JPH0357172A - Zinc-halogen battery - Google Patents

Zinc-halogen battery

Info

Publication number
JPH0357172A
JPH0357172A JP1194757A JP19475789A JPH0357172A JP H0357172 A JPH0357172 A JP H0357172A JP 1194757 A JP1194757 A JP 1194757A JP 19475789 A JP19475789 A JP 19475789A JP H0357172 A JPH0357172 A JP H0357172A
Authority
JP
Japan
Prior art keywords
electrolyte
battery
negative electrode
zinc
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1194757A
Other languages
Japanese (ja)
Inventor
Kyoichi Tange
恭一 丹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1194757A priority Critical patent/JPH0357172A/en
Publication of JPH0357172A publication Critical patent/JPH0357172A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To prevent deterioration in performance caused by increase in pH of an electrolyte by installing a pair of valves in pipelines for circulating an electrolyte between a negative electrolyte storage tank and a negative electrode reaction tank and closing the valves to keep the reaction tank in a sealed state when a battery is stood in a charged state. CONSTITUTION:Valves 50, 52 are installed in pipelines 40, 42 which are used to circulate an electrolyte between a negative electrode reaction tank 16 and a negative electrolyte storage tank 24. When a battery is stood in a charged state, by closing the valves 50, 52, the negative electrode reaction tank 16 is kept in a sealed state. As a result, hydrogen gas in the tank 16 can not escape from a reaction system, and additional hydrogen evolution and increase in pH of the electrolyte caused by the hydrogen gas evolution can be avoided.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液循環式亜鉛−ハロゲン電池、特に負極側反応
槽で生じる水素ガスに起因する電解液のpH上昇に対処
可能な亜鉛−ハロゲン電池に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a liquid circulating zinc-halogen battery, particularly a zinc-halogen battery that can cope with an increase in the pH of the electrolyte caused by hydrogen gas generated in the negative electrode side reaction tank. Regarding.

[従来の技術] 電解液への溶解度が高く電極反応特性の優れた臭素を正
極活物質とし、亜鉛を負極活物質とする亜鉛−ハロゲン
電池が開発されており、貯蔵・取扱いの容易性や高エネ
ルギー密度等多くの利点から例えば電気自動車用駆動源
としての期待を集めている。
[Prior art] Zinc-halogen batteries have been developed in which bromine, which has high solubility in electrolytes and excellent electrode reaction characteristics, is used as the positive electrode active material and zinc is used as the negative electrode active material. Due to its many advantages such as energy density, it is attracting attention as a driving source for electric vehicles, for example.

第5図に特開昭57−199167号公報に開示されて
いる一般的な亜鉛−ハロゲン電池、特に亜鉛一臭素電池
の原理構成を示す。
FIG. 5 shows the principle structure of a general zinc-halogen battery, particularly a zinc monobromine battery, disclosed in Japanese Patent Application Laid-Open No. 57-199167.

図示例における負極側金属には亜鉛が用いられており、
正極10及び負極12がそれぞれ配設された正極側反応
槽14及び負極側反応槽16間で電解液18を介して次
式で示される電気化学反応が行われる。
Zinc is used as the metal on the negative electrode side in the illustrated example,
An electrochemical reaction expressed by the following formula is performed via an electrolytic solution 18 between a positive electrode side reaction tank 14 and a negative electrode side reaction tank 16 in which the positive electrode 10 and the negative electrode 12 are disposed, respectively.

(正極)2Br−  = Br2 +2e(負極)Zn
”+2 e−  = Zn   −・− (1)(全体
)Zn”+2Br−  = Zn+Br2(一二充電作
用、一二放電作用、をそれぞれ表す)このような亜鉛一
臭素電池では電解液18として臭化亜鉛ZnBr2水溶
液が用いられ、必要に応じて電導度向上剤、臭素錯化剤
、デンドライト抑制剤等が添加される。
(Positive electrode) 2Br- = Br2 +2e (Negative electrode) Zn
"+2 e- = Zn -・- (1) (Total) Zn" +2Br- = Zn+Br2 (12 charging action, 12 discharging action, respectively) In such a zinc-monobromine battery, bromide is used as the electrolyte 18. A zinc ZnBr2 aqueous solution is used, and a conductivity improver, a bromine complexing agent, a dendrite inhibitor, etc. are added as necessary.

