JPS63239301A - Gas turbine shroud - Google Patents

Gas turbine shroud

Info

Publication number
JPS63239301A
JPS63239301A JP7353487A JP7353487A JPS63239301A JP S63239301 A JPS63239301 A JP S63239301A JP 7353487 A JP7353487 A JP 7353487A JP 7353487 A JP7353487 A JP 7353487A JP S63239301 A JPS63239301 A JP S63239301A
Authority
JP
Japan
Prior art keywords
shroud segment
shroud
cooling air
turbine
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7353487A
Other languages
Japanese (ja)
Other versions
JP2659950B2 (en
Inventor
Yoshihiro Yuya
油谷 好浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62073534A priority Critical patent/JP2659950B2/en
Publication of JPS63239301A publication Critical patent/JPS63239301A/en
Application granted granted Critical
Publication of JP2659950B2 publication Critical patent/JP2659950B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To improve the cooling efficiency of shroud segments, by arranging a thermal insulation plate of a structure having its overall circumference divided into plural sections in a gap between the shroud segments and the outer circumferential end of a turbine moving blade and making the fixing portion of the thermal insulation plate to the shroud segments to be flexible structure. CONSTITUTION:Box type shroud segments 21 fixed by being fitted to the hook 23 of a turbine casing 22 are so connected to the inner circumference of the casing 22 in form of a large number of circular arcs as to form a shroud ring near by the outer circumferential end of the turbine moving blade 24. A thermal insulation plate 25 is disposed in a gap between the segments 21 and the outer circumferential end of the turbine moving blade 24. In this case, the thermal insulation plate 25 is divided into halves, the upper half portion and the lower half portion and each of them is supported flexible member 26 fixed through bolts 27 to segments 21. In this constitution, a flow rate adjusting valve 31 is controlled and the thermal insulation plate 25 is moved in a radial direction by controlling the temperature of the thermal insulation plate 25, namely, the thermal expansion of the thermal insulation plate 25, so that the gap at the outer circumferential end of the turbine moving blade 24 can be adjusted freely.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、ガスタービンシュラウドに係り、特に高温ガ
スタービンに適した空冷式の冷却11N!!およびター
ビンm翼外周端との間隙制御機構を備えたシュラウドセ
グメントを備えたガスタービンシュラウドに関するもの
である。
Detailed Description of the Invention [Object of the Invention] (Industrial Field of Application) The present invention relates to a gas turbine shroud, and particularly an air-cooled 11N shroud suitable for high-temperature gas turbines. ! The present invention also relates to a gas turbine shroud including a shroud segment having a gap control mechanism with respect to the outer peripheral edge of a turbine m blade.

(従来の技術) 一般に、ガスタービン発電プラントに設置されるガスタ
ービンでは、タービン動翼やタービン静翼等を収容した
タービンケーシングの内周にシュラウドセグメントが環
状に連設されており、このシュラウドセグメントにより
タービン動翼外周端とタービンケーシングとの間隙がら
の主流ガスの漏洩を低減させるとともに、主流ガスのタ
ービンケーシングへの熱伝達を抑制してタービンケーシ
ングの過度の温度上昇による熱変形を防止している。
(Prior Art) Generally, in a gas turbine installed in a gas turbine power generation plant, a shroud segment is connected in an annular manner around the inner circumference of a turbine casing that houses turbine rotor blades, turbine stationary blades, etc. This reduces leakage of mainstream gas through the gap between the outer peripheral edge of the turbine rotor blade and the turbine casing, and also suppresses heat transfer of the mainstream gas to the turbine casing to prevent thermal deformation due to excessive temperature rise in the turbine casing. There is.

