JPS63240017A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63240017A
JPS63240017A JP7465087A JP7465087A JPS63240017A JP S63240017 A JPS63240017 A JP S63240017A JP 7465087 A JP7465087 A JP 7465087A JP 7465087 A JP7465087 A JP 7465087A JP S63240017 A JPS63240017 A JP S63240017A
Authority
JP
Japan
Prior art keywords
titanium
film
silicon
silicon substrate
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7465087A
Other languages
Japanese (ja)
Inventor
Takehito Yoshida
岳人 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7465087A priority Critical patent/JPS63240017A/en
Publication of JPS63240017A publication Critical patent/JPS63240017A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to form a titanium-silicide layer having excellent heat-resisting property by a method wherein a reverse sputtering operation is performed using argon ions, and immediately after the active surface of silicon has been exposed, metal titanium is deposited in the same vacuum vessel. CONSTITUTION:When a shallow junction, backed with a titanium-silicide film 4, is formed on the substrate 1 on which an insulating film 2 to be used for element-to-element isolation is formed, a natural oxide film is removed by applying reverse sputtering on the silicon substrate 1 using argon ions, and the active surface of the silicon substrate 1 is exposed. Then, a metal titanium film 3 is deposited, and silicon ions are implanted for the purpose of mixing said titanium-silicon interface. As a result, the titanium-silicide layer having non-impaired uniformity even when a treatment is performed can be formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置の製造方法に関し、特に高集積度・
高速の半導体集積回路の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing semiconductor devices, particularly for highly integrated and
The present invention relates to a method for manufacturing a high-speed semiconductor integrated circuit.

従来の技術 半導体集積回路の高密度化に伴って構成要素であるMO
S)ランジスタも縮小化されるが、かかる装置において
は深さ方向の縮小化も実施しなくては正常なトランジス
タ動作を維持することはできない。このことは高速動作
が可能でかつ接合リーク電流の少ないMOS)ランジス
タを構成することと相反する。
Conventional technologyAs the density of semiconductor integrated circuits increases, MO, which is a component
S) Transistors are also being reduced in size, but in such a device, normal transistor operation cannot be maintained unless reduction in the depth direction is also performed. This contradicts the need to construct a MOS (MOS) transistor that is capable of high-speed operation and has low junction leakage current.

以上の問題を解決するために最近注目されているのがシ
リコンにおける不純物高濃度層より低抵抗な高融点金属
のシリサイド層を合金反応を用いてシリコン露出領域に
自己整合的に形成する技術(シリサイド化接合法)であ
る。但しこの方法では堆積された高融点金属と基板シリ
コンとのシリサイド化反応が均一に起こりにくいという
難点がある。これを解決するだめの方法として、高融点
金属を堆積した時点でシリコン基板との界面をミキシン
グするためドーパントであるヒ素イオンあるいは非ドー
パントであるシリコンイオンを界面近傍に注入したのち
シリサイド化のだめの熱処理を行うものが報告されてい
る。例えばアイ・イー拳イー・イー・トランザクシロン
 オブ エレクトロン デバイスイズ ED−al(1
984年)第1329頁から第1334頁(IE3Tr
ans ElectronDevices ED−31
(1984)pp1329−1334)。
In order to solve the above problems, a technology that has recently attracted attention is to form a silicide layer of a refractory metal, which has a lower resistance than a high impurity concentration layer in silicon, in a self-aligned manner on the exposed silicon region using an alloy reaction. (chemical bonding method). However, this method has a drawback in that the silicidation reaction between the deposited high melting point metal and the silicon substrate is difficult to occur uniformly. As a solution to this problem, when the high melting point metal is deposited, in order to mix the interface with the silicon substrate, arsenic ions as a dopant or silicon ions as a non-dopant are implanted near the interface, and then heat treatment is performed to form a silicide. It has been reported that some people do this. For example, I-E-Fist E-E Transaxilon of Electron Devices ED-al (1
984) pages 1329 to 1334 (IE3Tr
ans ElectronDevices ED-31
(1984) pp1329-1334).

