JPS63239626A - Signal detecting method - Google Patents

Signal detecting method

Info

Publication number
JPS63239626A
JPS63239626A JP62059699A JP5969987A JPS63239626A JP S63239626 A JPS63239626 A JP S63239626A JP 62059699 A JP62059699 A JP 62059699A JP 5969987 A JP5969987 A JP 5969987A JP S63239626 A JPS63239626 A JP S63239626A
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser
light
recording medium
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62059699A
Other languages
Japanese (ja)
Inventor
Hiroo Ukita
宏生 浮田
Yoshimasa Katagiri
祥雅 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62059699A priority Critical patent/JPS63239626A/en
Priority to US07/097,560 priority patent/US4860276A/en
Priority to NL8702237A priority patent/NL192804C/en
Publication of JPS63239626A publication Critical patent/JPS63239626A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/122Flying-type heads, e.g. analogous to Winchester type in magnetic recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/0014Measuring characteristics or properties thereof
    • H01S5/0028Laser diodes used as detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To reproduce optically recorded information with a high SN ratio by setting up a semiconductor laser at a low reflection factor part of an optical recording medium to a natural radiation state, setting up the semiconductor laser at a high reflection factor part to a laser oscillation state and detecting the quantity of light in both the states by a photodetector. CONSTITUTION:Naturally radiated light 40 from the semiconductor laser 1 is radiated to the optical recording medium 4 having the high reflection factor part and the low reflection factor part, reflected light 41 from the medium 40 is made incident upon a light emitting layer of the laser 1, and when the medium 4 has a high reflection factor, the laser 1 is turned to the oscillation state by the reflected light to detect the existence of the laser oscillation state. Thus, an avalanche resonance state oscillating the semiconductor laser like avalanche on the basis of natural radiation beams radiated from the laser 1 and reflected by the part having the high reflection factor and the no-laser oscillation state of the semiconductor laser 1 based upon the reflected light from the part having the low reflection factor are detected. Since an area having large noise at a part near the oscillation threshold of the laser 1 is not used by using said method, the SN ratio and signal modulation can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体レーザと光記録媒体との光のなだれ共
振を利用した信号検出方法に関し、情報再生信号品質を
改善したものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a signal detection method that utilizes avalanche resonance of light between a semiconductor laser and an optical recording medium, and improves the quality of an information reproduction signal.

〔従来の技術〕[Conventional technology]

従来この種の光ヘッドは例えば、宮沢他:“PCMデツ
キ用半導体レーザピックアップ。
Conventional optical heads of this type include, for example, Miyazawa et al.: "Semiconductor laser pickup for PCM deck.

° 電子材料、 p、67.1979年2月号 にある
ように第10図に示す構造になっていた。即ち半導体レ
ーザ1の出射光はカップリングレンズ2、集光レンズ3
を経て光記録媒体4上に集光される。光記録媒体4での
反射光は上記と逆の光路を経て半導体レーザlに帰還さ
れる。
° Electronic Materials, p. 67. As stated in February 1979 issue, it had the structure shown in Figure 10. That is, the light emitted from the semiconductor laser 1 is transmitted through the coupling lens 2 and the condensing lens 3.
The light is then focused onto the optical recording medium 4. The reflected light from the optical recording medium 4 is returned to the semiconductor laser 1 through an optical path opposite to that described above.

この場合の光出力を半導体レーザ1の後端に設置された
光検出器5で検知する。6および7は焦点誤差信号、ト
ラック誤差信号を得るためのウォーブリング素子で例え
ばPZT素子を使用する。発振器8および9はPZT素
子6゜PZT素子7を駆動し光記録媒体4と垂直方向に
微少振動させる。焦点誤差信号、トラック誤差信号は位
相検波器10および11でこの時の上記帰還光を位相検
波して得られる。図中。
The optical output in this case is detected by a photodetector 5 installed at the rear end of the semiconductor laser 1. 6 and 7 are wobbling elements for obtaining a focus error signal and a tracking error signal, and use, for example, a PZT element. The oscillators 8 and 9 drive the PZT element 6° and the PZT element 7 to slightly vibrate in a direction perpendicular to the optical recording medium 4. The focus error signal and the tracking error signal are obtained by phase detecting the feedback light at this time using phase detectors 10 and 11. In the figure.