このシュラウドセグメントは高温主流ガスに直接さらさ
れるので、タービンの入口温度が高くなる程その冷却に
注意を払う必要があり、また、タービン効率の観点から
主流ガスの漏洩を最小にするために、タービン動翼外周
端とシュラウドセグメントとの間隙は極力小さくする必
要がある。そこで、一般のシュラウドセグメントではこ
の冷却効果の向上を図るとともに、シュラウドセグメン
トとタービン動翼外周端との間隙を極力小さくするため
の種々の工夫がなされている。
Since this shroud segment is directly exposed to the high temperature mainstream gas, the higher the turbine inlet temperature, the more attention must be paid to its cooling. The gap between the outer peripheral edge of the rotor blade and the shroud segment must be made as small as possible. Therefore, in general shroud segments, various measures have been taken to improve the cooling effect and to minimize the gap between the shroud segment and the outer peripheral edge of the turbine rotor blade.

第7図は従来のシュラウドセグメントの冷却機構を示し
ており、箱形のシュラウドセグメント1は、タービン動
翼2の外周端と間隙を保持してタービンケーシング3内
周面に環状に連設されている。そしてこのシュラウドセ
グメント1の上流側壁1aと下流側壁1bには夫々開孔
4a、4bが穿設され、この開孔4aからシュラウドセ
グメント1の内部空間5に冷却空気Aを導入し、開孔4
bから゛排出することでシュラウドセグメント1を冷却
する構造となっている。
FIG. 7 shows a conventional shroud segment cooling mechanism, in which a box-shaped shroud segment 1 is annularly connected to the inner circumferential surface of the turbine casing 3 while maintaining a gap from the outer circumferential edge of the turbine rotor blade 2. There is. Apertures 4a and 4b are formed in the upstream wall 1a and downstream wall 1b of the shroud segment 1, respectively. Cooling air A is introduced into the internal space 5 of the shroud segment 1 through the aperture 4a, and
The structure is such that the shroud segment 1 is cooled by being discharged from the air.

ところがこのようなシュラウドセグメントの冷却機構で
は、内部空間5を流通する冷却空気Aの流速が遅いため
、シュラウドセグメント1内壁面と冷却空気Aとの熱交
換率が悪く、主流ガスの温度が高温の場合、シュラウド
セグメント1のメタル温度を所定の温度に保持するため
に大量の冷却空気が必要になるという問題があった。
However, in such a shroud segment cooling mechanism, since the flow rate of the cooling air A flowing through the internal space 5 is slow, the heat exchange rate between the inner wall surface of the shroud segment 1 and the cooling air A is poor, and the temperature of the mainstream gas is high. In this case, there was a problem in that a large amount of cooling air was required to maintain the metal temperature of the shroud segment 1 at a predetermined temperature.

そこでこの問題を解決するために、第8図に示したよう
に、箱形のシュラウドセグメント6の外側間ロアからシ
ュラウドセグメント6内に箱形のインサート8を半径方
向に挿入し、タービンケーシング3からシュラウドセグ
メント6内に導かれる冷却空気Aをインサート8の開孔
9からシュラウドセグメント内壁面に吹きつけてインピ
ンジメント冷却を行うとともにその冷却した空気をシュ
ラウドセグメント6の下流側壁6bの開孔10よりシュ
ラウドセグメント外に排出する機構のものがある(特開
昭57−59030号公報参照)。
Therefore, in order to solve this problem, as shown in FIG. Cooling air A guided into the shroud segment 6 is blown onto the inner wall surface of the shroud segment through the opening 9 of the insert 8 to perform impingement cooling, and the cooled air is directed through the opening 10 of the downstream side wall 6b of the shroud segment 6 into the shroud. There is a mechanism for ejecting the liquid to the outside of the segment (see Japanese Patent Laid-Open No. 57-59030).

一方、タービン@翼外周端とシュラウドセグメントとの
間隙はタービン効率向上の観点からその間隙調整のため
の機構が備えられており、例えば、シュラウドセグメン
トが固定されているタービンケーシングの温度を冷却空
気により温度制御することにより、熱変形によりシュラ
ウドセグメントとタービン動翼外周端との間隙を制御す
る機構がある。
On the other hand, a mechanism is provided to adjust the gap between the outer circumferential edge of a turbine blade and the shroud segment in order to improve turbine efficiency. There is a mechanism that controls the gap between the shroud segment and the outer peripheral edge of the turbine rotor blade through thermal deformation by controlling temperature.

