JPS63239782A - Electrolyte circulation type metal-halogen cell - Google Patents

Electrolyte circulation type metal-halogen cell

Info

Publication number
JPS63239782A
JPS63239782A JP61233491A JP23349186A JPS63239782A JP S63239782 A JPS63239782 A JP S63239782A JP 61233491 A JP61233491 A JP 61233491A JP 23349186 A JP23349186 A JP 23349186A JP S63239782 A JPS63239782 A JP S63239782A
Authority
JP
Japan
Prior art keywords
discharge
electrolyte
battery
discharge amount
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61233491A
Other languages
Japanese (ja)
Inventor
Kyoichi Tange
恭一 丹下
Torahiko Sasaki
虎彦 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP61233491A priority Critical patent/JPS63239782A/en
Publication of JPS63239782A publication Critical patent/JPS63239782A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To improve the cell efficiency by detecting the discharge amount of a cell and driving a pump when the detected discharge amount exceeds a standard discharge amount. CONSTITUTION:A discharge detector 52 detects the total sum of the discharge electric amount to the outside and the self-discharge electric amount in a cell discharge condition, and when the total discharge amount at the time exceeds a standard discharge amount, it is detected at a comparison arithmetic unit 53, the ON signal is output to a pump 48 to drive a liquid circulation pump 48, and the circulation of the electrolyte is started. By operating the pump 48 intermittently in such a way, the self-discharge quantity can be reduced, the generation of heat is also reduced, and the cell efficiency can be improved.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は電解液循環式金属−ハロゲン電池、特に電解
液貯蔵槽と反応槽との間で電解液を循環させ所定の雷放
電反応を行う形式の電池の制御回路に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a metal-halogen battery with a circulating electrolyte solution, in particular, to circulate an electrolyte solution between an electrolyte storage tank and a reaction tank to perform a predetermined lightning discharge reaction. This invention relates to a control circuit for a type of battery.

[従来の技術] 電解液貯蔵槽と反応槽との間で電解液を循環させ所定の
充放電反応を行う形式の金属−ハロゲン電池は、コスト
が安く反応物が人手しやすい上セル電圧が高く、また電
極反応の可逆性が非常に高いので特に関心が持たれてい
る。例えば、従来における亜鉛−臭素電池は新型電池の
1つとして知られ、正極及び負極が設けられた反応槽内
において次式に示す基本的な電気化学反応が行われてい
る。
[Prior art] Metal-halogen batteries, in which electrolyte is circulated between an electrolyte storage tank and a reaction tank to carry out predetermined charging and discharging reactions, are inexpensive, easy to handle, and have a high cell voltage. , and are of particular interest because the electrode reaction is highly reversible. For example, a conventional zinc-bromine battery is known as one of the new types of batteries, and the basic electrochemical reaction shown in the following equation is performed in a reaction tank provided with a positive electrode and a negative electrode.

(正極)2Br2二Br2+2e− (負極) Zn ”+2e−;l::Zn      
−(1)充電 (全体) Zn 2”+2 Br−;:  Zn +B
r2放電 この反応式からも明らかなように、充電時には負極上に
亜鉛znが析出し、正極では臭素Br2が生成されこの
Br2は電解液中に溶解する。また、放電時には、負極
板上に析出された亜鉛Znが酸化されてZn2+(!:
なって電解液中に溶解し、また電解液中の臭素Br2は
還元されて臭素イオン2Br−となって電解液中に同様
に溶解する。
(Positive electrode) 2Br22Br2+2e- (Negative electrode) Zn ''+2e-;l::Zn
-(1) Charging (overall) Zn 2"+2 Br-;: Zn +B
r2 discharge As is clear from this reaction equation, during charging, zinc Zn is deposited on the negative electrode, bromine Br2 is produced at the positive electrode, and this Br2 is dissolved in the electrolytic solution. Also, during discharge, zinc Zn deposited on the negative electrode plate is oxidized and becomes Zn2+ (!:
Bromine Br2 in the electrolyte is reduced to become bromine ion 2Br-, which is similarly dissolved in the electrolyte.

ところで、このような亜鉛−臭素電池では、充電時に生
成される臭素Br2の電解液中における濃度が充電時間
の経過とともに増大し該臭素Br2が次第に負極側に拡
散していく。そして、該臭素Br2は、負極側にて亜鉛
Znと反応して亜鉛イオンZn”&臭素イオンBr−に
成り、自己放電を起してしまうため、この亜鉛−臭素電
池は、亜鉛イオンZn2+及び臭素イオンBr−を透過
し臭素Br2の透過を阻止する自己放電防止用のセパレ
ータ膜を用い、反応槽を正極側反応槽と負極側反応槽と
に分離し、正極側から負極側への臭素Br2の拡散を防
止している。
By the way, in such a zinc-bromine battery, the concentration of bromine Br2 generated during charging in the electrolytic solution increases with the passage of charging time, and the bromine Br2 gradually diffuses toward the negative electrode side. Then, the bromine Br2 reacts with zinc Zn on the negative electrode side to become zinc ions Zn''& bromine ions Br-, causing self-discharge. The reaction tank is separated into a positive electrode side reaction tank and a negative electrode side reaction tank using a separator membrane for self-discharge prevention that allows ion Br- to pass through and bromine Br2 to pass through, and bromine Br2 is transferred from the positive electrode side to the negative electrode side. Preventing spread.