12は支持バネ、13は焦点制御用アクチュエータ、1
4はトラック制御用アクチュエータである。
12 is a support spring, 13 is a focus control actuator, 1
4 is a track control actuator.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上述べたような従来の光ヘッドでは、情報再生時の半
導体レーザ駆動電流はしきい値電流より大きく、レーザ
は常時発振状態にある。このように使用すると、光記録
媒体の低反射率部を検出する低出力発振状態に有る場合
には1発振しきい値近傍のノイズが発生し。
In the conventional optical head as described above, the semiconductor laser driving current during information reproduction is greater than the threshold current, and the laser is always in an oscillating state. When used in this manner, noise in the vicinity of the one-oscillation threshold is generated when a low-output oscillation state is detected to detect a low-reflectance portion of an optical recording medium.

そのために再生信号のSN比が低いという欠点があった
。また、駆動電流を増加させてSN比を改善しようとす
ると、高反射率部で反射して戻るレーザ光で光記録媒体
が破壊されるという問題があった。
Therefore, there was a drawback that the SN ratio of the reproduced signal was low. Furthermore, if an attempt was made to improve the S/N ratio by increasing the drive current, there was a problem in that the optical recording medium would be destroyed by the laser beam reflected back from the high reflectance portion.

本発明の目的は、光記録媒体の、低反射率部での半導体
レーザを自然放出状態、高反射率部での半導体レーザを
レーザ発振状態とし。
An object of the present invention is to set a semiconductor laser in a low reflectance part of an optical recording medium to a spontaneous emission state and a semiconductor laser in a high reflectance part to a laser oscillation state.

両状態の光量を光検出器で検知することによりSN比の
高い光記録情報を再生する信号検出方法を提供すること
にある。
It is an object of the present invention to provide a signal detection method for reproducing optically recorded information with a high SN ratio by detecting the amount of light in both states with a photodetector.

C問題点を解決するための手段〕 以上の目的を達成するため2本発明では。Measures to solve problem C] In order to achieve the above objects, the present invention has two aspects.

半導体レーザから自然放出光を高反射率部と低反射率部
を有する光記録媒体に照射して。
By irradiating spontaneous emission light from a semiconductor laser onto an optical recording medium that has a high reflectance area and a low reflectance area.

光記録媒体からの反射光を前記半導体レーザの発光層に
入射させ、前記光記録媒体が高反射率を有する場合に前
記反射光によって前記半導体レーザを発振状態とし、レ
ーザ発振状態の有無を検出することにより、光記録媒体
の情報を検出することを実現する。
Reflected light from an optical recording medium is made incident on a light emitting layer of the semiconductor laser, and when the optical recording medium has a high reflectance, the reflected light causes the semiconductor laser to be in an oscillation state, and the presence or absence of a laser oscillation state is detected. By doing so, it is possible to detect information on an optical recording medium.

また、半導体レーザから自然放出光を発光させる時の駆
動電流を光記録媒体が低反射率部の場合に前記反射光に
よって前記半導体レーザを発振状態とするしきい値以下
で、かつ前記光記録媒体が高反射率部の場合に前記反射
光によって前記半導体レーザを発振状態とするしきい値
電流以上として2.半導体レーザから自然放出光を発光
させて、その自然放出光を前記半導体レーザの発光層に
入射させることが望ましい。
Further, the driving current when causing the semiconductor laser to emit spontaneous emission light is below a threshold value that causes the semiconductor laser to be in an oscillation state by the reflected light when the optical recording medium is a low reflectance portion, and the optical recording medium 2. The threshold current for causing the semiconductor laser to oscillate due to the reflected light when is a high reflectance portion; 2. It is desirable to cause a semiconductor laser to emit spontaneous emission light and to make the spontaneous emission light enter a light emitting layer of the semiconductor laser.

