JPS63240007A - Magnetization of permanent magnet - Google Patents

Magnetization of permanent magnet

Info

Publication number
JPS63240007A
JPS63240007A JP7476187A JP7476187A JPS63240007A JP S63240007 A JPS63240007 A JP S63240007A JP 7476187 A JP7476187 A JP 7476187A JP 7476187 A JP7476187 A JP 7476187A JP S63240007 A JPS63240007 A JP S63240007A
Authority
JP
Japan
Prior art keywords
magnetization
magnet
magnetized
permanent magnet
unmagnetized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7476187A
Other languages
Japanese (ja)
Other versions
JP2576864B2 (en
Inventor
Masato Fujiwara
正人 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP62074761A priority Critical patent/JP2576864B2/en
Publication of JPS63240007A publication Critical patent/JPS63240007A/en
Application granted granted Critical
Publication of JP2576864B2 publication Critical patent/JP2576864B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To increase the total magnetic flux of a magnet and to contrive improvement in preciseness of the angle of magnetization by a method wherein the unmagnetized zone of the magnet once magnetized is moved to the part which can be magnetized. CONSTITUTION:The unmagnetized zone 1 generating in the permanent magnet 5, on which multipole magnetization is conducted, is magnetized twice by moving the magnet or by using another magnetization yoke, and the permanent magnet having no unmagnetized zone is manufactured. To be more precise, the second magnetizing operation is performed on the magnetized magnet by rotating it about one half of the angle of magnetization from the condition A to the condition B, for example, and the magnetization having no unmagnetized zone 1 as the condition C is made possible. By effectively using the unmagnetized zone 1 of the permanent magnet 5, the total quantity of magnetic flux can be increased, and the improvement in accuracy of magnetization angle can also be achieved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、モーター?センサー等に利用される多極着磁
をする永久磁石に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a motor? This relates to permanent magnets with multipolar magnetization used in sensors, etc.

〔発明の概要〕[Summary of the invention]

本発明は、第1図に示すような多極に着磁する永久磁石
において発生する、第1図人の未N磁ゾーン1を磁石を
移動するか、到着alヨークを使用して二度着磁するこ
とにより、第1図Bに示すような未N磁ゾーンの無い永
久磁石を製造することである。
The present invention is designed to move the magnet through the non-N magnetized zone 1 of the person shown in FIG. 1, which occurs in a multi-pole magnetized permanent magnet as shown in FIG. By magnetizing, it is possible to manufacture a permanent magnet having no non-N magnetized zone as shown in FIG. 1B.

〔従来の技術〕[Conventional technology]

従来、永久磁石の着磁は、一方向着磁と多極着磁にわか
れる。第2図に示すような単純なNS方向のものを一方
向着磁といい、第1図のような同一磁石内にIsが2セ
ット以上あるものを、多極着磁と呼ぶ。
Conventionally, permanent magnet magnetization can be divided into unidirectional magnetization and multipolar magnetization. A simple magnetization in the NS direction as shown in FIG. 2 is called unidirectional magnetization, and a magnetization in which there are two or more sets of Is in the same magnet as shown in FIG. 1 is called multipolar magnetization.