発明が解決しようとする問題点 拡散層上に合金反応により自己整合的にチタンシリサイ
ドを形成する技術においては、これを大規模集積回路に
適用する限り、チタンシリサイド膜形成後に為される熱
処理(VAIえば注入不純物の活性化や層間絶縁膜のフ
ローなど)を経ても膜の均一性が維持されることが必要
である。しかし現在までのところチタンシリサイド膜形
成時にはミキシング注入を用いることにより均一性の良
好な膜質が得られても、のちの比較的高温・長時間の熱
処理(900°C以上、30分間以上)の際にチタンシ
リサイドが凝集することによって表面粗れが生じシリサ
イドの亀裂部ではシリコン基板が露出するという問題が
あった。
Problems to be Solved by the Invention In the technology of forming titanium silicide in a self-aligned manner by alloy reaction on the diffusion layer, as long as this is applied to large-scale integrated circuits, heat treatment (VAI) performed after the formation of the titanium silicide film is difficult. For example, it is necessary to maintain the uniformity of the film even after activation of implanted impurities, flow of an interlayer insulating film, etc.). However, to date, even though mixing injection has been used to form a titanium silicide film and a film with good uniformity has been obtained, it has been difficult to obtain a film with good uniformity when forming a titanium silicide film. There was a problem in that the agglomeration of titanium silicide caused surface roughness and exposed the silicon substrate at cracks in the silicide.

本発明はかかる点に鑑みてなされたもので、チタンシリ
サイド膜形成後に実用的な大規模集積回路製造上必要と
される熱処理を経てもシリサイド膜の均一性が維持され
るチタンシリサイド化接合を自己整合的に形成すること
を目的としている。
The present invention has been made in view of the above points, and is a self-contained titanium silicide bond that maintains the uniformity of the silicide film even after the heat treatment required for practical large-scale integrated circuit manufacturing after the formation of the titanium silicide film. The purpose is to form them in a consistent manner.

問題点を解決するための手段 本発明は上記問題点を解決するため、シリコン基板表面
にアルゴンイオンによる逆スパッタリングを加えること
により、この基板表面上の自然酸化膜を除去するととも
にシリコンの活性面を露出させた直後同一真空槽内で金
属チタンを堆積することにより耐熱性に優れたチタンシ
リサイド層を形成するものである。
Means for Solving the Problems In order to solve the above problems, the present invention applies reverse sputtering using argon ions to the surface of a silicon substrate to remove the natural oxide film on the surface of the substrate and to remove the active surface of silicon. By depositing metallic titanium in the same vacuum chamber immediately after exposure, a titanium silicide layer with excellent heat resistance is formed.

作   用 本発明は上記した方法により、たとえば900°C23
0分間以上の熱処理及びCHF3+0゜系ドライエッチ
に対する耐性に優れ、かつ膜質の均一性が良好なチタン
シリサイド化接合を得ることができる。
Function The present invention can be carried out by the method described above, for example, at 900°C23.
It is possible to obtain a titanium silicided bond that has excellent resistance to heat treatment for 0 minutes or more and CHF3+0° dry etching, and has good uniformity in film quality.

実施列 第1図〜第4図は本発明の一実施例のチタンシリサイド
化接合を形成する工程断面図である。第1図において、
1はシリコン基板(10o)で比抵抗はn型なら1〜1
.6Ω・am 、p型なら10−1.5Ω−偏とする。
Embodiment FIGS. 1 to 4 are cross-sectional views of the process of forming a titanium silicided junction according to an embodiment of the present invention. In Figure 1,
1 is a silicon substrate (10o) and the resistivity is 1 to 1 if it is n type.
.. 6 Ω·am, 10-1.5 Ω- bias for p-type.

2は素子間分離用に形成された酸化膜である。このシリ
コン基板表面の自然酸化膜蚕除去するとともにシリコン
基板の活性面を露出させるため、アルゴンイオンによる
逆スパッタリングを行った。この時のスパッタ条件はア
ルゴンガス圧0.25Pa、RF投入電力200W、ス
パッタ時間4分間でら9.5102膜が約70人スパッ
タリングされる条件である。この直後同一真空槽内にお
いてシリコン基板全面に金属チタン被膜3をDCマグネ
トロンスパッタ法により35nm堆積したあと、チタン
被膜とシリコン基板の界面をミキシングするためシリコ
ンイオン注入をエネルギー40 key 、ドーズ量6
×10cII&  の条件で行う(第2図)。
2 is an oxide film formed for isolation between elements. In order to remove the natural oxide film on the surface of the silicon substrate and expose the active surface of the silicon substrate, reverse sputtering was performed using argon ions. The sputtering conditions at this time were argon gas pressure of 0.25 Pa, RF input power of 200 W, sputtering time of 4 minutes, and approximately 70 people sputtered 9.5102 films. Immediately after this, a metallic titanium film 3 of 35 nm was deposited on the entire surface of the silicon substrate in the same vacuum chamber by DC magnetron sputtering, and then silicon ions were implanted at an energy of 40 keys and a dose of 6 to mix the interface between the titanium film and the silicon substrate.
The test was carried out under the conditions of ×10cII& (Fig. 2).