〔作用〕[Effect]

このようにして、高反射率を有する部分で反射した半導
体レーザの自然放出光により半導体レーザがなだれ的に
レーザ発振するなだれ共振状態と、低反射率を有する部
分で反射した半導体レーザの自然放出光により半導体レ
ーザがレーザ発振しないという状態とを検出することで
、高反射率と低反射率という状態で記憶されている光記
録媒体の情報を読みだすことができる。
In this way, the avalanche resonance state in which the semiconductor laser oscillates in an avalanche manner due to the spontaneous emission light of the semiconductor laser reflected by the part with high reflectance, and the spontaneous emission light of the semiconductor laser reflected by the part with low reflectance. By detecting the state in which the semiconductor laser does not oscillate, it is possible to read out information stored in the optical recording medium in the state of high reflectance and low reflectance.

〔本発明の原理〕[Principle of the present invention]

半導体レーザとその一端に対向させて配置した媒体とか
らなるなだれ共振を用いた信号検出方法の基本構成を第
1図に示す。共振用の反射面は、半導体レーザの2端面
と媒体面の3面で構成される。半導体レーザのなだれ共
振によるレーザ発振状態は、媒体のない側からの出力光
をPINダイオードで検出することにより得られる。
FIG. 1 shows the basic configuration of a signal detection method using avalanche resonance consisting of a semiconductor laser and a medium placed opposite to one end of the semiconductor laser. The reflective surface for resonance is composed of three surfaces: two end surfaces of the semiconductor laser and a medium surface. The laser oscillation state due to avalanche resonance of the semiconductor laser is obtained by detecting the output light from the side without the medium with a PIN diode.

このようななだれ共振を用いた信号検出方法では、半導
体レーザ中の内部モードと端面・媒体間の外部モードと
が整合している場合。
In this signal detection method using avalanche resonance, the internal mode in the semiconductor laser and the external mode between the end facet and the medium are matched.

媒体反射率が高い程、なだれ共振を発生するレーザ発振
しきい値は低下する。したがって。
The higher the medium reflectance, the lower the laser oscillation threshold for generating avalanche resonance. therefore.

媒体反射率の高低により、第2図に示すような電流と光
出力の関係<E−L特性)が得られる。そこで、低反射
率部のしきい値以下の半導体レーザの自然放出光状態に
駆動バイアス電流を設定すると、高反射率を有する部分
で反射した半導体レーザの自然放出光により半導体レー
ザがなだれ的にレーザ発振しするなだれ共振状態と、低
反射率を有する部分で反射した半導体レーザの自然光に
より半導体レーザがレーザ発振しないという状態とをP
INダイオードで検出し、光記録媒体の情報従来、半導
体レーザの光出力特性は電子密度Nと光子密度5の時間
変化の関係を表すレート方程式により解析されている。
Depending on the medium reflectance, a relationship between current and optical output <EL characteristic> as shown in FIG. 2 can be obtained. Therefore, if the drive bias current is set to the spontaneous emission state of the semiconductor laser below the threshold value of the low reflectance part, the semiconductor laser will emit light in an avalanche due to the spontaneous emission light of the semiconductor laser reflected from the part with high reflectance. An avalanche resonance state in which the semiconductor laser oscillates and a state in which the semiconductor laser does not oscillate due to natural light of the semiconductor laser reflected from a part with low reflectance are defined as P.
Information on an optical recording medium is detected by an IN diode. Conventionally, the optical output characteristics of a semiconductor laser have been analyzed using a rate equation that expresses the relationship between the electron density N and the photon density 5 over time.

この方法を第1図に示す本発明に適用した。すなわち、
半導体レーザ活性層内の光と結合する帰還光の割合(結
合係数)をεとすると、電子密度と光子密度に対する定
常状態のレート方程式は、電流密度」、自然放出光係数
〔を用いて J −N −NS = O−一一軸(1)S(N−1十
〇) + CN =O−−−−−(2)となる。ここで
、電流密度、電子密度及び光子密度は活性層内で一様で
あり、レーザは単一モード発振であることを仮定してい
る。
This method was applied to the invention shown in FIG. That is,
If the proportion of feedback light that couples with light in the semiconductor laser active layer (coupling coefficient) is ε, the steady state rate equation for electron density and photon density is expressed as J − using current density and spontaneous emission light coefficient. N - NS = O - one axis (1) S (N - 100) + CN = O ---- (2). Here, it is assumed that the current density, electron density, and photon density are uniform within the active layer, and that the laser oscillates in a single mode.

