JPS6324047B2 - - Google Patents

Info

Publication number
JPS6324047B2
JPS6324047B2 JP858783A JP858783A JPS6324047B2 JP S6324047 B2 JPS6324047 B2 JP S6324047B2 JP 858783 A JP858783 A JP 858783A JP 858783 A JP858783 A JP 858783A JP S6324047 B2 JPS6324047 B2 JP S6324047B2
Authority
JP
Japan
Prior art keywords
temperature
sec
continuous annealing
cooling rate
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP858783A
Other languages
Japanese (ja)
Other versions
JPS59136424A (en
Inventor
Atsuki Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP858783A priority Critical patent/JPS59136424A/en
Publication of JPS59136424A publication Critical patent/JPS59136424A/en
Publication of JPS6324047B2 publication Critical patent/JPS6324047B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 本発明は、冷延鋼板の連続焼鈍法に関し、特に
絞り用遅時効性冷延鋼板の製造に使用するのに適
した連続焼鈍法に関する。 近年絞り用遅時効性冷延鋼板は連続焼鈍法によ
り製造し得るようになつたが、連続焼鈍のヒート
サイクルにおいては、いかにして短時間の処理で
絞り性の良好な冷延鋼板を製造するかが技術開発
のポイントでありかつ工業的、技術的価値が大き
い。 冷延鋼板の絞り性を上げるにはA1変態点以上
A3変態点以下でかつ高温での加熱が有効なこと
がよく知られている。しかし、このようなα+γ
相共存域から急速に冷却するとγ相の大半がパー
ライト相に変態してしまい冷延鋼板の絞り性を低
下してしまうため、加熱温度からA1変態温度以
下まで徐冷却し、γ相から十分フエライトを析出
させ、次いで過時効処理温度まで急冷する連続焼
鈍法が従来行われている。 しかし、このようにA1点以上の温度からA1
以下の温度まで徐冷すると、その徐冷に多大な時
間を要し、連続焼鈍における短時間処理という経
済的効果を減じる。 例えば加熱温度を850℃とし、急冷開始温度を
650℃とすればこの200℃の間を約5℃/secで冷
却するとき40sec要することになり、それだけ連
続焼鈍ライン長が長くなることになる。 それ故本発明は、連続焼鈍処理時間を短くしこ
れによつて連続焼鈍ライン長を短縮できる連続焼
鈍法を提供することを目的とし、この目的を達成
するために鋼板をA1点以上の加熱温度からA1
以下の特定の温度範囲まで急速に冷却し、次いで
この温度に特定の時間保持するかあるいはこの温
度から特定の時間徐冷し、しかる後固溶炭素の過
時効処理温度まで急冷することに特徴を有するも
のである。 本発明の第1の態様に依れば、鋼板をA1変態
点以上、A3変態点以下の温度に加熱し、前記温
度から620℃〜720℃間の温度T1まで平均冷却速
度40〜200℃/secで冷却し、次いで温度T1にて
5〜30秒保持し、しかる後250〜450℃間の温度で
T3まで平均冷却速度45〜200℃/secで冷却し、
つぎに300〜450℃間の温度で固溶炭素の過時効処
理を行なうことを特徴とする、絞り用冷延鋼板の
連続冷却焼鈍法が提供される。 本発明の第2の態様に依れば、鋼板をA1変態
点以上、A3変態点以下の温度に加熱し、前記温
度から620℃〜720℃間の温度T1まで平均冷却速
度40〜200℃/secで冷却し、次いで温度からT1
〜T1−60℃間の温度T2まで平均冷却速度4℃/
sec以下で5〜30秒冷却し、しかる後250〜450℃
間の温度T3まで平均冷却速度40〜200℃/secで
冷却し、次ぎに300〜450℃間の温度で固溶炭素の
過時効処理を行なうことを特徴とする、絞り用冷
延鋼板の連続焼鈍法が提供される。 なお第1図中aは本発明の第1の態様に依る連
続焼鈍法、bは本発明の第2の態様に依る連続焼
鈍法、cは従来技術に依る連続焼鈍法を概略的に
示したものである。 以下本発明の要件について詳細に説明する。 まず加熱温度に関しては前述のとおりA1点以
上でないと結晶粒の成長が不十分で絞り性が良く
ない。 一方、A3変態点を超えるとフエライトで形成
された望ましい集合組織が破壊されて良好な絞り
性が得られなくなるので、前述のようにA3変態
点以下に加熱することが望ましいことが知られて
おり、本発明にあつてもA3変態点以下に加熱す
る。 次にT1の温度範囲に関してはA1点以下の温度
でかつγ相から初折α相が短時間に形成される温
度である必要がある。720℃超の温度ではα相の
形成に時間を要するし、620℃未満の温度では初
析フエライトの形成はなくγ相から直接パーライ
ト相が形成され、冷延鋼板の深絞り性を劣化させ
る。そこでT1の温度範囲を620℃〜720℃に限定
した。 冷却速度については経済的効果からは速い方が
良い。本発明においては平均冷却速度を40〜200
℃/secに限定しているが、この理由は40℃/sec
未満では連続焼鈍ライン長が長くなつてしまい、
200℃/sec超では変態歪が鋼に導入され、冷延鋼
板の伸びが低下してしまうからである。 本発明の第1の態様においては鋼板を冷却後の
温度T1に5〜30秒保持するものであるが、これ
はγ相から初析フエライトを形成させ、パーライ
ト相を最少限にするために5秒以上は必要で、30
秒超では効果が飽和するからである。5秒未満で
は初析フエライトの形成が不十分で冷延鋼板の絞
り性が劣化してしまう。 一方本発明の第2の態様においては、温度T1
からT1〜T1−60℃間の温度T2まで平均冷却速度
一般には4℃以下、好ましくは2℃/sec以下で
鋼板を5〜30秒冷却する。前述のとおり温度T1
に5秒以上保持すると上記組織上の効果だけでな
く、鋼板の温度が均一化され、特性のバラツキが
減少するメリツトはあるが、保持のための熱源が
必要で省エネルギー的な要求には反する。このよ
うな場合温度T1からT2まで徐冷することが望ま
しい。この徐冷速度の前述の組織上の変化を行な
わさせ、かつ温度の均一性が確保し得るほど徐冷
でなければならずこの意味で4℃/sec以下が良
い。これ以上では初析フエライトが少ししか形成
されずパーライトが多量に形成された鋼板の絞り
性が劣化する。 なおT2の温度はT1より最大60℃以下の温度が
好ましい。 次に温度T3までの冷却速度を40〜200℃/sec
に限定したのは、冷却速度は速いほどライン長を
短縮できるが。200℃/sec超では焼入れ歪が導入
され、冷延鋼板の伸びを劣化させ、一方40℃/
sec未満では後の過時効処理に多大な時間を要し
好ましくないからである。 T3の温度は後述する過時効処理温度又はそれ
以下の温度が望ましい。しかし250℃未満では過
時効処理温度より低すぎ再加熱に多量な熱エネル
ギーを要するので好ましくない。又450℃超では
過時効処理前のCの過飽和度が少なく長時間の過
時効処理を要することとなる。従つてT3の温度
範囲は250〜450℃が好ましい。 更にはまた固溶炭素の過時効処理温度について
は、固溶炭素を効率良く短時間で析出させる温度
である必要がある。一定温度に保持しても段階的
に冷却しても良いが300℃未満ではCの拡散が少
なく有効でないし、又450℃超ではCの固溶度が
大きすぎCの析出が不十分である。そこで過時効
処理温度を300〜450℃の範囲内に限定した。 以下本発明に依る絞り用冷延鋼板の連続焼鈍法
を実施例について説明する。 実施例 0.04%C、0.01%Si、0.015%Mn、0.010%P、
0.008%S、0.025%Al、0.0012%Nの転炉溶製Al
キルド鋼を仕上温度880℃巻取温度660℃にて3.0
mm厚に熱延した。酸洗後これを0.7mm厚に冷延し、
次いで表に示す条件にて連続焼鈍し、次いで0.8
%の調質圧延の後50℃、3日の加速効処理を行な
い、次いでJIS5号試験片による引張試験を行なつ
た。本鋼成分のA1変態点は約725℃、A3変態点は
約890℃である。なお連続焼鈍の加熱速度は約10
℃/sec加熱均熱時間は10sec過時効処理時間は3
分とし過時効処理後は250℃まで10℃/secで、冷