多極着磁に使用する代表的な着磁ヨークは、第3図に示
すような断面図となる。このうち、3は鉄部、4はコイ
ルで、5は永久磁石である。この着磁ヨークで着磁した
永久磁石の着磁パターンは、第1図人のようになり、未
着磁ゾーンと称する、非常に磁化の弱い部分が発生する
。これは第3図の着磁ヨークにおける4のコイルの部分
であり、コイルに通電することにより発生する磁束が鉄
部3の部分をほとんど通り、コイル40部分がフル着磁
するだけの磁束を発生していないことに起因する。
A typical magnetizing yoke used for multi-pole magnetization has a cross-sectional view as shown in FIG. Among these, 3 is an iron part, 4 is a coil, and 5 is a permanent magnet. The magnetization pattern of the permanent magnet magnetized by this magnetization yoke is as shown in Figure 1, and a very weakly magnetized portion called an unmagnetized zone occurs. This is the part of coil 4 in the magnetizing yoke in Figure 3. Most of the magnetic flux generated by energizing the coil passes through the iron part 3, generating enough magnetic flux to fully magnetize the coil 40 part. This is due to not doing so.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第1図人のみの従来の方法では、未Haシー71の体積
は永久磁石が発生する総磁束にほとんど寄与せず、した
がってモーターなどに使用した場合、トルク不足などを
引き起こしていた。又、この磁石をセンサーなどに利用
した場合も、第4図のように、永久磁石5を回転させ、
ホール素子6で磁束密度を検出した場合、第5図人のよ
うな波形となり、未着磁ゾーン1により着磁角度7が大
きくパランいた0本発明の目的は、未着磁ゾーンj・を
、二度着磁により着磁し、磁石の総磁束を増加させ、M
磁角度の精度も向上させることである〔問題点を解決す
るための手段〕 本発明は、この問題を解決するために第1図人のように
着磁された磁石を、第6図人の状態から第6図Bのよう
に着磁角度の約半分だけ回転させて、二度目の着磁を行
うことにより、第6図Cに示すような、未着磁シー71
の無い着磁を可能とした。
In the conventional method using only Figure 1, the volume of the non-hazardous sheath 71 hardly contributes to the total magnetic flux generated by the permanent magnet, and therefore, when used in a motor, etc., it causes a lack of torque. Also, when this magnet is used for a sensor etc., as shown in Fig. 4, by rotating the permanent magnet 5,
When the magnetic flux density is detected by the Hall element 6, a waveform similar to that shown in Figure 5 is obtained, and the magnetization angle 7 is large due to the unmagnetized zone 1.The object of the present invention is to detect the unmagnetized zone j. Magnetizes by magnetizing twice, increases the total magnetic flux of the magnet, and M
The purpose of the present invention is to improve the accuracy of the magnetic angle. [Means for solving the problem] In order to solve this problem, the present invention uses a magnet magnetized as shown in Figure 1 for a person to be magnetized as shown in Figure 6. By rotating the state by about half the magnetization angle as shown in FIG. 6B and performing magnetization for the second time, an unmagnetized sea 71 as shown in FIG. 6C is obtained.
This enables magnetization without

〔実施例〕〔Example〕

(実施例1.) 第1図は、外径28+m、内径25閣、高さ7間、のラ
ジアル方向に異方性を持つ磁石であり、外周に8極の着
磁をする。材質は、”mt−0oty系の希土類プラス
チック磁石であり、DCモーターのローター磁石に使用
するが、その際モーター内に、ホール素子をセットし第
4図のように回転角度を検出する機構となっている。こ
の磁石を、第3図に示す着磁ヨークで従来の方法で着磁
すると、第1図人のような未着磁シー71を有する従来
方式品ができる。この磁石と、第6図At B fCに
示すような従来の一度着出品を22.5℃回転させ、二
度目の着磁を行った第1図Bに示すような未着磁ゾーン
1のない本願方式品との総磁束量と着磁角度精度の指数
比較を第1表に示す。
(Example 1) FIG. 1 shows a magnet having an anisotropy in the radial direction with an outer diameter of 28+ m, an inner diameter of 25 m, and a height of 7 m, and is magnetized with 8 poles on the outer periphery. The material is a rare earth plastic magnet of the MT-0OTY system, and is used in the rotor magnet of a DC motor. At that time, a Hall element is set inside the motor, and a mechanism is used to detect the rotation angle as shown in Figure 4. If this magnet is magnetized using the conventional method using the magnetizing yoke shown in FIG. The conventional product shown in Figure At B fC is rotated by 22.5 degrees Celsius and magnetized for the second time. Table 1 shows an index comparison of magnetic flux amount and magnetization angle accuracy.

このように、本発明により非常に質の高い着磁が可能と
なり、高精度モーターが可能となり、モーター産業分野
の技術向上に貢献できた。
In this way, the present invention has made it possible to achieve very high quality magnetization, making it possible to create a high-precision motor, thereby contributing to technological improvements in the motor industry.