上記レート方程式により計算したI−L特性を第3図に
実線で示す。また、実験に使用したcSPレーザの実測
値(光帰還無し、ε=0)を同図に○で示す。第3図(
a)は自然放出光係数Cのフィッティングの結果で、C
=5xlO−4となった。第3図(b)はこのCを用い
て光帰還のある場合の1−L特性を諸々のεについて計
算した結果である。
The I-L characteristics calculated using the above rate equation are shown in FIG. 3 by solid lines. In addition, the actual measured values of the cSP laser used in the experiment (no optical feedback, ε=0) are indicated by circles in the same figure. Figure 3 (
a) is the result of fitting the spontaneous emission coefficient C, and C
=5xlO-4. FIG. 3(b) shows the results of calculating the 1-L characteristics for various ε in the case of optical feedback using this C.

諸々の動作条件(スペーシング、媒体反射率、レーザ端
面反射率等)に対するεを評価することによりデータ信
号検出機構を理論的に解明することができる。
By evaluating ε for various operating conditions (spacing, medium reflectance, laser end face reflectance, etc.), the data signal detection mechanism can be theoretically elucidated.

第1図の本発明において半導体レーザから右側を見た実
効反射率RLEFFは、スベシングによる位相項を無視
すると R,”=RL(1+ (1−R,)2RFq/RL) 
    −−−= (3)となる。ここで、R5は端面
反射率、R2は媒体反射率、■は光伝達率である。この
身は帰還光のビームの広がりに依存した量で、本発明に
もちた共振器の幾何学的条件(活性層厚、ストライプ幅
、スペーシング等)により決定される。
In the present invention shown in FIG. 1, the effective reflectance RLEFF when looking to the right from the semiconductor laser is R,''=RL(1+(1-R,)2RFq/RL) if the phase term due to subesing is ignored.
---= (3). Here, R5 is the end face reflectance, R2 is the medium reflectance, and ■ is the light transmittance. This amount depends on the beam spread of the feedback light, and is determined by the geometrical conditions of the resonator (active layer thickness, stripe width, spacing, etc.) used in the present invention.

結合係数εはRLEFFを用いて次のように表される。The coupling coefficient ε is expressed using RLEFF as follows.

ε=1−1□H110TH = In(R,”’/R1)/(2aL−In(RoR
,))    −−−(4)ここで’THは光帰還があ
る場合の発振しきい値、10T、イは光帰還のない場合
のしきい値である。またαは吸収係数、Lは半導体レー
ザの共振器長、Roは媒体と反対側のレーザ端面反射率
である。
ε=1-1□H110TH=In(R,”'/R1)/(2aL-In(RoR
,)) ---(4) Here, 'TH is the oscillation threshold when there is optical feedback, 10T, and A is the threshold when there is no optical feedback. Further, α is the absorption coefficient, L is the resonator length of the semiconductor laser, and Ro is the reflectance of the laser end face on the side opposite to the medium.