却し250℃より水冷した。なお時効指数は10%の
引張変形を与えた後100℃、1時間の熱処理を行
ない、再引張時の降伏応力の上昇分を求めたもの
で4.0Kg/mm2以下から遅時効性であることを示し
ている。表からわかるように本発明法による鋼板
は降伏応力が低く伸びが良好でr値も高くかつ時
効指数も低く絞り用遅時効性冷延鋼板である。 しかるに、、、は加熱からT2に到る
までの冷却方法が図中で示した点において不適当
なため伸びが低く降伏応力が高い。またはT2
からT3までの冷却速度が遅いためCの析出が不
十分で時効指数が高くなつてしまつている。 以上説明したとおり本発明に依る絞り用冷延鋼
板の連続焼鈍法においては、鋼板をA1点以上の
加熱温度からA1点以下の特定の温度範囲まで急
速に冷却し、次いでこの温度に特定の時間保持す
るか或いはこの温度から特定の時間徐冷し、しか
る後固溶炭素の過時効処理温度まで急冷するた
め、連続焼鈍処理時間が短かくなり、従つて連続
焼鈍ライン長を短縮でき、経済的に極めてすぐれ
ている。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous annealing method for cold-rolled steel sheets, and particularly to a continuous annealing method suitable for use in producing slow-aging cold-rolled steel sheets for drawing. In recent years, it has become possible to produce slow-aging cold-rolled steel sheets for drawing using the continuous annealing method, but how can cold-rolled steel sheets with good drawability be produced in a short time using the heat cycle of continuous annealing? This is the key point in technological development and has great industrial and technical value. To increase drawability of cold-rolled steel sheets, A 1 transformation point or higher
It is well known that heating at a high temperature below the A3 transformation point is effective. However, such α + γ
If rapidly cooled from the phase coexistence region, most of the γ phase will transform into the pearlite phase, reducing the drawability of the cold rolled steel sheet. Conventionally, a continuous annealing method has been used in which ferrite is precipitated and then rapidly cooled to an overaging treatment temperature. However, slow cooling from a temperature above point A to a temperature below point A takes a long time, reducing the economical effect of short-time processing in continuous annealing. For example, the heating temperature is 850℃, and the quenching start temperature is 850℃.
If the temperature is 650°C, cooling at a rate of about 5°C/sec between these 200°C will require 40 seconds, and the length of the continuous annealing line will increase accordingly. Therefore, an object of the present invention is to provide a continuous annealing method that can shorten the continuous annealing treatment time and thereby shorten the continuous annealing line length, and to achieve this objective, a steel plate is heated at one or more points A. Rapid cooling from temperature to a specific temperature range below 1 point A, then held at this temperature for a specific time, or slowly cooled from this temperature for a specific time, then rapidly cooled to the overaging treatment temperature of solid solute carbon. It is characterized by the fact that According to the first aspect of the present invention, a steel plate is heated to a temperature not lower than A1 transformation point and not higher than A3 transformation point, and the average cooling rate is 40 to Cool at 200℃/sec, then hold at temperature T 1 for 5 to 30 seconds, then cool at a temperature between 250 and 450℃.
Cool at an average cooling rate of 45 to 200℃/sec until T 3 ,
Next, there is provided a continuous cooling annealing method for a cold-rolled steel sheet for drawing, which is characterized by carrying out an overaging treatment of solute carbon at a temperature between 300 and 450°C. According to the second aspect of the present invention, a steel plate is heated to a temperature not lower than the A1 transformation point and not higher than the A3 transformation point, and the average cooling rate is 40 to 40°C from the temperature to a temperature T1 between 620°C and 720°C. Cool at 200℃/sec, then reduce temperature to T 1
Average cooling rate 4℃/ to temperature T 2 between ~T 1 -60℃
Cool for 5 to 30 seconds below sec, then 250 to 450℃