(実施例2.) 第7図に示す磁石は、φ32×φ26X2+a+のセン
サー用磁石であり、約1111Iはなれたホール素子で
、回転検出とする。この磁石も、本発明により、−回目
の着磁を、第8図人のように一方向着磁を行い、第二回
目の着磁な第7図のように着磁される従来の着faヨー
クで行うことにより、第8図Bのように、未着磁シー7
1のない精度のよい永久磁石が得られた。
(Example 2) The magnet shown in FIG. 7 is a sensor magnet of φ32×φ26X2+a+, and the rotation is detected by a Hall element separated by about 1111I. According to the present invention, this magnet is also magnetized in one direction as shown in Fig. 8 for the -th magnetization, and in the second magnetization as shown in Fig. 7, which is the conventional method of magnetization. By using the yoke, as shown in FIG. 8B, the unmagnetized sea 7
A highly accurate permanent magnet with no 1 was obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、永久磁石の未着磁ゾー
ンの有効活用により、総磁束量の増加と着磁角度精度の
向上が可能となる。
As described above, according to the present invention, by effectively utilizing the unmagnetized zone of the permanent magnet, it is possible to increase the total amount of magnetic flux and improve the accuracy of the magnetization angle.

尚、本発明は、着磁の方法に関するものであり、使用す
る磁石材質には関係なく、例えば希土類焼結磁石、フェ
ライト磁石、アルニコ磁石等、全てに有効である。
The present invention relates to a magnetization method, and is effective for all types of magnets, such as rare earth sintered magnets, ferrite magnets, alnico magnets, etc., regardless of the magnet material used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図人は、従来の多極着磁された磁石の見取図、1は
未着磁ゾーン、2は着磁ゾーン。 第1図Bは、本発明の多極着磁な三直行った磁石の見取
図。 第2図は、従来の一方向着磁品の見取図。 第3図は、多極N磁ヨークの断面図、3は鉄部、4は銅
製のコイル、5は永久磁石。 第4図は、従来の多極着磁された永久磁石の着磁角度を
ホール素子で検出している説明図。 第5図は、第4図の方法で磁束密度を測定した時の波形
図、Aは従来方法品、Bは本発明品、7は着磁角度。 第6図は、本発明の詳細な説明図1人は一回目の着磁、
Bは22.5°・−・磁石を回転させ二回目の着磁をす
る位置、Cは二度着磁した後の磁石。 第7図は、センサー用磁石の従来品の見取図。 第8図は、本発明の説明図0人は一回目の着磁を一方向
着磁した磁石、Bは二回目の着磁を多極着磁ヨークで行
った磁石。 以  上 出願人 セイコーエプソン株式会社 代理人 弁理士最上務(他1名) ゛パ丁゛、) ・(瞠°−・ 第2図 −〕
Figure 1 is a sketch of a conventional multi-pole magnetized magnet, with 1 showing the unmagnetized zone and 2 the magnetized zone. FIG. 1B is a sketch of a multi-pole magnetized three-direction magnet according to the present invention. FIG. 2 is a sketch of a conventional unidirectionally magnetized product. Fig. 3 is a cross-sectional view of a multi-pole N magnetic yoke, 3 is an iron part, 4 is a copper coil, and 5 is a permanent magnet. FIG. 4 is an explanatory diagram in which the magnetization angle of a conventional multi-pole magnetized permanent magnet is detected by a Hall element. FIG. 5 is a waveform diagram when magnetic flux density was measured by the method shown in FIG. 4, A is a product using the conventional method, B is a product according to the present invention, and 7 is a magnetization angle. Figure 6 is a detailed explanatory diagram of the present invention.
B is the position where the magnet is rotated 22.5° and magnetized for the second time, and C is the magnet after it has been magnetized twice. Figure 7 is a sketch of a conventional sensor magnet. FIG. 8 is an explanatory diagram of the present invention. Person 0 is a magnet whose first magnetization was unidirectionally magnetized, and B is a magnet whose second magnetization was performed using a multipolar magnetizing yoke. Applicant Seiko Epson Co., Ltd. Representative Patent Attorney Mogami (1 other person)