〔実施例〕〔Example〕

第4図(a)、  (b)は本発明の第1の実施例であ
る。第4図<a>は光ヘッドの使用状態図、第4図(b
)′は光ヘッドの構成図である。光ヘッド21は幅、深
さが数μmの分離溝32により、半導体レーザ1と光検
出器5に分けられている。33は半導体レーザ基板、3
4は活性層、35は絶縁層、36は半導体レーザ電極、
37は光検出器電極、38は受光部、39は共通電極で
ある。 第4図(a)に示すように光ヘッド21は光記
録媒体4に近接浮上させられる。すなわち、光ヘッド2
1は光記録媒体4の半径方向へ高速移動できるアーム2
2上の負荷バネ23にとりつけられたスライダ24に装
着し使用される。これにより、光ヘッド21の焦点制御
は負荷バネ23の負荷とスライダ24の形状9重量そし
て光記録媒体4の走行速度で決まる一定のスペーシング
値に保たれる。半導体レーザ1からの自然光40は光記
録媒体4で反射され1反射光41が半導体レーザ1に帰
還し、その時の光出力(なだれ共振信号出力)42を受
光部38で検知する。
FIGS. 4(a) and 4(b) show a first embodiment of the present invention. Figure 4 <a> is a usage state diagram of the optical head, Figure 4 (b)
)' is a configuration diagram of an optical head. The optical head 21 is divided into the semiconductor laser 1 and the photodetector 5 by a separation groove 32 having a width and depth of several μm. 33 is a semiconductor laser substrate, 3
4 is an active layer, 35 is an insulating layer, 36 is a semiconductor laser electrode,
37 is a photodetector electrode, 38 is a light receiving section, and 39 is a common electrode. As shown in FIG. 4(a), the optical head 21 is floated close to the optical recording medium 4. As shown in FIG. That is, the optical head 2
1 is an arm 2 that can move at high speed in the radial direction of the optical recording medium 4;
It is used by being attached to a slider 24 attached to a load spring 23 on 2. Thereby, the focus control of the optical head 21 is maintained at a constant spacing value determined by the load of the load spring 23, the shape 9 weight of the slider 24, and the traveling speed of the optical recording medium 4. Natural light 40 from the semiconductor laser 1 is reflected by the optical recording medium 4 and one reflected light 41 returns to the semiconductor laser 1, and the light output (avalanche resonance signal output) 42 at that time is detected by the light receiving section 38.

この結果、光記録媒体4の反射率の変化(情報ビットの
有無)に対応し光出力42が第2図に示すように半導体
レーザ1の自然放出光状LM (L) 、自然光の帰還
量の増大によりなだれ的にレーザ発振する状a (H)
と変化し。
As a result, as shown in FIG. 2, the optical output 42 corresponds to the change in the reflectance of the optical recording medium 4 (the presence or absence of information bits), and the spontaneous emission light LM (L) of the semiconductor laser 1 changes depending on the amount of feedback of natural light. State of avalanche-like laser oscillation due to increase a (H)
and changed.

ノイズと動作条件との関係を定量的に明らかにするため
、ノイズの実効値N  (mV)を周波数特性N(f)
を用いて、 N、rns=−Jrjz、、Nz<+>dft<r2−
fl>  −−−−(5)で定義する。ここで、f1=
 30kHz、 f2 = 3MHz、分解能10kH
zである。以下では、このNrfflsと注入電流、媒
体反射率及びスペーシングとの関係について検討する。
In order to quantitatively clarify the relationship between noise and operating conditions, the effective value of the noise N (mV) is expressed as the frequency characteristic N (f).
Using, N, rns=-Jrjz,, Nz<+>dft<r2-
fl> --- Defined in (5). Here, f1=
30kHz, f2 = 3MHz, resolution 10kHz
It is z. Below, the relationship between Nrffls, injection current, medium reflectance, and spacing will be discussed.

第5図はN、msの電流依存性であり、同時にI−L特
性も示しである。しきい値程度までの電流レベルではN
 は光出力とともに増加するが、それ以上の電流レベル
では飽和・減少の傾向がある。N のピーク値は、光帰
還ありが光帰還なしの2倍程度高くなっている。
FIG. 5 shows the current dependence of N and ms, and also shows the IL characteristics. At current levels up to the threshold, N
increases with optical output, but tends to saturate and decrease at higher current levels. The peak value of N is about twice as high with optical feedback as with no optical feedback.

第6図は、媒体反射率によるN  /Pの電流依存性で
ある。媒体反射率の増加に対して、I−N  /P曲線
のピーク値は高く幅は狭くなることがわかる。第7図は
、スペーシングによるN  /Pの電流依存性である。
FIG. 6 shows the current dependence of N/P depending on the medium reflectance. It can be seen that as the medium reflectance increases, the peak value of the I-N/P curve becomes higher and the width becomes narrower. FIG. 7 shows the current dependence of N/P due to spacing.

スペーシングの減少に対して、I−N  /P曲線は低
電流側にシフトすることがわかる。
It can be seen that the I-N/P curve shifts toward lower currents as the spacing decreases.

しかし、N  /Pが最大となる電流値は光帰還の有無
、媒体反射率及びスペーシングによらず各々のしきい値
の約1.02倍となっている。
However, the current value at which N 2 /P is maximum is approximately 1.02 times the respective threshold value, regardless of the presence or absence of optical feedback, medium reflectance, and spacing.