次に窒素ガスの導入が可能なランプアニーラ−により6
00〜650’Cの温度範囲で60秒間熱処理し、シリ
コン基板上のチタンのシリサイド化を行う。H2s04
+−ρ2液により窒化チタンを選択的に除去したところ
、チタンシリサイドの分離酸化膜上への這い上がり(横
方向成長)がなく、シリコン上にのみチタンシリサイド
層4が形成される。さらにチタンシリサイド層4をダイ
シリサイド化するため窒素雰囲気中で760〜800°
Cの温度範囲で再びランプアニールを行う。次にn+p
接合の形成のためにはドーズ量1015 cm−2台の
As+をエネルギー80 keyで注入し、p+n接合
の形成のためにはドーズ量1015偽−2台のB+をエ
ネルギー10keyで注入した(第3図)。CVD法に
より層間絶縁膜6を250 nm堆積した後、注入不純
物の活性化と層間絶縁膜6の稠密化のため電気炉により
900°C,ao分間の熱処理を行った(第4図)。結
果としそ、900”C,30分間の熱処理の後もチタン
シリサイド層4の凝集による表面粗れが少ないチタンシ
リサイド化接合が得られた。
Next, a lamp annealer that can introduce nitrogen gas is used to
Heat treatment is performed for 60 seconds at a temperature range of 00 to 650'C to silicide titanium on the silicon substrate. H2s04
When titanium nitride is selectively removed using the +-ρ2 solution, titanium silicide does not creep up (lateral growth) onto the isolation oxide film, and the titanium silicide layer 4 is formed only on the silicon. Further, in order to disilicide the titanium silicide layer 4, the temperature is set at 760 to 800° in a nitrogen atmosphere.
Lamp annealing is performed again in the temperature range of C. then n+p
To form a junction, As+ at a dose of 1015 cm-2 was implanted at an energy of 80 key, and to form a p+n junction, B+ at a dose of 1015 cm-2 was implanted at an energy of 10 key (3rd figure). After depositing the interlayer insulating film 6 to a thickness of 250 nm by the CVD method, heat treatment was performed at 900° C. for AO minutes in an electric furnace to activate the implanted impurities and densify the interlayer insulating film 6 (FIG. 4). As a result, a titanium silicided bond with less surface roughness due to agglomeration of the titanium silicide layer 4 was obtained even after heat treatment at 900''C for 30 minutes.

発明の効果 以上のように本発明は半導体装置の高集積化・高速化に
伴い、MOSFETのソース/ドレインなど浅い拡散層
上に自己都合的に、大規模集積回路製造上必要とされる
900°C230分間程度の熱処理を経ても均一性の損
われないチタンシリサイド層を形成することを可能にす
るものであり、超微細な半導体装置の製造に大きく寄与
するものである。
Effects of the Invention As described above, with the increasing integration and speed of semiconductor devices, the present invention conveniently provides the 900° angle required for manufacturing large-scale integrated circuits on shallow diffusion layers such as MOSFET sources/drains. C2 It is possible to form a titanium silicide layer whose uniformity is not impaired even after heat treatment for about 30 minutes, and it greatly contributes to the production of ultra-fine semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明の一実施例における半導体装置
の製造方法を説明するための断面図である。 1・・・・・・シリコン基板、2・・・・・・素子間分
離用酸化膜、3・・・・・・金属チタン被膜、4・・・
・・・チタンシリサイド層、5・・・・・・pn接合面
、6・・・・・・層間絶縁膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名−(
’J  笥 廿 わ く 翫         城 滅           憾
1 to 4 are cross-sectional views for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Silicon substrate, 2... Oxide film for isolation between elements, 3... Metal titanium coating, 4...
. . . Titanium silicide layer, 5 . . . PN junction surface, 6 . . . Interlayer insulating film. Name of agent: Patent attorney Toshio Nakao and one other person (
'J