充電時には反応槽14.16内において前記第1式に一
で示す充電反応が行われ正極10側では臭素Br=が生
成され電解液18内に溶解し、他方負極12側では亜鉛
Znが析出し負極12上に亜鉛の析出層が形成されてい
く。
During charging, the charging reaction shown in equation 1 is carried out in the reaction tank 14.16, and bromine Br= is generated on the positive electrode 10 side and dissolved in the electrolytic solution 18, while zinc Zn is precipitated on the negative electrode 12 side. A deposited layer of zinc is formed on the negative electrode 12.

また、放電峙には−で示す前記充電時と逆の反応が行わ
れ、正極10側では臭素Br.が還元されて臭素イオン
B『一となって電解液18中に溶解し、負極12側では
亜鉛の析出層が酸化されて亜釦イオンZn”+となって
電解液18中に溶解する。
In addition, on the discharge side, a reaction opposite to that during charging is performed, which is indicated by -, and on the positive electrode 10 side, bromine Br. is reduced, and the bromine ions B become one and dissolve in the electrolytic solution 18, and on the negative electrode 12 side, the deposited layer of zinc is oxidized to become substituent ions Zn''+, which are dissolved in the electrolytic solution 18.

このような電気反応が行われる反応槽14,16内は充
電時に生成する臭素Br2により自己放電を招くことが
ないようその内部がセバレータ膜20により分離されて
いる。
The interiors of the reaction vessels 14 and 16 where such electrical reactions occur are separated by a separator film 20 to prevent self-discharge caused by bromine Br2 generated during charging.

このセパレータ膜20は自己放電を防止するために電解
液18中の各種イオンは通すがこれに溶解している臭素
B r 2及び臭素Br2と反応して形威される臭素錯
体の透過は阻止するものである。
This separator membrane 20 allows various ions in the electrolytic solution 18 to pass through in order to prevent self-discharge, but blocks the penetration of bromine B r 2 dissolved in this and the bromine complex formed by reacting with bromine Br 2 . It is something.

セバレータM2.0としては、一般にイオン交換膜ある
いは多孔質膜が用いられるが、電地の内部抵抗を少なく
するという観点からは多孔質膜が望ましい。
An ion exchange membrane or a porous membrane is generally used as the separator M2.0, but a porous membrane is preferable from the viewpoint of reducing the internal resistance of the electric ground.

そして、電解液循環型の電池では、充電時における化学
反応によって得たエネルギーを貯蔵するための正極側電
解液貯蔵槽22と負極側電解液貯蔵槽24とを含む。
The electrolyte circulation type battery includes a positive electrolyte storage tank 22 and a negative electrolyte storage tank 24 for storing energy obtained through a chemical reaction during charging.

前記正極側電解液貯蔵槽22は正極側反応槽14との間
で配管26.28を介して電解液循環経路を形或してお
り、循環経路に設けたポンブ30により正極側反応WI
14内において反応した正極側電解液18aを貯蔵槽2
2へ送り出し、貯蔵槽22内の電解液18aを反応檜1
4に供給している。
An electrolyte circulation path is formed between the positive electrode side electrolyte storage tank 22 and the positive electrode side reaction tank 14 via piping 26, 28, and the positive electrode side reaction WI is carried out by a pump 30 provided in the circulation path.
The positive electrode side electrolyte 18a reacted in the storage tank 2
2, and the electrolytic solution 18a in the storage tank 22 is sent to the reaction tank 1.
4.

ここにおいて、電解液18内に臭素錯化剤が添加されて
いる場合には、充電時に発生した臭素Br2は錯体化さ
れ、電解液18に不溶な錯体化合物32となって析出し
、該錯体化合物32は貯蔵槽22の底部を錯体貯蔵部3
4として順次沈澱して貯蔵されていく。
Here, when a bromine complexing agent is added to the electrolytic solution 18, bromine Br2 generated during charging is complexed and precipitated as a complex compound 32 insoluble in the electrolytic solution 18, and the complex compound 32 connects the bottom of the storage tank 22 to the complex storage section 3
4, it is sequentially precipitated and stored.