従って、第5図から明らかなように高品質のデータ信号
をえるための信号検出方法派は、低反射率部に対してレ
ーザノイズの少ない自然放出光領域(+<lL)、高反
射率部に対してレーザノイズの小さくなるレーザ発振域
(IllH)に半導体レーザの駆動電流1を設定すべき
である。
Therefore, as is clear from Fig. 5, the signal detection method for obtaining a high-quality data signal is to use a spontaneous emission region (+<lL) with less laser noise for a low reflectance region and a high reflectance region. The driving current 1 of the semiconductor laser should be set in the laser oscillation range (IllH) where the laser noise is small.

動作条件の鼎適化を図るため、次式で定義されるデータ
信号5N比を導入する。
In order to optimize the operating conditions, a data signal 5N ratio defined by the following equation is introduced.

SNR= 201og、。S、、/N、ITl、 −=
(6)  。
SNR = 201og. S, , /N,ITl, −=
(6).

ここで5.−まデータ信号振幅で、次式で定義される。Here 5. − is the data signal amplitude, defined by the following equation.

S、、 = pH−pL  −−(7)第8図が示すS
N比の駆動電流依存性より、ノイズがピークになるIH
でSN比は過小となり、駆動電流1が増加するとともに
5N比が増大する。しかし、駆動電流1の上限は光出力
により光記録媒体が破壊がされる値で制限され、1−二
よる影響はみえていない。
S,, = pH-pL --(7) S shown in Figure 8
IH where noise peaks due to drive current dependence of N ratio
The SN ratio becomes too small, and as the drive current 1 increases, the 5N ratio increases. However, the upper limit of the drive current 1 is limited to a value at which the optical recording medium is destroyed by the optical output, and no influence from 1-2 has been observed.

次に、注入電流によるデータ信号波形を評価するため、
高反射率部、低反射率部の複合共振出力をそれぞれpH
,pLとして、次式で変調度Mを定義する。
Next, in order to evaluate the data signal waveform due to the injection current,
The composite resonance output of the high reflectance part and low reflectance part is adjusted to pH
, pL, the modulation degree M is defined by the following equation.

M=(P’、−PL)/(P’+PL) −(8)第9
図は反射率RF: 0.30 、0.15を用いて観測
した変調度の電流依存性である。横軸は光帰還がないと
きのレーザの発振しきい値”TH″′C−規格化した電
流値である。○は実測値、実線は帰還光の結合効率を考
慮したレート方程式による理論値をそれぞれ示す。同図
より変調度が最大となる電流値I、は +H< 1. < 1゜ になることがわかる。また、この電流値1.は第8図に
おける媒体許容再生出力1mWのときの駆動電流値とは
ほぼ一致している。
M=(P', -PL)/(P'+PL) -(8) 9th
The figure shows the current dependence of the modulation degree observed using reflectance RF: 0.30 and 0.15. The horizontal axis is the laser oscillation threshold value "TH"'C minus the normalized current value when there is no optical feedback. ○ indicates the actual measured value, and the solid line indicates the theoretical value based on the rate equation taking into account the coupling efficiency of the feedback light. From the figure, the current value I at which the modulation degree is maximum is +H<1. It can be seen that < 1°. Also, this current value 1. is almost the same as the drive current value when the medium permissible reproduction output is 1 mW in FIG.

第4図(c)は同図(b)に示す実験例の変形例に相当
する実施例である。すなわち。
FIG. 4(c) shows an example corresponding to a modification of the experimental example shown in FIG. 4(b). Namely.