Claims (1)

【特許請求の範囲】[Claims] 素子間分離用の絶縁膜が形成されたシリコン基板上にチ
タンシリサイド膜で裏打ちされた浅い接合を形成するに
際し、前記シリコン基板にアルゴンイオンによる逆スパ
ッタリングを加え自然酸化膜の除去をするとともにシリ
コン基板の活性面を露出させた直後、金属チタン被膜を
堆積し、さらにこのチタン/シリコン界面をミキシング
するためシリコンイオン注入を行うことによって耐熱性
の高いチタンシリサイドを自己整合的に形成するように
した半導体装置の製造方法。
When forming a shallow junction lined with a titanium silicide film on a silicon substrate on which an insulating film for isolation between elements has been formed, reverse sputtering with argon ions is applied to the silicon substrate to remove the native oxide film, and the silicon substrate Immediately after exposing the active surface of the semiconductor, a metallic titanium film is deposited, and silicon ions are implanted to mix the titanium/silicon interface, forming a highly heat-resistant titanium silicide in a self-aligned manner. Method of manufacturing the device.
JP7465087A 1987-03-27 1987-03-27 Manufacture of semiconductor device Pending JPS63240017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7465087A JPS63240017A (en) 1987-03-27 1987-03-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7465087A JPS63240017A (en) 1987-03-27 1987-03-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63240017A true JPS63240017A (en) 1988-10-05

Family

ID=13553319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7465087A Pending JPS63240017A (en) 1987-03-27 1987-03-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63240017A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143422A (en) * 1988-11-24 1990-06-01 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH04226025A (en) * 1990-04-16 1992-08-14 Applied Materials Inc Method forming titanium silicide con- ducting layer on silicon wafer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177926A (en) * 1983-03-28 1984-10-08 Nec Corp Manufacture of semiconductor device
JPS60193380A (en) * 1984-03-15 1985-10-01 Nec Corp Manufacture of semiconductor device
JPS6237370A (en) * 1985-08-12 1987-02-18 Mitsubishi Electric Corp Sputtering device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177926A (en) * 1983-03-28 1984-10-08 Nec Corp Manufacture of semiconductor device
JPS60193380A (en) * 1984-03-15 1985-10-01 Nec Corp Manufacture of semiconductor device
JPS6237370A (en) * 1985-08-12 1987-02-18 Mitsubishi Electric Corp Sputtering device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02143422A (en) * 1988-11-24 1990-06-01 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH04226025A (en) * 1990-04-16 1992-08-14 Applied Materials Inc Method forming titanium silicide con- ducting layer on silicon wafer

Similar Documents

Publication Publication Date Title
JP3285934B2 (en) Method for manufacturing semiconductor device
JP2921889B2 (en) Method for manufacturing semiconductor device
US5736461A (en) Self-aligned cobalt silicide on MOS integrated circuits
JPS6072272A (en) Manufacture of semiconductor device
JPS6213819B2 (en)
JPS63240017A (en) Manufacture of semiconductor device
JPH01160010A (en) Manufacture of semiconductor device
JPS6226573B2 (en)
JPH0550129B2 (en)
JP2570487B2 (en) Method for manufacturing semiconductor device
JP3616122B2 (en) Manufacturing method of semiconductor device
JPS63227018A (en) Manufacture of semiconductor device
JPS5863165A (en) Semiconductor device having multilayer electrode structure
JP3639009B2 (en) Manufacturing method of semiconductor device having Ti silicide layer
JPS63227019A (en) Manufacture of semiconductor device
JPS5950214B2 (en) Manufacturing method of semiconductor device
JPH0235720A (en) Manufacture of semiconductor device
JPS63116A (en) Manufacture of semiconductor device
JPH04219928A (en) Manufacture of semiconductor device
JP2706121B2 (en) Method of forming metal silicide for semiconductor device
JPH06196693A (en) Manufacture of semiconductor device
JPS609120A (en) Manufacture of semiconductor device
JPS63175420A (en) Manufacture of semiconductor device
JPH03292729A (en) Manufacture of sputtering target and semiconductor device
JPH03198329A (en) Formation of wiring