A cold-rolled steel sheet for drawing, which is characterized by being cooled at an average cooling rate of 40 to 200°C/sec to a temperature T3 between A continuous annealing method is provided. In Fig. 1, a schematically shows a continuous annealing method according to the first aspect of the present invention, b schematically shows a continuous annealing method according to the second embodiment of the present invention, and c schematically shows a continuous annealing method according to the conventional technology. It is something. The requirements of the present invention will be explained in detail below. First, regarding the heating temperature, as mentioned above, if it is not A1 point or higher, the growth of crystal grains will be insufficient and the drawability will not be good. On the other hand, if the A3 transformation point is exceeded, the desired texture formed by ferrite will be destroyed and good drawability will not be obtained, so it is known that it is desirable to heat the A3 transformation point or below as mentioned above. Therefore, even in the present invention, it is heated to below the A3 transformation point. Next, regarding the temperature range of T1 , it needs to be a temperature below the A1 point and a temperature at which the primary α phase is formed from the γ phase in a short time. At temperatures above 720°C, it takes time to form the α phase, and at temperatures below 620°C, no pro-eutectoid ferrite is formed and the pearlite phase is formed directly from the γ phase, which deteriorates the deep drawability of cold rolled steel sheets. Therefore, the temperature range of T1 was limited to 620°C to 720°C. Regarding the cooling rate, the faster the better from the economical point of view. In the present invention, the average cooling rate is 40 to 200.
It is limited to ℃/sec, but the reason for this is 40℃/sec.
If it is less than that, the continuous annealing line length will become long,
This is because if the temperature exceeds 200°C/sec, transformation strain will be introduced into the steel and the elongation of the cold rolled steel sheet will decrease. In the first embodiment of the present invention, the steel plate is held at a temperature T 1 after cooling for 5 to 30 seconds, but this is done in order to form pro-eutectoid ferrite from the γ phase and to minimize the pearlite phase. 5 seconds or more is required, 30
This is because the effect becomes saturated when the time exceeds seconds. If the time is less than 5 seconds, the formation of pro-eutectoid ferrite will be insufficient and the drawability of the cold-rolled steel sheet will deteriorate. On the other hand, in the second aspect of the invention, the temperature T 1
The steel plate is cooled for 5 to 30 seconds from T 1 to a temperature T 2 between T 1 and T 1 -60° C. at an average cooling rate of generally 4° C. or less, preferably 2° C./sec or less. Temperature T 1 as mentioned above
Holding the steel sheet for more than 5 seconds has the advantage of not only achieving the above-mentioned structural effects but also of uniformizing the temperature of the steel plate and reducing variations in properties, but it requires a heat source for holding, which goes against energy-saving requirements. In such cases, it is desirable to slowly cool the material from T 1 to T 2 . The slow cooling rate must be slow enough to cause the above-mentioned structural changes and to ensure temperature uniformity, and in this sense it is preferably 4° C./sec or less. If it exceeds this range, only a small amount of pro-eutectoid ferrite will be formed, and the drawability of the steel sheet with a large amount of pearlite formed will deteriorate. Note that the temperature of T 2 is preferably at most 60° C. or lower than that of T 1 . Next, the cooling rate to temperature T 3 is 40 to 200℃/sec.
The reason for this limitation is that the faster the cooling rate, the shorter the line length can be. At over 200℃/sec, quenching strain is introduced and deteriorates the elongation of the cold rolled steel sheet, while at 40℃/sec