また、この錯体貯蔵部34と配管28との間はバルブ3
6を有する錯体供給管38により連絡されている。そし
て、このバルブ36は通常開放されており、錯体貯蔵部
34に沈澱した錯体化合物32を配管28を介して正極
側反応槽14に向けて放電用に送り出す。
Further, a valve 3 is connected between the complex storage section 34 and the pipe 28.
A complex feed tube 38 having 6. This valve 36 is normally open, and the complex compound 32 precipitated in the complex storage section 34 is sent out for discharge toward the positive electrode side reaction tank 14 via the pipe 28.

また、前記負極側電解液貯蔵槽24は、同様にして負極
側反応槽16との間で配管40.42を介して電解液循
環経路を形成しており、鈷環経路に設けたボンブ44を
用い負極側反応槽l6内にて反応した負極側電解液18
bを貯蔵槽24へ向け送り出し貯蔵槽24から新たな電
解液18bを反応槽16に向け供給している。
Further, the negative electrode side electrolyte storage tank 24 similarly forms an electrolyte circulation path with the negative electrode side reaction tank 16 via piping 40.42, and a bomb 44 provided in the hook ring path Negative electrode side electrolyte 18 reacted in the negative electrode side reaction tank 16 used
b is directed to the storage tank 24, and new electrolytic solution 18b is supplied from the storage tank 24 to the reaction tank 16.

このように、この亜鉛一臭素電池は、貯蔵槽22.24
内に電解WRl8を充分に貯蔵し、該貯蔵電解液18を
用いて充電時には前記第1式に示す充電反応を行い、錯
体貯蔵部34に臭素の錯体化合物を貯蔵し負極12上に
亜鉛の析出層を形成して電力を貯蔵することができる。
Thus, this zinc-monobromine battery has a storage tank of 22.24.
A sufficient amount of electrolytic WR18 is stored in the storage area 18, and when charging using the stored electrolytic solution 18, the charging reaction shown in the first equation is carried out, a complex compound of bromine is stored in the complex storage part 34, and zinc is deposited on the negative electrode 12. Layers can be formed to store power.

また、放電時には錯体貯蔵部34に貯蔵されている臭素
の錯体化合物32を正極側反応槽14に向け送り出し、
該錯体化合物32と負極12上に形成されている亜鉛の
析出層とを用いて、前記第1式に示す放電反応を行いそ
の充電電力を放出することができる。
Further, during discharge, the bromine complex compound 32 stored in the complex storage section 34 is sent out toward the positive electrode side reaction tank 14,
Using the complex compound 32 and the zinc deposited layer formed on the negative electrode 12, the discharge reaction shown in the first equation can be performed and the charging power can be released.

[発明が解決しようとする課8] ところが、上記のように構成される従来の亜鉛一臭素電
池では、主として充電状態での放置時における水素ガス
発生により、電解液のpHが緩慢ながら不必要に上昇し
てしまうという問題があった。
[Problem to be Solved by the Invention 8] However, in the conventional zinc-bromine battery configured as described above, the pH of the electrolyte solution slowly but unnecessarily increases mainly due to the generation of hydrogen gas when left in a charged state. The problem was that it would rise.

電解液中のpHが所定値(通常3)を越えると亜鉛酸化
物の不溶物が発生し始め、これが電極面を覆うなどして
電池性能の大幅な低下を引き起こす。
When the pH in the electrolytic solution exceeds a predetermined value (usually 3), insoluble zinc oxide begins to form, which covers the electrode surface and causes a significant drop in battery performance.

このため、従来では定期的にHBrなどの酸を添加する
ことでpH上昇の抑制を試みていた。しかし、酸を加え
ると、Br−イオン等の増大を伴う結果、電解岐中の遊
離臭素濃度が上昇してエネルギー効率が著しく低下して
しまうという弊害をさけられず、無条件に使用できなか
った。
For this reason, in the past, attempts have been made to suppress the pH increase by periodically adding an acid such as HBr. However, when an acid is added, the concentration of free bromine in the electrolytic branch increases as a result of an increase in Br- ions, resulting in a significant drop in energy efficiency, which cannot be avoided. .

また、こうした電池を特に電気自動車などに搭載した状
態では頻繁に酸を補給するという手間は使用者にとって
負担が大きい。
In addition, when such a battery is installed in an electric vehicle or the like, the trouble of frequently replenishing the battery with acid is a heavy burden on the user.