更に、亜鉛−臭素電池には、前記臭素Br2の拡散を防
止するために、電解液中に錯化剤を添加し、正極側電解
液中に溶解した臭素Br2を電解液に溶けにくい錯体化
合物とし、電解液中に油状に分離沈澱させている。
Furthermore, in the zinc-bromine battery, in order to prevent the diffusion of the bromine Br2, a complexing agent is added to the electrolyte, and the bromine Br2 dissolved in the positive electrode side electrolyte is converted into a complex compound that is difficult to dissolve in the electrolyte. It is separated and precipitated as an oil in the electrolyte.

第4図には、このような原理を用いて形成された従来の
亜鉛−臭素電池が示されており(特開昭52−1228
35.特開昭57−199167、米国特許4,105
.829)、同図において、反応槽10内では正極12
と負極14とがセパレータ膜20により正極室10aと
負極室10bとして仕切られ、この反応槽10と正極側
電解液貯蔵槽22及び負極側電解液貯蔵槽24との間で
配管26.28及び38.40を介し電解液循環経路が
形成されて、前記第1式の電気化学反応が行われる。そ
して、配管26,28.38.40を流れる電解液はポ
ンプ30.42により反応槽10へ圧送される。
FIG. 4 shows a conventional zinc-bromine battery formed using such a principle (Japanese Patent Application Laid-Open No. 52-1228).
35. JP 57-199167, U.S. Patent No. 4,105
.. 829), in the same figure, inside the reaction tank 10, the positive electrode 12
and the negative electrode 14 are separated by a separator film 20 as a positive electrode chamber 10a and a negative electrode chamber 10b, and piping 26, 28 and 38 are connected between the reaction tank 10, the positive electrode side electrolyte storage tank 22, and the negative electrode side electrolyte storage tank 24. An electrolyte circulation path is formed through the .40, and the electrochemical reaction of the first formula is performed. Then, the electrolytic solution flowing through the pipes 26, 28, 38, 40 is pumped to the reaction tank 10 by the pump 30, 42.

このような亜鉛−臭素電池では、電解液16として臭化
亜鉛(ZnBr2)水溶液が用いられ、これに加えて必
要に応じてKCI、NH4Cl等の電導変向上剤か添加
されたり、臭素と反応して電解液に不溶で電解液より比
重の大きな錯体化合物を形成する錯化剤、例えば四級ア
ンモニウム塩(メチルエチルそりホリニウムブロマイド
、メチルエチルピロリジニウムブロマイド)などの臭素
錯化剤、デンドライト抑制剤等が添加されている。
In such a zinc-bromine battery, a zinc bromide (ZnBr2) aqueous solution is used as the electrolyte 16, and in addition to this, a conductivity improvement agent such as KCI or NH4Cl may be added as necessary, or a zinc bromide (ZnBr2) aqueous solution may be added as required. Complexing agents that form complex compounds that are insoluble in the electrolyte and have a higher specific gravity than the electrolyte, such as bromine complexing agents such as quaternary ammonium salts (methylethylsoriphorinium bromide, methylethylpyrrolidinium bromide), dendrite suppression agents, etc. are added.

そして、充電時には、反応槽10内において前記第1式
に示す充電反応が行われ、正極12側では臭素Br2が
生成されて電解液16内に溶解し、また負極14側では
亜鉛Znが析出し負極14上に亜鉛の析出層18が形成
されていく。
During charging, the charging reaction shown in the first equation is performed in the reaction tank 10, and bromine Br2 is generated on the positive electrode 12 side and dissolved in the electrolytic solution 16, and zinc Zn is precipitated on the negative electrode 14 side. A zinc precipitation layer 18 is gradually formed on the negative electrode 14.

また、放電時には、前記充電時とは逆の反応が行われ、
正極12側では臭素Br2が還元されて臭素イオン2B
r−となって電解液16中に溶解し、負極14側では亜
鉛の析出層18が酸化されて亜鉛イオンzn2+、!:
なって電解液16中に溶解する。
Furthermore, during discharging, a reaction opposite to that during charging occurs,
On the positive electrode 12 side, bromine Br2 is reduced to bromine ions 2B
r- and dissolves in the electrolyte 16, and the zinc deposit layer 18 on the negative electrode 14 side is oxidized to form zinc ions zn2+,! :
and dissolves in the electrolyte 16.

このような電気化学反応が行われる反応槽10内は、充
電時に発生する臭素Br2により自己放電が発生するこ
とがないよう、その内部がセパレター膜20により正極
側反応槽10aと負極側反応槽10bとに分離されてい
る。
The inside of the reaction tank 10 where such an electrochemical reaction is carried out is separated by a separator film 20 into a positive electrode side reaction tank 10a and a negative electrode side reaction tank 10b so that self-discharge does not occur due to bromine Br2 generated during charging. It is separated into

このセパレータ膜20は、自己放電を防止するために電
解液16は透過するがこれに溶解している臭素Br2の
透過は阻止するものである。このようなセパレータ膜2
0としては、一般にイオン交換膜あるいは多孔質膜が用
いられるが、電池の内部抵抗を少なくするという観点か
らは多孔質膜を使用することが好ましい。
This separator film 20 allows the electrolytic solution 16 to pass therethrough in order to prevent self-discharge, but blocks the penetration of bromine Br2 dissolved therein. Such a separator film 2
Generally, an ion exchange membrane or a porous membrane is used as the membrane, but from the viewpoint of reducing the internal resistance of the battery, it is preferable to use a porous membrane.