This is because if it is less than sec, it will take a lot of time for the subsequent overaging treatment, which is not preferable. The temperature of T 3 is preferably the overaging treatment temperature described later or a temperature lower than that. However, a temperature lower than 250°C is undesirable because it is lower than the overaging treatment temperature and requires a large amount of thermal energy for reheating. Moreover, if it exceeds 450°C, the degree of supersaturation of C before over-aging treatment is low, and a long over-aging treatment is required. Therefore, the temperature range of T3 is preferably 250 to 450°C. Furthermore, the temperature for overaging treatment of solute carbon must be such that the solute carbon can be efficiently precipitated in a short period of time. It is possible to maintain the temperature at a constant temperature or cool it in stages, but if it is less than 300°C, the diffusion of C is small and it is not effective, and if it exceeds 450°C, the solid solubility of C is too large and the precipitation of C is insufficient. . Therefore, the overaging treatment temperature was limited to a range of 300 to 450°C. The continuous annealing method for cold-rolled steel sheets for drawing according to the present invention will be described below with reference to Examples. Example 0.04%C, 0.01%Si, 0.015%Mn, 0.010%P,
Converter melted Al with 0.008% S, 0.025% Al, 0.0012% N
Killed steel finishing temperature 880℃ and winding temperature 660℃ 3.0
Hot rolled to mm thickness. After pickling, it was cold rolled to a thickness of 0.7 mm.
Next, continuous annealing was performed under the conditions shown in the table, and then 0.8
% temper rolling, accelerated effect treatment was performed at 50°C for 3 days, and then a tensile test was performed using a JIS No. 5 test piece. The A1 transformation point of this steel component is approximately 725°C, and the A3 transformation point is approximately 890°C. The heating rate for continuous annealing is approximately 10
℃/sec Heating soaking time is 10sec Over-aging treatment time is 3
After over-aging, it was cooled to 250°C at a rate of 10°C/sec, and then water-cooled from 250°C. The aging index is determined by applying a 10% tensile deformation, followed by heat treatment at 100°C for 1 hour, and determining the increase in yield stress upon re-tensile.It must be slow aging from 4.0Kg/ mm2 or less. It shows. As can be seen from the table, the steel sheet produced by the method of the present invention has a low yield stress, good elongation, a high r value, and a low aging index, and is a slow aging cold rolled steel sheet for drawing. However, the method of cooling from heating to T 2 is inappropriate at the points shown in the figure, resulting in low elongation and high yield stress. or T 2
Since the cooling rate from T to T3 is slow, precipitation of C is insufficient and the aging index becomes high. As explained above, in the continuous annealing method for cold-rolled steel sheets for drawing according to the present invention, the steel sheet is rapidly cooled from a heating temperature of 1 point A or more to a specific temperature range of 1 point A or less, and then The continuous annealing treatment time is shortened, and the continuous annealing line length can be shortened. It is extremely economical. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図はa本発明の第1の態様に依る連続焼鈍
法、b本発明の第2の態様に依る連続焼鈍法、c
従来技術に依る連続焼鈍法を概略的に示した図で
ある。
Figure 1 shows a continuous annealing method according to the first aspect of the present invention, b continuous annealing method according to the second aspect of the present invention, and c
1 is a diagram schematically showing a continuous annealing method according to the prior art.