上述のような不都合に対処するため、本出願人は先に出
願した特願平1−011492号において、充電状態で
電池を放置する場合に負極側電解液を循環させることに
よって水素ガスの発生を抑制する構或を提案した。
In order to deal with the above-mentioned inconveniences, the present applicant proposed a method in previously filed Japanese Patent Application No. 1-011492 to prevent the generation of hydrogen gas by circulating the electrolyte on the negative electrode side when the battery is left in a charged state. He proposed a structure to suppress it.

これによってガス発生そのものは防止できたが、電池放
置期間中ポンプを駆動させるための電力消費によって電
池のトータルエネルギー効率が低下してしまうという問
題があった。
Although gas generation itself could be prevented by this, there was a problem in that the total energy efficiency of the battery decreased due to power consumption for driving the pump while the battery was left unused.

また、長期間電池不使用状態のまま放置する場合にはそ
の期間中ポンプを駆動させ続けることは不可能であるの
で、電池を完全に放電させておかなければならないとい
う面倒な手間を要していた。
In addition, if the battery is left unused for a long period of time, it is impossible to keep the pump running during that period, so the troublesome process of having to completely discharge the battery is required. Ta.

本発明は上記従来の課題に鑑みなされたちのでてあり、
その目的は簡単な構成で効果的に電池充電期間中におけ
る電解液のpH上昇を抑制し得る亜鉛−ハロゲン電池を
堤供することにある。
The present invention has been made in view of the above-mentioned conventional problems,
The purpose is to provide a zinc-halogen battery that has a simple structure and can effectively suppress the pH increase of the electrolyte during the battery charging period.

[課題を解決するための手段] 上記目的を達成するために本発明は、負極側電解液貯蔵
槽と負極側反応槽との間で電解液を供給/排出循環させ
る配管途上にそれぞれ一対の開閉弁を配設し、充電状態
で電池を放置する際に前記開閉弁を閉止して負極側反応
槽を密閉状態に保持することを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a pair of opening/closing devices in the middle of the piping for supplying/discharging and circulating the electrolyte between the negative electrode side electrolyte storage tank and the negative electrode side reaction tank. The present invention is characterized in that a valve is provided, and when the battery is left in a charged state, the on-off valve is closed to maintain the negative electrode side reaction tank in a sealed state.

[作用] 本発明の構成によれば、電池が充電されたままで放置さ
れる隙に開閉弁が閉じられ、負極側反応槽内が密閉状態
に置かれるために発生した水素ガスが系外に逃げ出すこ
とができず、新たな水素ガスの発生は有効に抑制される
[Function] According to the configuration of the present invention, the on-off valve is closed while the battery is left charged, and the inside of the negative electrode side reaction tank is kept in a sealed state, so that the generated hydrogen gas escapes from the system. Therefore, the generation of new hydrogen gas is effectively suppressed.

[実施例] 以下、図面に基づき本発明の好適な実施例を説明する。[Example] Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

なお、図中前記第5図に係る従来装置と同等の構成要素
には同一符号を付し、その説明を省略する。
Components in the drawing that are equivalent to those of the conventional device shown in FIG.

第1図に本発明に係る亜鉛−ハロゲン電池の原理構威図
を示す。図示例において、両電解液貯蔵槽22.24は
トランスファー管41により接続されており、両者間の
液量差が一定範囲内に維持されている。また、負極側電
解液貯蔵槽24の上部にはガス抜き用圧力弁51が介設
されたガス抜き管53が接続されており、該貯蔵槽24
内圧が一定値以上に上昇しないよう構成されている。
FIG. 1 shows a diagram of the principle structure of a zinc-halogen battery according to the present invention. In the illustrated example, both electrolyte storage tanks 22 and 24 are connected by a transfer tube 41, and the difference in liquid amount between them is maintained within a certain range. Further, a gas venting pipe 53 in which a gas venting pressure valve 51 is interposed is connected to the upper part of the negative electrode side electrolyte storage tank 24.
It is constructed so that the internal pressure does not rise above a certain value.