ここにおいて、電解液16内に臭素錯化剤が添加されて
いる場合には、充電時に発生した臭素Br2は錯体化さ
れ、電解液16に不溶な錯体化合物となって析出し、第
4図に示す電池において、該錯体化合物は正極側電解液
貯蔵槽22の底部を錯体貯蔵部32としてここに順次沈
澱して貯蔵されていく。また、この錯体貯蔵部32と配
管28との間は、バルブ34を有する錯体供給ダクト3
6により連絡されている。このバルブ34は、通常開放
されており、錯体貯蔵部32に沈澱した錯体化合物を配
管28を介して反応槽10aに向けて放電用に送り出す
Here, if a bromine complexing agent is added to the electrolytic solution 16, the bromine Br2 generated during charging is complexed and precipitated as a complex compound insoluble in the electrolytic solution 16, as shown in FIG. In the illustrated battery, the complex compound is stored at the bottom of the positive electrode side electrolyte storage tank 22 as a complex storage section 32, where it is sequentially precipitated. Further, a complex supply duct 3 having a valve 34 is connected between the complex storage section 32 and the pipe 28.
It is communicated by 6. This valve 34 is normally open and sends out the complex compound precipitated in the complex reservoir 32 through the pipe 28 toward the reaction tank 10a for discharge.

また、前記負極側電解液貯蔵槽24は、同様にして負極
側反応槽10bとの間で、配管38,40を介して電解
液循環経路を形成しており、循環経路に設けたポンプ4
2を用い負極反応槽10b内にて反応した負極側電解液
を貯蔵槽24へ向は送り出し貯蔵槽24から新たな電解
液を反応槽10bに向は供給している。
Further, the negative electrode side electrolyte storage tank 24 similarly forms an electrolyte circulation path with the negative electrode side reaction tank 10b via piping 38, 40, and a pump 4 provided in the circulation path.
2, the negative electrode electrolyte reacted in the negative electrode reaction tank 10b is sent to the storage tank 24, and a new electrolyte is supplied from the storage tank 24 to the reaction tank 10b.

このように、この亜鉛−臭素電池は、電解液貯蔵槽22
.24内に電解液16を充分に貯蔵し、該貯蔵電解液1
6を用いて充電時には前記第1式に示す充電反応を行い
、錯体貯蔵部32に臭素の錯体化合物を貯蔵し、負極1
4上に亜鉛の析出層18を形成して電力を貯蔵すること
ができる。また、放電時には、錯体貯蔵部32に貯蔵さ
れている臭素の錯体化合物を正極側反応槽10aに向は
送り出し、該錯体化合物と負極14上に形成されている
亜鉛の析出層18とを用い、前記第1式に示す放電反応
を行い、その充電電力を放出することができる。
In this way, this zinc-bromine battery has an electrolyte storage tank 22.
.. A sufficient amount of electrolyte 16 is stored in 24, and the stored electrolyte 1
When charging using the negative electrode 1, the charging reaction shown in the first formula is carried out, the complex compound of bromine is stored in the complex storage section 32, and the negative electrode 1 is charged.
A zinc deposit 18 can be formed on the 4 to store power. Furthermore, during discharging, the bromine complex compound stored in the complex storage section 32 is sent out to the positive electrode side reaction tank 10a, and the complex compound and the zinc precipitation layer 18 formed on the negative electrode 14 are used. The discharge reaction shown in the first equation can be performed and the charging power can be released.

[発明が解決しようとする問題点コ 従来の問題点 しかしながら、従来の亜鉛−臭素電池において、例えば
電極面積が6000−以上のものではlセル当り100
 ml/akin以上もの流量で電解液を循環している
ため、電解液ポンプを連続的に運転すると、ポンプによ
って消費されるエネルギが非常に大きくなる。そして、
通常の2(1m^/C−の電流密度で充放電を行った場
合には電池のエネルギ効率は約10%も低下することが
知られている。
[Problems to be Solved by the Invention] Conventional Problems However, in conventional zinc-bromine batteries, for example, in those with an electrode area of 6,000 or more, 100
Since the electrolyte is circulated at a flow rate of ml/akin or more, if the electrolyte pump is operated continuously, the energy consumed by the pump becomes extremely large. and,
It is known that when charging and discharging is performed at the usual current density of 2 (1 m^/C-), the energy efficiency of the battery decreases by about 10%.

これを防止する手段として、電解液の流量を少なくする
ことも考えられるが、流量を少なくすると電極面上に電
解液が均一に流れにくいという問題があった。
One possible way to prevent this is to reduce the flow rate of the electrolytic solution, but there is a problem in that reducing the flow rate makes it difficult for the electrolytic solution to flow uniformly over the electrode surface.