Claims (1)

【特許請求の範囲】 1 鋼板をA1変態点以上A3変態点以下の温度に
加熱し、前記温度から620℃〜720℃間の温度T1
まで平均冷却速度40〜200℃/secで冷却し、次い
で温度T1にて5〜30秒保持し、しかる後250〜
450℃間の温度T3まで平均冷却速度40〜200℃/
secで冷却し、次に300〜450℃間の温度で固溶炭
素の過時効処理を行なうことを特徴とする、絞り
用冷延鋼板の連続焼鈍法。 2 鋼板をA1変態点以上A3変態点以下の温度に
加熱し、前記温度から620℃〜720℃間の温度T1
まで平均冷却速度40〜200℃/secで冷却し、次い
で温度T1〜T1−60℃の温度T2まで平均冷却速度
4℃/sec以下で5〜30秒冷却し、しかる後250〜
450℃間の温度T3まで平均冷却速度40〜200℃/
secで冷却し、次に300〜450℃間の温度で固溶炭
素の過時効処理を行なうことを特徴とする、絞り
用冷延鋼板の連続焼鈍法。
[Claims] 1. A steel plate is heated to a temperature between A1 transformation point and A3 transformation point, and a temperature T1 between 620°C and 720°C from the above temperature.
Cool at an average cooling rate of 40 to 200℃/sec, then hold at temperature T 1 for 5 to 30 seconds, then cool to 250℃/sec.
Average cooling rate 40~200℃/up to temperature T 3 between 450℃
A continuous annealing method for cold-rolled steel sheets for drawing, characterized by cooling at sec and then over-aging treatment of solid solution carbon at a temperature between 300 and 450°C. 2. Heat the steel plate to a temperature of A1 transformation point or more and A3 transformation point or less, and then heat the steel plate to a temperature T1 between 620°C and 720°C from the above temperature.
Cool at an average cooling rate of 40 to 200°C/sec until temperature T 1 to T 1 -60°C to temperature T 2 for 5 to 30 seconds at an average cooling rate of 4°C/sec or less, then cool to 250 to 200°C.
Average cooling rate 40~200℃/up to temperature T 3 between 450℃
A continuous annealing method for cold-rolled steel sheets for drawing, characterized by cooling at sec and then over-aging treatment of solid solution carbon at a temperature between 300 and 450°C.
JP858783A 1983-01-21 1983-01-21 Continuous annealing method of cold rolled steel plate for drawing Granted JPS59136424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP858783A JPS59136424A (en) 1983-01-21 1983-01-21 Continuous annealing method of cold rolled steel plate for drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP858783A JPS59136424A (en) 1983-01-21 1983-01-21 Continuous annealing method of cold rolled steel plate for drawing