既に説明したように、前記第5図に示すような亜鉛−ハ
ロゲン電池では、充電時に正極側電解液及び負極側電解
液共に循環状態に置かれている。
As already explained, in the zinc-halogen battery as shown in FIG. 5, both the positive electrode electrolyte and the negative electrode electrolyte are placed in a circulating state during charging.

このため、反応物質である亜鉛イオンZn2゜及び臭素
イオンB『 は容易に負極あるいは正極に発生し、前記
(1)式に示す反応が行われる。
Therefore, zinc ions Zn2° and bromine ions B', which are reactants, are easily generated at the negative electrode or the positive electrode, and the reaction shown in the above equation (1) takes place.

そして、充電状態での放置時における水素ガス発生に起
因して電解液のpHが許容範囲を超えて上昇してしまい
、これが電池性能の著しい低下をもたらすという問題が
あった。
There is also a problem in that the pH of the electrolytic solution increases beyond the allowable range due to hydrogen gas generation when the battery is left in a charged state, resulting in a significant deterioration in battery performance.

本発明において特徴的なことは、充電状態で電池を放置
する際に負極側反応槽内を密閉することにより負極上に
析出した亜鉛が電解液と反応して水素を発生することを
抑制したことにある。
A feature of the present invention is that when the battery is left in a charged state, by sealing the inside of the reaction tank on the negative electrode side, zinc deposited on the negative electrode is suppressed from reacting with the electrolyte and generating hydrogen. It is in.

図示例において、負極側反応槽l6と負極側電解液貯蔵
槽24との間で電解液を循環させるために両者を接続す
る配管40及び42途上にそれぞれ開閉弁50及び52
が介設されている。
In the illustrated example, on-off valves 50 and 52 are provided in the middle of the pipes 40 and 42, respectively, which connect the negative electrode side reaction tank 16 and the negative electrode side electrolyte storage tank 24 to circulate the electrolyte between them.
is interposed.

従って、充電状態すなわち電池容量を残したまま放置す
る際にこの開閉弁50及び52を閉止すれば、負極側反
応槽16が密閉状態に置かれる。
Therefore, when the on-off valves 50 and 52 are closed when the battery is left in a charged state, that is, with the battery capacity remaining, the negative electrode side reaction tank 16 is placed in a sealed state.

この結果、水素ガスはこの密閉室内にとどまって反応系
外に出ることがないので、新たな水素ガス発生及びこれ
に起因する電解液18のpH上昇は確実に回避できる。
As a result, the hydrogen gas remains in this sealed chamber and does not go out of the reaction system, so that new generation of hydrogen gas and an increase in the pH of the electrolytic solution 18 due to this can be reliably avoided.

なお、基本的には負極側配管40及び42側だけに開閉
弁を配設すればよいが、正極側循環系の水素イオンがセ
パレータ膜20を介して負極側反応槽16へ拡散するな
どして反応系の領域が大きくなり、水素ガスが発生しや
すくなる可能性がある。
Basically, it is sufficient to provide an on-off valve only on the negative electrode side piping 40 and 42 side, but hydrogen ions in the positive electrode side circulation system may diffuse into the negative electrode side reaction tank 16 through the separator membrane 20. The area of the reaction system becomes larger and hydrogen gas may be more likely to be generated.

このため、図示例のように正極側配管26及び28上に
も開閉弁54及び56を設け、充電状態における電池の
放置の際にこれら開閉弁50、52、54、56を同時
に閉止することによって、より効果的に反応槽内におけ
る水素ガス発生反応をストップさせることができる。
For this reason, as shown in the illustrated example, on-off valves 54 and 56 are also provided on the positive electrode side pipes 26 and 28, and these on-off valves 50, 52, 54, and 56 are simultaneously closed when the battery is left in a charged state. , it is possible to more effectively stop the hydrogen gas generation reaction in the reaction tank.

また、セバレータ膜20の両側の正極側反応搏と負極側
反応槽との間の差圧を少なくして機械的なストレスを少
なくするためにも、正極側配管にも開閉弁を設けたほう
がよい。
Additionally, in order to reduce the differential pressure between the positive electrode side reaction tank and the negative electrode side reaction tank on both sides of the separator membrane 20 and reduce mechanical stress, it is better to provide an on-off valve in the positive electrode side piping. .