発明の目的 この発明は係る問題点を解決するためになされたもので
、電池の放電量を検出しこのときの放電量が基準放電量
を超えたときにポンプを駆動させることにより、または
、放電電圧が基準電圧以下となったときと電池の放電量
が基準放電量を超えたときのいずれかの条件を満足した
ときにポンプを駆動させることにより、電池効率の向上
を図り得る電解液循環式金属−ハロゲン電池の提供を目
的とする。
Purpose of the Invention The present invention was made to solve the above problems, and detects the discharge amount of the battery and drives the pump when the discharge amount exceeds the standard discharge amount. Electrolyte circulation type that can improve battery efficiency by driving the pump when either of the following conditions is satisfied: when the voltage falls below the standard voltage or when the battery discharge amount exceeds the standard discharge amount. The purpose is to provide a metal-halogen battery.

[問題点を解決するための手段及び作用コ前記目的を達
成するために、本発明は、電極板とセパレータとの間に
形成される反応層を自己放電防止用のセパレータ膜によ
り互いに正極側と負極側に仕切り、液循環用ポンプによ
り電解液貯蔵槽と反応槽との間で正極側電解液及び負極
側電解液をそれぞれ循環させこれらの電解液を介して所
定の充放電反応を行う電解液循環式金属−ハロゲン電池
に−おいて、 電池の自己放電量を含む全放電量を検出する放電検出部
と、前記検出された全放電量と予め設定された基準放電
量とを比較する比較演算部と、前記比較演算部からの指
令により液循環用ポンプを駆動させるポンプ駆動部とを
備えたことを特徴とする。
[Means and Effects for Solving the Problems] In order to achieve the above object, the present invention provides a method in which the reaction layer formed between the electrode plate and the separator is separated from the positive electrode side by a separator film for self-discharge prevention. An electrolytic solution that is partitioned on the negative electrode side and circulates the positive electrode electrolyte and the negative electrode electrolyte between the electrolytic solution storage tank and the reaction tank using a liquid circulation pump, and performs a predetermined charging/discharging reaction via these electrolytes. In a circulating metal halogen battery, there is a discharge detection unit that detects the total discharge amount including the self-discharge amount of the battery, and a comparison calculation that compares the detected total discharge amount with a preset reference discharge amount. and a pump drive unit that drives a liquid circulation pump based on a command from the comparison calculation unit.

すなわち、前記放電検出部は電池放電時の外部への放電
電気量と自己放電電気量との総和を検出し、このときの
全放電量が基準放電量よりも大きくなったときにこれを
比較演算部にて検出し、ポンプ駆動部にオン信号を出力
して電解液の循環を開始しようとするものである。
That is, the discharge detection section detects the sum of the amount of electricity discharged to the outside and the amount of self-discharged electricity when the battery is discharged, and when the total amount of discharge at this time becomes larger than the reference amount of discharge, it performs a comparison calculation. The electrolyte is detected by the pump drive unit and outputs an on signal to the pump drive unit to start circulating the electrolyte.

また、他の発明は、前記と同様に電極板とセパレータと
の間に形成される反応槽を自己放電防止用のセパレータ
膜により互いに正極側と負極側に゛ 仕切り、液循環用
ポンプにより電解液貯蔵槽と反応槽との間で正極側電解
液及び負極側電解液をそれぞれ循環させこれらの電解液
を介して所定の充放電反応を行う電解液循環式金属−ハ
ロゲン電池において、 電池電圧を検出する電圧検出部と、電池の自己放電量を
含む全放電量を検出する放電検出部と、前記検出された
電圧と予め設定された基準電圧とを比較する第1の比較
演算部と、前記検出された全放電量と予め設定された基
準放電量とを比較する第2の比較演算部と、それぞれの
比較演算部からの指令により液循環用ポンプを駆動させ
るポンプ駆動部とを備えたことを特徴とする。
Further, in another invention, a reaction tank formed between an electrode plate and a separator is partitioned into a positive electrode side and a negative electrode side by a separator film for self-discharge prevention, and the electrolytic solution is separated by a liquid circulation pump. Battery voltage is detected in electrolyte circulation metal-halogen batteries in which positive and negative electrolytes are circulated between a storage tank and a reaction tank, respectively, and predetermined charging and discharging reactions occur via these electrolytes. a discharge detection unit that detects the total discharge amount including the self-discharge amount of the battery; a first comparison calculation unit that compares the detected voltage with a preset reference voltage; A second comparison calculation unit that compares the total discharge amount and a preset reference discharge amount, and a pump drive unit that drives the liquid circulation pump according to commands from each comparison calculation unit. Features.

そして、電池の放電電圧が基準電圧以下となったとき、
又は電池の全放電量が基準放電量を超えたとき、のいず
れかの条件が満たされたときに比較演算部からポンプ駆
動部にオン信号を出力して電解液の循環が開始される。
Then, when the discharge voltage of the battery becomes lower than the reference voltage,
Or, when the total discharge amount of the battery exceeds the reference discharge amount, or when any one of the following conditions is satisfied, an on signal is output from the comparison calculation section to the pump drive section, and circulation of the electrolyte solution is started.

以上により、ポンプを間欠的に運転して電池効率の向上
を図ることができる。
As described above, the pump can be operated intermittently to improve battery efficiency.

[実施例コ 以下、図面に基づき本発明の好適な実施例を説明する。[Example code] Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第1図には本発明に係る電解液循環式金属−ハロゲン電
池のシステムブロックが示されている。
FIG. 1 shows a system block of a metal-halogen battery with circulating electrolyte according to the present invention.