(発明が解決しようとする問題点) しかしながら、上述した従来のシュラウドセグメントに
おける冷却機構では、少量の冷却空気でシュラウドセグ
メント6のメタル温度を所定の温度に保持することはで
きるが、シュラウドセグメント6にインサート8を挿入
するための広い開ロアを設ける必要があるため、シュラ
ウドセグメントが大形化してしまい、またシュラウドセ
グメント6は上流側と下流側に穿設されたフック11に
より挟んでタービンケーシング3内面に固定されている
ためこのツメ間隔もシュラウドセグメントの大型化にと
もない大きくなり、結果としてタービンケーシング3が
軸方向に大きくなりタービン小形化の障害となるという
問題があった。
(Problems to be Solved by the Invention) However, in the conventional cooling mechanism for the shroud segment described above, although it is possible to maintain the metal temperature of the shroud segment 6 at a predetermined temperature with a small amount of cooling air, Since it is necessary to provide a wide open lower portion for inserting the insert 8, the shroud segment becomes large in size, and the shroud segment 6 is sandwiched between hooks 11 bored on the upstream and downstream sides, and the shroud segment 6 is inserted into the inner surface of the turbine casing 3. Since the pawl spacing also increases as the shroud segment becomes larger, the turbine casing 3 becomes larger in the axial direction, which poses a problem in reducing the size of the turbine.

また、インサート8を箱形に形成する必要があるのでシ
ュラウドセグメント6が複雑になるという問題もあり、
さらに開ロアを小さくするためにインサート8を2分割
するとインサート8自体の構造が複雑になるという問題
があった。
There is also the problem that the shroud segment 6 becomes complicated because the insert 8 needs to be formed into a box shape.
Furthermore, if the insert 8 is divided into two parts in order to reduce the opening of the lower opening, there is a problem that the structure of the insert 8 itself becomes complicated.

一方、従来のシュラウドセグメントの間隙調、整機構に
おいては、タービンケーシング全体の温度を制御するた
め、温度調整機構自体が大きくなる欠点があり、また航
空転用を除いた陸用ガスタービンでは、タービンケーシ
ングの肉厚が大きいため、その熱容量も大きく、温度制
御の追従性が悪くなるという欠点がある0、tな、他の
間隙調整機構としてレユラウドセグメントに形状記憶合
金やバイメタル等の温度変化により変形する変形部材に
より遮熱板を設け、熱変形作用によりタービン動翼外周
端とシュラウドセグメントとの間隙制御を行う機構もあ
るが、高温環境下における変形部材の経年変化に問題が
あった。
On the other hand, the conventional shroud segment gap adjustment and adjustment mechanism has the disadvantage that the temperature adjustment mechanism itself is large because it controls the temperature of the entire turbine casing. Since the wall thickness is large, its heat capacity is also large, which has the disadvantage of poor followability of temperature control.Other gap adjustment mechanisms include the use of shape memory alloys, bimetals, etc. that deform due to temperature changes in the reloud segments. There is also a mechanism that uses a deformable member to provide a heat shield plate and use thermal deformation to control the gap between the outer peripheral edge of the turbine rotor blade and the shroud segment, but there is a problem with aging of the deformable member in a high-temperature environment.

本発明は上述した問題点を解決するためになされたもの
で、主流ガス温度が高温の場合にも使用できるように高
い冷却効率を有するとともに、タービン動翼外周端とシ
ュラウドセグメントの間隙の調整も可能で、しかも構造
が簡素な空冷式のシュラウドセグメントを提供すること
を目的とする。
The present invention was made to solve the above-mentioned problems, and has high cooling efficiency so that it can be used even when the mainstream gas temperature is high, and also allows adjustment of the gap between the outer peripheral edge of the turbine rotor blade and the shroud segment. The purpose of the present invention is to provide an air-cooled shroud segment that is possible and has a simple structure.