Claims (1)

【特許請求の範囲】[Claims]  永久磁石の多極着磁方法において、未着磁ゾーンを無
くすために、一度着磁した磁石の未着磁ゾーン部を着磁
可能な部分に移動するか、別着磁ヨークを使用して、二
度着磁を行うことを特徴とする、永久磁石の着磁方法。
In the multi-pole magnetization method for permanent magnets, in order to eliminate unmagnetized zones, the unmagnetized zone part of the once magnetized magnet is moved to a magnetizable part, or a separate magnetization yoke is used. A method of magnetizing a permanent magnet, which is characterized by performing magnetization twice.
JP62074761A 1987-03-27 1987-03-27 Magnetization method Expired - Lifetime JP2576864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62074761A JP2576864B2 (en) 1987-03-27 1987-03-27 Magnetization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62074761A JP2576864B2 (en) 1987-03-27 1987-03-27 Magnetization method

Publications (2)

Publication Number Publication Date
JPS63240007A true JPS63240007A (en) 1988-10-05
JP2576864B2 JP2576864B2 (en) 1997-01-29

Family

ID=13556582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62074761A Expired - Lifetime JP2576864B2 (en) 1987-03-27 1987-03-27 Magnetization method

Country Status (1)

Country Link
JP (1) JP2576864B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108777208B (en) * 2018-05-30 2020-06-30 中国航空工业集团公司北京长城计量测试技术研究所 Radial quadrupole magnetizing device of sealed magnetic static ring

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927508A (en) * 1982-08-04 1984-02-14 Asmo Co Ltd Magnetization method
JPS62106608A (en) * 1985-11-05 1987-05-18 Tohoku Metal Ind Ltd Magnetizing method for permanent magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927508A (en) * 1982-08-04 1984-02-14 Asmo Co Ltd Magnetization method
JPS62106608A (en) * 1985-11-05 1987-05-18 Tohoku Metal Ind Ltd Magnetizing method for permanent magnet

Also Published As

Publication number Publication date
JP2576864B2 (en) 1997-01-29

Similar Documents

Publication Publication Date Title
US5631093A (en) Magnetically coded device
CN101424544B (en) Position sensor utilizing a linear hall-effect sensor and having enhanced linear magnet configuration
US5089060A (en) Thermomagnetically patterned magnets and method of making same
US4998084A (en) Multipolar magnetic ring
GB1578172A (en) Eddy-current speedometer with temperature compensation
EP0909962A2 (en) Pulse signal generation method and apparatus
JP2000065596A5 (en) Magnetic encoder and motor with magnetic encoder
JPH11233338A (en) Multipolar magnetic ping
US6259248B1 (en) Motion detection by pulse signal generation
JPH048926B2 (en)
JPS63240007A (en) Magnetization of permanent magnet
US4648004A (en) Methods for detecting a magnetic preorientation in mechanical parts and for magnetizing the parts utilizing such detection method, and an associated device for magnetizing the parts in accordance with these methods
JP2960570B2 (en) Magnetic encoder
JPH08122011A (en) Magnetic angle detection apparatus
JPS6156857B2 (en)
JPS628506A (en) Radial direction bipolar magnet and apparatus for manufacturing same
JPH02140907A (en) Magnetization in radial direction
JPS6197516A (en) Magnetic drum for encoder
JPH08166253A (en) Magnetic encoder
JPS5930418Y2 (en) Magnetic rotation detection device
JP2002340615A (en) Magnetic scale material for encoder
JP2021076503A (en) Magnetic rotation position detection device
JPS5817213Y2 (en) magnetic disc
JPH0735365Y2 (en) Magnetizing yoke
SU393041A1 (en) 1 ^ I5LIOTENL A. A. Belimov, Ya-Kh. Gorbulsky, I. V. Gurov, G. N. Itoniaev, N. Ya. Sidorov, and M. I. Schisliev

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 11