同図において、金属−ハロゲン電池として亜鉛−臭素電
池を例として説明すると、反応槽44と電解液貯蔵槽4
6との間でポンプ48により配管50を介して電解液が
循環され、この電解液を介して反応槽44内において所
定の充放電反応が行われる。
In the figure, to explain a zinc-bromine battery as an example of a metal-halogen battery, a reaction tank 44 and an electrolyte storage tank 4
An electrolytic solution is circulated between the reactor 6 and the reactor 44 via a pipe 50 by a pump 48, and a predetermined charging/discharging reaction is performed in the reaction tank 44 via this electrolytic solution.

ここで本発明の特徴的なことは、電池の自己放電量を含
む全放電量を検出する放電検出部と、前記検出された全
放電量と予め設定された基準放電量とを比較する比較演
算部と、前記比較演算部からの指令により液循環用ポン
プを駆動させるポンプ駆動とを備え、前記電池の全放電
量が基準放電量を超えただときに前記ポンプ駆動部にオ
ン信号が出力されるようになっていることである。
Here, the characteristics of the present invention include a discharge detection section that detects the total discharge amount including the self-discharge amount of the battery, and a comparison operation that compares the detected total discharge amount with a preset reference discharge amount. and a pump drive for driving a liquid circulation pump according to a command from the comparison calculation section, and an on signal is output to the pump drive section when the total discharge amount of the battery exceeds a reference discharge amount. This is how it has become.

本実施例において、前記放電検出部としては電流積分器
52が用いられ、この電流積分器52は電池の放電電気
ffi (AH)と自己放電量(AH)との合計を同時
に積算する機能を有しているとともに、後述するコンパ
レータ54の出力によってリセット(Rset)される
リセット機能を有している。すなわち、この電流積分器
52は放電電気量のみならずマイクロコンピュータによ
り自己放電量をも加算できるようなシステムとなってお
り、充放電を問わず反応槽44にて消費された臭素量を
測定可能としている。
In this embodiment, a current integrator 52 is used as the discharge detection section, and this current integrator 52 has a function of simultaneously integrating the sum of the discharge electricity ffi (AH) and the self-discharge amount (AH) of the battery. It also has a reset function that is reset (Rset) by the output of a comparator 54, which will be described later. In other words, this current integrator 52 has a system that can add not only the amount of discharged electricity but also the amount of self-discharge using a microcomputer, so that the amount of bromine consumed in the reaction tank 44 can be measured regardless of charging or discharging. It is said that

前記電流積分器52の出力は、比較演算部53ノコンバ
レータ54に入力され、ここで、予め設定された基準放
電1jk(Ref)と比較される。そして、第2図に示
されるように、電流積分器52からの信号が前記基準値
(REF)を超えたとき、単安定マルチバイブレータ6
4を介してポンプ駆動部56にオン信号が出力される。
The output of the current integrator 52 is input to a comparator 53 and a comparator 54, where it is compared with a preset reference discharge 1jk (Ref). As shown in FIG. 2, when the signal from the current integrator 52 exceeds the reference value (REF), the monostable multivibrator 6
An on signal is outputted to the pump drive section 56 via 4.

このポンプ駆動部56はリレードライバ58とリレー6
0及びポンプ電源62を含み、ポンプ駆動部56にオン
信号が入力されると、これがリレードライバ58によっ
て増幅され、リレーコイル60aが励磁されるとともに
リレー接点60bが閉じポンプ電源62によりポンプ4
8が駆動される。前記単安定マルチバイブレーク64は
ポンプ駆動部56への通電時間を定めており、これによ
るポンプ48の駆動時間は電解液の循環速度等に応じて
適宜に決定される。
This pump drive section 56 includes a relay driver 58 and a relay 6.
0 and a pump power supply 62, and when an on signal is input to the pump drive unit 56, this is amplified by the relay driver 58, the relay coil 60a is excited, and the relay contact 60b is closed, and the pump power supply 62 turns on the pump 4.
8 is driven. The monostable multi-vibration break 64 determines the energization time to the pump drive unit 56, and the drive time of the pump 48 is determined as appropriate depending on the circulation speed of the electrolyte and the like.

なお、前記における電流積分器52のリセットは、例え
ばコンパレータ54の出力がオンからオフに立ち下がっ
たときに行われ、また、ポンプ48は単安定マルチバイ
ブレータ64により設定された一定時間(T)だけ駆動
される。
The current integrator 52 is reset in the above case, for example, when the output of the comparator 54 falls from on to off, and the pump 48 is reset for a certain period of time (T) set by the monostable multivibrator 64. Driven.