第4図(C)は先端に導波形レンズ部60を配したもの
で、光記録媒体4上での光ビームスポット61を縮小し
、記録密度を向上することができる。62は微細加工技
術により形成されたエツチドミラー面で導波形レンズ部
60を形成するバッファ層63(例えば5i02)、導
波路N64(例えばガラス7059)に接する。65は
ルネブルグレンズで導波路H64より高屈折率の誘電材
料(例えば5i−N)よりなり1周囲が円形1表面が半
円形の形状をなしている。動作は第4図(b)と同じで
ある。
FIG. 4C shows a structure in which a waveguide lens section 60 is disposed at the tip, which can reduce the light beam spot 61 on the optical recording medium 4 and improve the recording density. Reference numeral 62 is an etched mirror surface formed by microfabrication technology and is in contact with the buffer layer 63 (for example, 5i02) forming the waveguide lens portion 60 and the waveguide N64 (for example, glass 7059). A Luneburg lens 65 is made of a dielectric material (for example, 5i-N) with a higher refractive index than the waveguide H64, and has a circular circumference and a semicircular surface. The operation is the same as in FIG. 4(b).

なお、(4)式から明らかなように光記録媒体側のレー
ザ端面に反射防止膜を付与することにより+RLを低減
し、結合係数εを増大させることができる。この結果、
自然放出光の帰還率が増大し半導体レーザがなだれ的に
レーザ発振し易くなる。
Note that, as is clear from equation (4), by applying an antireflection film to the laser end face on the optical recording medium side, +RL can be reduced and the coupling coefficient ε can be increased. As a result,
The feedback rate of spontaneously emitted light increases, making it easier for the semiconductor laser to oscillate in an avalanche manner.

〔発明の効果〕〔Effect of the invention〕

以上説明したように9本発明による信号検出方法用いれ
ば2発振しきい値近傍のノイズの大きい領域を使用しな
いので、SN比、信号変調を改善することができる。ま
た、自然発光領域で使用するので低い駆動電流でよく。
As explained above, if the signal detection method according to the present invention is used, the noisy region near the two-oscillation threshold is not used, so the S/N ratio and signal modulation can be improved. Also, since it is used in a natural light emitting area, a low drive current is sufficient.

半導体レーザの発熱を抑えられるとともに。In addition to suppressing the heat generation of the semiconductor laser.

半導体レーザを長寿命化できる。The lifespan of semiconductor lasers can be extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の特徴を最もよく表す信号検出方法の基
本構成図、第2図は本発明による信号検出の原理図、第
3図は本発明による電流と光ヘッドの光出力の関係図、
第4図は本発明を用いた光ヘッドの実施例、第5図は本
発明のノイズの電流依存性を示す図、第6図は媒体反射
率をパラメータとしたノイズの電流依存性を示す図、第
7図はスペーシングをパラメータとしたノイズの電流依
存性を示す図、第8図はSN比の電流依存性を示す図。 第9図は変調度の電流依存性を示す図、第10図は複合
共振作用を利用した従来の光へ、。 ド構造図である。 図中、1は半導体レーザ、4は光記録媒体。 5は光検出器、31は光ヘッド、32は絶縁溝。 38は受光部、42は光出力である。
Figure 1 is a basic configuration diagram of a signal detection method that best represents the features of the present invention, Figure 2 is a diagram of the principle of signal detection according to the present invention, and Figure 3 is a diagram of the relationship between current and optical output of the optical head according to the present invention. ,
Fig. 4 is an example of an optical head using the present invention, Fig. 5 is a diagram showing the current dependence of noise of the present invention, and Fig. 6 is a diagram showing the current dependence of noise with medium reflectance as a parameter. , FIG. 7 is a diagram showing the current dependence of noise with spacing as a parameter, and FIG. 8 is a diagram showing the current dependence of the SN ratio. Figure 9 is a diagram showing the current dependence of the modulation degree, and Figure 10 is for conventional light that uses complex resonance. FIG. In the figure, 1 is a semiconductor laser and 4 is an optical recording medium. 5 is a photodetector, 31 is an optical head, and 32 is an insulating groove. 38 is a light receiving section, and 42 is a light output.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体レーザからの自然放出光を高反射率部と低
反射率部を有する光記録媒体に照射し、光記録媒体から
の反射光を前記半導体レーザの発光層に入射させ、前記
光記録媒体の高反射率部で前記反射光によって前記半導
体レーザを発振状態とし、前記光記録媒体の低反射率部
で自然放出状態とし、レーザ発振状態と自然放出状態の
光量を検出することにより、光記録媒体の情報再生を行
うことを特徴とする信号検出方法。
(1) Spontaneous emission light from a semiconductor laser is irradiated onto an optical recording medium having a high reflectance part and a low reflectance part, and the reflected light from the optical recording medium is made incident on the light emitting layer of the semiconductor laser, and the optical recording medium is The semiconductor laser is brought into an oscillation state by the reflected light in a high reflectance portion of the medium, and is brought into a spontaneous emission state in a low reflectance portion of the optical recording medium, and the amount of light in the laser oscillation state and the spontaneous emission state is detected. A signal detection method characterized by reproducing information from a recording medium.
(2)半導体レーザから自然放出光を発光させる時の駆
動電流を、光記録媒体が低反射率部の場合に前記反射光
によって前記半導体レーザを発振状態とするしきい値以
下で、かつ前記光記録媒体が高反射率部の場合に前記反
射光によって前記半導体レーザを発振状態とするしきい
値以上としたことを特徴とする特許請求の範囲第1項記
載の信号検出方法。
(2) When the semiconductor laser emits spontaneous emission light, the driving current is set to be below a threshold value that causes the semiconductor laser to be in an oscillation state by the reflected light when the optical recording medium is a low reflectance portion, and the 2. The signal detection method according to claim 1, wherein when the recording medium has a high reflectance portion, the reflected light causes the semiconductor laser to oscillate at a threshold value or higher.
JP62059699A 1986-09-18 1987-03-14 Signal detecting method Pending JPS63239626A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62059699A JPS63239626A (en) 1987-03-14 1987-03-14 Signal detecting method
US07/097,560 US4860276A (en) 1986-09-18 1987-09-16 Micro optical head with an optically switched laser diode
NL8702237A NL192804C (en) 1986-09-18 1987-09-18 Optical head for reading digital data on a reflective recording medium.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62059699A JPS63239626A (en) 1987-03-14 1987-03-14 Signal detecting method

