamic acid
JP3966583B2 (en) Method for producing L-amino acid by fermentation
CN113444664B (en) Lactobacillus brevis for producing gamma-aminobutyric acid and application thereof
Grimont et al. Ewingella americana gen. nov., sp. nov., a new Enterobacteriaceae isolated from clinical specimens
US5250423A (en) Method for the production of L-lysine employing thermophilic corynebacterium thermoaminogenes
US3979261A (en) Production of glucose isomerase by bacillus coagulans
Shiio et al. Microbial Production of l-Threonine: Part I. Production by Escherichia coli Mutant Resistant to α-Amino-β-hydroxyvaleric Acid
WO2023065460A1 (en) Streptococcus thermophilus jmcc0033 and use thereof
JPS61209594A (en) Production of alcohol
JPS63240779A (en) Novel microorganism and production of glutamic acid therewith
EP0666321A2 (en) Process for production of amide compounds using microorganism
Su et al. Studies on l-Glutamic Acid Fermentation: Part I. Isolation of a l-Glutamic Acid Producing Strain and its Taxonomical Studies
EP0112020B2 (en) A new microorganism belonging to streptococcus thermophilus and a composition containing said microorganism
BG99311A (en) Ferments for bulgarian yoghourt and method for their preparation
EP0032987A1 (en) Thermophilic aspartase, processes for producing, culture used, and L-aspartic acid preparation process using the same
JPS58216688A (en) Production of alpha-glycerophosphate- oxidase
US4237228A (en) Method of producing L-isoleucine using Brevibacterium flavum
DE3689181T2 (en) Thermostable tryptophanase, process for its preparation and thermostable tryptophanase-producing microorganism.
JPS59113894A (en) Preparation of l-glutamic acid by fermentation
Weinstein et al. Biological and chemical studies of the Lactobacillus genus with special reference to xylose fermentation by L. pentoaceticus
Cheldelin et al. Adaptations in growth factor requirements for lactic acid bacteria
Koser et al. A study of d-arabinose fermentation
JPH0253437A (en) Preparation of fermented milk

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070712

Year of fee payment: 12