以上のような構成により水素ガス発生によるpH上昇の
回避は実現されるわけであるが、電池放置中に何らかの
理由で反応槽14、16内部で自己放電が生じて反応槽
の温度が異常に上昇するような事態が生じると、電解液
18が熱膨脹したりガス発生反応が促進されるために反
応槽の内圧が過度に上昇してしまう可能性がある。
With the above configuration, it is possible to avoid the pH increase due to hydrogen gas generation, but for some reason self-discharge occurs inside the reaction vessels 14 and 16 while the battery is left unused, and the temperature of the reaction vessels rises abnormally. If such a situation occurs, the internal pressure of the reaction tank may rise excessively because the electrolytic solution 18 thermally expands or the gas generation reaction is accelerated.

このような不都合を防止するために、図示例では各極側
で一方の配管42、28途上にそれぞれ圧力弁58及び
60を配設し、該圧力弁58及び60を介して岐回収管
62、64により対応する電角(I液貯蔵搏24、22
と配管42、28とを接続し、密閉状態に置かれている
反応槽l4、16内圧が異常に高圧となった時に該反応
槽内部の電解液を電解液貯蔵槽24、22に向けて逃が
すように構成している。
In order to prevent such inconvenience, in the illustrated example, pressure valves 58 and 60 are provided in the middle of one of the pipes 42 and 28 on each pole side, and the branch recovery pipe 62, 64 corresponds to the electric angle (I liquid storage 24, 22
and piping 42, 28, and when the internal pressure of the reaction tanks 14, 16, which are placed in a sealed state, becomes abnormally high pressure, the electrolyte inside the reaction tank is released toward the electrolyte storage tanks 24, 22. It is configured as follows.

これら圧力弁58及び60はそれが取り付けられている
配管42及び28の内圧の変化に応じて自動的に開閉す
るものであるが、電解液を循環した際に開放しないよう
なレベルに設定しておけばよい。
These pressure valves 58 and 60 automatically open and close according to changes in the internal pressure of the pipes 42 and 28 to which they are attached, but are set at a level that will not open when the electrolyte is circulated. Just leave it there.

そして勿論、充放電時には前記開閉弁50、52、54
、56は全て開放され、従来同様の所定の充放電反応が
実行される。
Of course, during charging and discharging, the on-off valves 50, 52, 54
, 56 are all opened, and a predetermined charging/discharging reaction similar to the conventional one is performed.

第2図に本発明の第2実施例を示す。FIG. 2 shows a second embodiment of the invention.

前記第1実施例では4個の開閉弁50〜56を用いて各
極側別に対応する反応槽を密閉しでいたが、本実施例で
は反応栖の電解液流出入口において両極側共通の2個の
4ウェイバルブ66及び68を用いたものである。
In the first embodiment, four on-off valves 50 to 56 were used to seal the reaction tank corresponding to each pole side, but in this embodiment, two valves common to both pole sides were used at the electrolyte inlet and outlet of the reaction chamber. 4-way valves 66 and 68 are used.

この4ウエイバルブ66及び68は、それぞれ充放電時
には第3図のように設定されて通常の反応が行われ、他
方、充電状態で電池を放置する際にはそれぞれ第4図の
ように設定されて反応槽全体が配管を介した電解液貯蔵
槽との連通状態から切り離されて密閉状態におかれる。
These 4-way valves 66 and 68 are set as shown in Figure 3 during charging and discharging, so that normal reactions occur, and on the other hand, when the battery is left in a charged state, they are set as shown in Figure 4. The entire reaction tank is then disconnected from communication with the electrolyte storage tank via piping and placed in a sealed state.

本実施例によっても前記第1実施例と同等の効果が得ら
れる。
This embodiment also provides the same effects as the first embodiment.