Publications (1)

Publication Number Publication Date
JPS63239626A true JPS63239626A (en) 1988-10-05

Family

ID=13120719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62059699A Pending JPS63239626A (en) 1986-09-18 1987-03-14 Signal detecting method

Country Status (1)

Country Link
JP (1) JPS63239626A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760693A (en) * 1980-09-29 1982-04-12 Mitsuharu Nakamura Fluorescent lamp circuit with auxiliary illumination or motor circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760693A (en) * 1980-09-29 1982-04-12 Mitsuharu Nakamura Fluorescent lamp circuit with auxiliary illumination or motor circuit

Similar Documents

Publication Publication Date Title
US4860276A (en) Micro optical head with an optically switched laser diode
US6611487B2 (en) Flying type optical head integrally formed with light source and photodetector and optical disk apparatus with the same
EP0144436B1 (en) Optical recording and reproducing apparatus
US20010009541A1 (en) Optical head, magneto-optical head, disk apparatus and manufacturing method of optical head
US5313448A (en) Laser device driven by a periodic waveform optimized for reducing laser noise
US4480325A (en) Optical pickup
US5734632A (en) Optical head using evanescent light and optical data recording/reproducing apparatus and method of using the same
US6597715B2 (en) Semiconductor laser, optical head, optical disk apparatus and semiconductor laser manufacturing method
JPS599086B2 (en) optical information reproducing device
US6741549B2 (en) Optical recording medium and optical recording and reproduction apparatus
JPS63239626A (en) Signal detecting method
JPH07118084B2 (en) Optical information reproducing device
JPS6374128A (en) Optical head
KR100230246B1 (en) Semiconductor laser and flooting optical pickup using it
US7330418B2 (en) Optical disk with plural signal mark positions in a direction substantially perpendicular to tracks
JP2591637B2 (en) Light head
JP2572868B2 (en) Semiconductor laser
JPH08306062A (en) Optical head and optical information recording and reproducing device
US5034942A (en) System having a function of reproducing optical information
JPH0213372B2 (en)
JPS6233648B2 (en)
JP2614855B2 (en) Light head
JPS60154337A (en) Optical pickup device
JPH05182230A (en) Optical information recording and reproducing device
US5313449A (en) Optical recording medium and method of optically playing back same including recording medium structure operating as optical resonators emitting applied pumping light at a variable frequency