本実施例における電池では、放電にともない錯体化合物
中の臭素濃度が徐々に減少し、1回の電解液交換によっ
て正極側活性層に付着する臭素量、すなわち放電量は減
少する傾向にあるが、正極側活性層として例えばカーボ
ンベーパーあるいはカーボンクロスなどを用いた場合に
は放電末期においてもおよそ6 m A H/ cシの
臭素錯体化合物が電極面に付着することとなる。従って
、本実施例では、自己放電量を含め5mAH/c−の放
電を行つたときにポンプがオンとなるようにコンパレー
タ54の条件が設定される。このように、通常は全体の
放電電気量(AH)を検出することにより、ポンプのオ
ンオフを制御しているため、ポンプが駆動される直前に
おいても放電電力不足を生じることなくスムーズな運転
が可能となる。
In the battery of this example, the bromine concentration in the complex compound gradually decreases with discharge, and the amount of bromine attached to the positive electrode side active layer, that is, the discharge amount, tends to decrease with one electrolyte exchange. If, for example, carbon vapor or carbon cloth is used as the active layer on the positive electrode side, approximately 6 mA H/c of the bromine complex compound will adhere to the electrode surface even at the end of discharge. Therefore, in this embodiment, the conditions of the comparator 54 are set so that the pump is turned on when a discharge of 5 mAH/c- including the amount of self-discharge is performed. In this way, pump on/off is normally controlled by detecting the total amount of discharged electricity (AH), so smooth operation is possible without running out of discharged power even just before the pump is driven. becomes.

次に、他の発明の特徴的なことは、電池電圧を検出する
電圧検出部と、電池の自己放電量を含む全放電量を検出
する放電検出部と、前記検出された電圧と予め設定され
た基準電圧とを比較する第1の比較演算部と、前記検出
された全放電量と予め設定された基準放電量とを比較す
る第2の比較演算部と、それぞれの比較演算部からの指
令により液循環用ポンプを駆動させるポンプ駆動部とを
備え、放電電圧が基準電圧以下となったときと電池の全
放電量が基準放電量を超えたときのいずれかの条件を満
足したときに、前記ポンプ駆動部にオン信号が出力され
るようにしたことである。
Next, another characteristic feature of the invention is that the voltage detection section detects the battery voltage, the discharge detection section detects the total discharge amount including the self-discharge amount of the battery, and the detected voltage and the preset a first comparison calculation unit that compares the detected total discharge amount with a reference voltage set in advance; a second comparison calculation unit that compares the detected total discharge amount with a preset reference discharge amount; and a command from each comparison calculation unit. and a pump drive unit that drives a liquid circulation pump, and when either of the following conditions is satisfied: when the discharge voltage becomes equal to or less than the reference voltage, and when the total discharge amount of the battery exceeds the reference discharge amount, An on-signal is output to the pump driving section.

すなわち、この実施例では第3図に示されるように、電
圧検出部として直流電圧計66が用いられており、その
検出信号は第1の比較演算部としてのコンパレータ68
に入力され、ここで予め定められた基準電圧Reflと
比較される。このコンパレータ68は、後述するポンプ
駆動部70にオン信号を送出する条件と、一旦ポンプに
オン信号が送出された後にオフ信号を送出する条件とが
別個に設定できるヒステリシスコンパレータが用いられ
ている。ここで、直流電圧計66により検出された電圧
検出値が基準電圧(Refl)よりも低くなると、コン
パレータ68からポンプ駆動部72のリレードライバ7
2にオン信号が出力され、前述と同様にリレー74の接
点74bがとじてポンプ48はポンプ電源76により駆
動される。
That is, in this embodiment, as shown in FIG. 3, a DC voltmeter 66 is used as a voltage detection section, and its detection signal is sent to a comparator 68 as a first comparison calculation section.
The voltage is input to the reference voltage Refl, and is compared with a predetermined reference voltage Refl. The comparator 68 is a hysteresis comparator that can separately set conditions for sending an on signal to a pump drive unit 70, which will be described later, and conditions for sending an off signal after the on signal has been sent to the pump. Here, when the voltage detection value detected by the DC voltmeter 66 becomes lower than the reference voltage (Refl), the relay driver 7 of the pump drive unit 72
2, the contact 74b of the relay 74 is closed, and the pump 48 is driven by the pump power source 76, as described above.

また、放電時の放電電気量を検出する放電検出部として
、放電電気量と自己放電量との合計が同時に積算される
電流積分器78が用いられ、その出力は第2の比較演算
部(79)のコンパレータ80に入力される。ここで、
予め定められた基準放電量(Re f 2)と比較され
、電流積分器78により、検出された全放電量が基準放
電量を超えると、コンパレータ80から単安定マルチバ
ルブレータ81を介してポンプ駆動部70のリレードラ
イバ82にオン信号が出力され、この信号はリレードラ
イバ82にて増幅された後リレー84の接点84bを閉
じてポンプ48が駆動される。
Further, a current integrator 78 that simultaneously integrates the sum of the amount of discharged electricity and the amount of self-discharge is used as a discharge detection section that detects the amount of discharged electricity during discharge, and its output is sent to the second comparison calculation section (79 ) is input to the comparator 80. here,
It is compared with a predetermined reference discharge amount (Re f 2), and when the total discharge amount detected by the current integrator 78 exceeds the reference discharge amount, the pump is driven from the comparator 80 via the monostable multi-valve regulator 81. An on signal is output to the relay driver 82 of the section 70, and after this signal is amplified by the relay driver 82, the contact 84b of the relay 84 is closed and the pump 48 is driven.

すなわち、この実施例によれば、電流積分器が   −
設定値に達しないうちに臭素が全て消費されてしまった
ような場合に備え、電池電圧を検出することによってポ
ンプが作動するようになっている。
That is, according to this embodiment, the current integrator is −
In case all the bromine is consumed before the set value is reached, the pump is activated by detecting the battery voltage.