Publications (2)

Publication Number Publication Date
JPS59136424A JPS59136424A (en) 1984-08-06
JPS6324047B2 true JPS6324047B2 (en) 1988-05-19

Family

ID=11697123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP858783A Granted JPS59136424A (en) 1983-01-21 1983-01-21 Continuous annealing method of cold rolled steel plate for drawing

Country Status (1)

Country Link
JP (1) JPS59136424A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195118B2 (en) 2004-01-30 2007-03-27 Graphic Packaging International, Inc. Beveled corner carton with an interlocking separator pad

Also Published As

Publication number Publication date
JPS59136424A (en) 1984-08-06

Similar Documents

Publication Publication Date Title
US5405463A (en) Continuous annealing process of producing cold rolled mild steel sheet excellent in deep drawability and aging resistibility
US4374682A (en) Process for producing deep-drawing cold rolled steel strips by short-time continuous annealing
US4116729A (en) Method for treating continuously cast steel slabs
JPS6324047B2 (en)
JPS5842249B2 (en) Manufacturing method of soft cold-rolled steel sheet for pressing by continuous annealing
JPH0532443B2 (en)
JPH07292419A (en) Production of steel sheet for vessel, excellent in fluting resistance
JPS59153832A (en) Heat treatment of hot rolled strip of martensitic stainless steel
JPS5830934B2 (en) Manufacturing method of cold-rolled steel sheet with good formability by short-time continuous annealing
JPS5810972B2 (en) Manufacturing method by continuous annealing of cold-rolled steel sheets with excellent deep drawability
JP3034964B2 (en) Method for producing soft surface-treated original sheet by continuous annealing
JPS5810447B2 (en) Manufacturing method by continuous annealing of cold-rolled steel sheets with excellent workability and aging resistance
JPH01191748A (en) Manufacture of cold rolled steel sheet for press forming excellent in material homogeneity in coil
SU995925A1 (en) Method of working low carbon steel strip
SU624939A1 (en) Method of manufacturing band from welded hot-rolled strip
JPS60162731A (en) Production of continuously annealed and cold rolled steel sheet having small ageability
JPH02415B2 (en)
JP2773983B2 (en) Manufacturing method of surface-treated original sheet by continuous annealing
JP2612453B2 (en) Method for producing hot-rolled mild steel sheet with excellent drawability
JP2816595B2 (en) Manufacturing method of original sheet for soft surface treatment by continuous annealing
JPH01188630A (en) Manufacture of cold rolled steel sheet having superior press formability
JPS58217638A (en) Preparation of cold rolled steel plate good in ageing resistance and ductility
JPH02141534A (en) Production of cold rolled steel sheet having delayed aging property
JPS63277724A (en) Manufacture of cold-rolled steel sheet excellent in deep drawability
JPH0557333B2 (en)