[発明の効果] 以上説明したように本発明によれば、負極側反応槽への
電解液供給/排出用の配管途上に開閉弁を設けて電池を
放置する際に該開閉弁を閉止して負極側反応槽内を密閉
状態におくように構威したので、電池放置期間中におけ
る負極側反応槽内の亜鉛と電解液との反応による水素ガ
スの発生が有効に抑制され、電解液のpH上昇による電
池性能の劣化を確実に防止することが実現できる。
[Effects of the Invention] As explained above, according to the present invention, an on-off valve is provided in the middle of the electrolyte supply/discharge pipe to the negative electrode side reaction tank, and the on-off valve is closed when the battery is left unattended. Since the inside of the negative electrode side reaction tank is kept in a sealed state, the generation of hydrogen gas due to the reaction between zinc and the electrolyte in the negative electrode side reaction tank during the battery storage period is effectively suppressed, and the pH of the electrolyte is It is possible to reliably prevent the deterioration of battery performance due to the increase in battery performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理構成図、 第2図、第3図及び第4図は本発明の第2実施例を示す
原理及び作用説明図、 第5図は従米装置の原理構成図である。 14.16  ・・・ 反応槽 18 ・・・ 電解液 50,  52.  54,  56 58.60  ・・・ 圧力弁 開閉弁
Fig. 1 is a diagram showing the principle of the present invention; Figs. 2, 3, and 4 are explanatory diagrams of the principle and operation of a second embodiment of the present invention; Fig. 5 is a diagram of the principle of the rice following device; . 14.16... Reaction tank 18... Electrolyte solution 50, 52. 54, 56 58.60... Pressure valve on/off valve

Claims (1)

【特許請求の範囲】 正及び負極側反応槽にそれぞれ配管を介して正及び負極
側電解液を循環させて所定の充放電反応を行う亜鉛−ハ
ロゲン電池において、 前記負極側反応槽への電解液供給及び排出用配管途上に
それぞれ開閉弁を介設し、 充電状態で電池を放置する際に前記開閉弁を閉止して負
極側反応槽を密閉状態に保持することを特徴とする亜鉛
−ハロゲン電池。
[Scope of Claims] In a zinc-halogen battery in which a predetermined charging/discharging reaction is carried out by circulating positive and negative electrolytes in the positive and negative reaction tanks through piping, respectively, A zinc-halogen battery characterized in that on-off valves are interposed in each of the supply and discharge piping, and when the battery is left in a charged state, the on-off valves are closed to maintain the negative electrode side reaction tank in a sealed state. .
JP1194757A 1989-07-26 1989-07-26 Zinc-halogen battery Pending JPH0357172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1194757A JPH0357172A (en) 1989-07-26 1989-07-26 Zinc-halogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1194757A JPH0357172A (en) 1989-07-26 1989-07-26 Zinc-halogen battery

Publications (1)

Publication Number Publication Date
JPH0357172A true JPH0357172A (en) 1991-03-12

Family

ID=16329734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1194757A Pending JPH0357172A (en) 1989-07-26 1989-07-26 Zinc-halogen battery

Country Status (1)

Country Link
JP (1) JPH0357172A (en)

Similar Documents

Publication Publication Date Title
US4321312A (en) Metal-halogen secondary battery system
JPH0434268B2 (en)
JPH0574909B2 (en)
US20050100781A1 (en) Actively controlled metal-air battery and method for operating same
JPH0357172A (en) Zinc-halogen battery
JPH02109275A (en) Metal-bromine battery
EP0371078A1 (en) Charge balancing of rechargeable batteries.
JPH02192672A (en) Circulating electrolyte type zinc-bromine cell
JPH04223049A (en) Zinc bromine cell
JPH0722026B2 (en) Electrolyte circulation type metal-halogen battery
JPH03272573A (en) Zinc-bromine battery
JPH02192673A (en) Zinc-halogen battery
JPS63195976A (en) Electrolyte circulation type metal-halogen battery
JPS63239782A (en) Electrolyte circulation type metal-halogen cell
JPS61156643A (en) Zinc-bromine battery
JPH0384875A (en) Electrolyte circulation type metal-bromine battery
JPS61185873A (en) Zinc-bromine cell
JPH0364870A (en) Electrolyte circulation type metal-halogen battery
JPS6380486A (en) Circulating electrolyte type metal-halogen battery
JPH03147278A (en) Zinc-bromine battery
JP2513622Y2 (en) Electrolyte circulation type metal halogen battery
JPH02195662A (en) Electrolyte circulation type metal-bromine battery
JPH0265074A (en) Metal-bromine battery
JPH0282468A (en) Electrolytic solution circulation type metal-bromine battery
JP3642660B2 (en) Secondary battery for power storage