こうして電解液が循環されると電池電圧が回復し、特定
の基準電圧以上となったときポンプがオフされるもので
ある。
When the electrolyte is circulated in this way, the battery voltage is restored, and when it reaches a specific reference voltage or higher, the pump is turned off.

以上の各実施例において、一般にポンプを連続運転する
と多量の熱が発生し電解液の温度上昇が大きくなるため
、反応槽内において、セパレータを介し正極側から負極
側への臭素の移動が多くなり電池効率が低下するが、本
発明の実施例によればポンプを間欠的に運転することに
より、熱の発生を少なくし、電池効率を向上させること
ができるとともに、ポンプの長寿命化を図ることができ
る。
In each of the above examples, continuous operation of the pump generally generates a large amount of heat and increases the temperature of the electrolyte, so bromine moves from the positive electrode side to the negative electrode side through the separator in the reaction tank. Although battery efficiency decreases, according to the embodiments of the present invention, by operating the pump intermittently, it is possible to reduce heat generation, improve battery efficiency, and extend the life of the pump. Can be done.

また、ポンプを連続運転する従来の電池では、正極活性
層は常に臭素の錯体化合物を可能なだけで付着すること
となり、この場合、電池を長期間放置すると前記臭素が
全て自己放電により消費されてしまう。しかし、ポンプ
を間欠的に運転する本発明の実施例によれば、自己放電
量を著しく減少することができる。
In addition, in conventional batteries where the pump is operated continuously, the positive electrode active layer always has as much bromine complex compound attached as possible, and in this case, if the battery is left for a long time, all of the bromine will be consumed by self-discharge. Put it away. However, according to an embodiment of the present invention in which the pump is operated intermittently, the amount of self-discharge can be significantly reduced.

[発明の効果コ この発明は以上説明したとおり、ポンプを間欠的に運転
することにより自己放電量を減少させることができ、ま
た、熱の発生を少なくして電池効率の向上を図ることが
できる。
[Effects of the Invention] As explained above, this invention can reduce the amount of self-discharge by operating the pump intermittently, and can also improve battery efficiency by reducing heat generation. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る電解液循環式金属−ハロゲン電池
のシステムブロック図、 第2図はその動作説明図′、 第3図は他の発明におけるシステムブロック図、第4図
は電解液循環式金属−ハロゲン電池の原理説明図である
。 44 ・・・ 反応槽 46 ・・・ 電解液貯蔵槽 48 ・・・ ポンプ 50 ・・・ 配管 52.78  ・・・ 電流積分器 54.68.80  ・・・ コンパレータ56.70
  ・・・ ポンプ駆動部 60.74.84  ・・・ リレー 62.76  ・・・ ポンプ電源 64 ・・・ 単安定マルチバイブレーク66、・・・
 直流電圧計。
Figure 1 is a system block diagram of a metal-halogen battery with electrolyte circulation according to the present invention, Figure 2 is an explanatory diagram of its operation', Figure 3 is a system block diagram of another invention, and Figure 4 is an electrolyte circulation diagram. 1 is a diagram illustrating the principle of a metal-halogen battery. 44... Reaction tank 46... Electrolyte storage tank 48... Pump 50... Piping 52.78... Current integrator 54.68.80... Comparator 56.70
... Pump drive unit 60.74.84 ... Relay 62.76 ... Pump power supply 64 ... Monostable multi-vibration break 66, ...
DC voltmeter.

Claims (4)

【特許請求の範囲】[Claims] (1)電極板間に形成される反応槽を自己放電防止用の
セパレータ膜により互いに正極側と負極側に仕切り、液
循環用ポンプにより電解液貯蔵槽と反応槽との間で正極
側電解液及び負極側電解液をそれぞれ循環させこれらの
電解液を介して所定の充放電反応を行う電解液循環式金
属−ハロゲン電池において、電池の自己放電量を含む全
放電量を検出する放電検出部と、前記検出された全放電
量と予め設定された基準放電量とを比較する比較演算部
と、前記比較演算部からの指令により液循環用ポンプを
駆動させるポンプ駆動部とを備え、電池の全放電量が基
準放電量を超えたときに前記ポンプ駆動部にオン信号を
出力することを特徴とする電解液循環式金属−ハロゲン
電池。
(1) The reaction tank formed between the electrode plates is partitioned into a positive electrode side and a negative electrode side by a separator film for self-discharge prevention, and a liquid circulation pump is used to transfer the electrolyte on the positive electrode side between the electrolyte storage tank and the reaction tank. and a discharge detection unit that detects the total amount of discharge including the self-discharge amount of the battery in an electrolyte circulation type metal-halogen battery that circulates the negative electrode side electrolyte and performs a predetermined charging/discharging reaction via these electrolytes. , a comparison calculation section that compares the detected total discharge amount with a preset reference discharge amount, and a pump drive section that drives a liquid circulation pump according to a command from the comparison calculation section, An electrolyte circulation type metal-halogen battery, characterized in that an on signal is output to the pump drive unit when the discharge amount exceeds a reference discharge amount.
(2)特許請求の範囲(1)記載の電池において前記比
較演算部はポンプ駆動部にオン信号を出力したてから、
一定時間経過後に自動的にオフ信号を出力するようにし
たことを特徴とする電解液循環式金属−ハロゲン電池。
(2) In the battery according to claim (1), the comparison calculation section outputs the ON signal to the pump drive section, and then
An electrolyte circulation type metal-halogen battery characterized by automatically outputting an off signal after a certain period of time has elapsed.
(3)電極板間に形成される反応槽を自己放電防止用の
セパレータ膜により互いに正極側と負極側に仕切り、液
循環用ポンプにより電解液貯蔵槽と反応槽との間で正極
側電解液及び負極側電解液をそれぞれ循環させこれらの
電解液を介して所定の充放電反応を行う電解液循環式金
属−ハロゲン電池において、電池電圧を検出する電圧検
出部と、電池の自己放電量を含む全放電量を検出する放
電検出部と、前記検出された電圧と予め設定された基準
電圧とを比較する第1の比較演算部と、前記検出された
全放電量と予め設定された基準放電量とを比較する第2
の比較演算部と、それぞれの比較演算部からの指令によ
り液循環用ポンプを駆動させるポンプ駆動部とを備え、
放電電圧が基準電圧以下となったときと電池の全放電量
が放電量を超えたときのいずれかの条件を満足したとき
に、前記ポンプ駆動部にオン信号が出力されるようにし
たことを特徴とする電解液循環式金属−ハロゲン電池。
(3) The reaction tank formed between the electrode plates is partitioned into a positive electrode side and a negative electrode side by a separator film for self-discharge prevention, and a liquid circulation pump is used to transfer the electrolyte on the positive electrode side between the electrolyte storage tank and the reaction tank. In an electrolyte circulation type metal-halogen battery, in which a negative electrode side electrolyte is circulated and a predetermined charging/discharging reaction is performed via these electrolytes, a voltage detection unit that detects the battery voltage and a self-discharge amount of the battery are included. a discharge detection unit that detects a total discharge amount; a first comparison calculation unit that compares the detected voltage with a preset reference voltage; and a first comparison calculation unit that compares the detected total discharge amount with a preset reference voltage. The second to compare with
and a pump drive unit that drives a liquid circulation pump according to commands from the respective comparison calculation units,
The on-signal is output to the pump drive unit when either of the following conditions is satisfied: when the discharge voltage becomes equal to or less than the reference voltage, or when the total discharge amount of the battery exceeds the discharge amount. Features: Metal-halogen battery with electrolyte circulation.
(4)特許特許請求の範囲(3)記載の電池において、
前記第1と第2の比較演算部はポンプ駆動部にオン信号
を出力してから一定時間経過後に自動的にオフ信号を出
力するようにしたことを特徴とする電解液循環式金属−
ハロゲン電池。
(4) In the battery described in claim (3),
The first and second comparison calculation sections output an on signal to the pump drive section and then automatically output an off signal after a certain period of time has elapsed.
halogen battery.
JP61233491A 1986-09-30 1986-09-30 Electrolyte circulation type metal-halogen cell Pending JPS63239782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61233491A JPS63239782A (en) 1986-09-30 1986-09-30 Electrolyte circulation type metal-halogen cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61233491A JPS63239782A (en) 1986-09-30 1986-09-30 Electrolyte circulation type metal-halogen cell

Publications (1)

Publication Number Publication Date
JPS63239782A true JPS63239782A (en) 1988-10-05

Family

ID=16955843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61233491A Pending JPS63239782A (en) 1986-09-30 1986-09-30 Electrolyte circulation type metal-halogen cell

Country Status (1)

Country Link
JP (1) JPS63239782A (en)

Similar Documents

Publication Publication Date Title
JP7121045B2 (en) Flow battery cleaning cycle to maintain electrolyte integrity and system performance
US5061578A (en) Electrolyte circulation type secondary battery operating method
EP2630689B1 (en) Battery resetting process for scaffold fuel electrode
JP2020518114A (en) Battery system and method
US20230361331A1 (en) Method for iron preformation in redox flow batteries
JPH0574909B2 (en)
JPS63239782A (en) Electrolyte circulation type metal-halogen cell
JPH04223049A (en) Zinc bromine cell
JP2661018B2 (en) Electric vehicle control device
JPH0722026B2 (en) Electrolyte circulation type metal-halogen battery
JPH03152882A (en) Zinc-bromine battery
JPS6380486A (en) Circulating electrolyte type metal-halogen battery
JPH0471172A (en) Metal-bromine battery
JPH02192672A (en) Circulating electrolyte type zinc-bromine cell
JPH02109275A (en) Metal-bromine battery
US20240154140A1 (en) Magnetic fragment filter
JPH0582034B2 (en)
JP3396892B2 (en) Operating method of electrolyte flowing battery
JPS63195976A (en) Electrolyte circulation type metal-halogen battery
JPH0357172A (en) Zinc-halogen battery
JPH077681B2 (en) Metal-bromine battery clean-out method
JPH02135671A (en) Metal-halogen battery
JPH03122975A (en) Complete discharge control system of zinc-bromine battery for electric vehicle
JPH01313858A (en) Operation of liquid circulation type cell
JPS6369159A (en) Electrolyte circulation type metal-halogen battery