[発明の構成コ (問題点を解決するための手段) 本発明のガスタービンシュラウドは、タービンケーシン
グ内周面にタービン動翼の外周端と間隙を保持して環状
に連設された中空状のシュラウドセグメントと、このシ
ュラウドセグメントのタービンケーシング側の壁面に穿
設されたシュラウドセグメント内に冷却空気を導入する
ための冷却空気導入孔と、この冷却空気導入孔から流入
する冷却空気の流入量を調整するための流量調整弁と、
シュラウドセグメントの内周側の壁面に多数穿設されな
冷却空気吐出孔と、シュラウドセグメントの内周面を全
周にわたって覆うようにこのシュラウドセグメントとタ
ービン動翼の間隙に配置された遮熱板とを備えたガスタ
ービンシュラウドにおいて、上記遮熱板を全周複数分割
に構成するとともに、この遮熱板とシュラウドセグメン
トとの取付は部をシュラウドセグメントの半径方向に移
動可能な柔構造としたことを特徴とするものである。
[Configuration of the Invention (Means for Solving the Problems)] The gas turbine shroud of the present invention includes a hollow shroud which is connected to the inner circumferential surface of the turbine casing in an annular manner while maintaining a gap with the outer circumferential edge of the turbine rotor blade. Adjustment of the shroud segment, the cooling air introduction hole for introducing cooling air into the shroud segment drilled in the wall of the shroud segment on the turbine casing side, and the inflow amount of cooling air that flows in from this cooling air introduction hole. a flow rate adjustment valve for
A large number of cooling air discharge holes are formed in the inner circumferential wall of the shroud segment, and a heat shield plate is disposed in the gap between the shroud segment and the turbine rotor blade so as to cover the entire inner circumferential surface of the shroud segment. In a gas turbine shroud equipped with a gas turbine shroud, the heat shield plate is divided into multiple parts around the entire circumference, and the attachment part between the heat shield plate and the shroud segment is made of a flexible structure that can be moved in the radial direction of the shroud segment. This is a characteristic feature.

(作 用) シュラウドセグメントとタービン動翼の外周端との間隙
に全周2分割構造の遮熱板を配置し、かつ遮熱板とシュ
ラウドセグメントの固定部分を柔構造とすることで、主
流ガスからシュラウドセグメントへの熱輻射、熱伝達に
よる流入熱量を減少させて冷却効率を向上させることが
でき、また冷却空気量を流i調整弁により制御すること
で遮熱板の温度が調節でき、このときの遮熱板の熱伸び
量の変化により、タービン動翼外周端とシュラウドセグ
メントとの間隙調整を行うことができる。
(Function) By arranging a heat shield plate with a two-part structure all around the circumference in the gap between the shroud segment and the outer peripheral end of the turbine rotor blade, and by making the fixed part of the heat shield plate and shroud segment flexible, the mainstream gas It is possible to improve cooling efficiency by reducing the amount of heat flowing in through heat radiation and heat transfer from the air to the shroud segments, and by controlling the amount of cooling air with the flow control valve, the temperature of the heat shield plate can be adjusted. The gap between the outer peripheral edge of the turbine rotor blade and the shroud segment can be adjusted by changing the amount of thermal expansion of the heat shield plate.

(実施例) 以下、本発明によるシュラウドセグメントの一実施例に
ついて第1図ないし第5図を参照にしながら説明する。
(Embodiment) An embodiment of the shroud segment according to the present invention will be described below with reference to FIGS. 1 to 5.

第1図において、符号21は箱形のシュラウドセグメン
トを示しており、このシュラウドセグメント21は、タ
ービンケーシング22から突出したフック23に嵌合し
て固定されている。このシュラウドセグメント21がタ
ービンケーシング内周に多数円周状に連設されることに
より、タービン動翼24の外周端と近接するシュラウド
リングが形成されている。
In FIG. 1, reference numeral 21 indicates a box-shaped shroud segment, and this shroud segment 21 is fitted and fixed to a hook 23 protruding from the turbine casing 22. A large number of shroud segments 21 are circumferentially arranged on the inner periphery of the turbine casing to form a shroud ring that is close to the outer periphery of the turbine rotor blade 24 .

このシュラウドセグメント21とタービン動翼24外周
端との間隙には遮熱板215が配置されており、この遮
熱板25は、可撓部材26によりシュラウドセグメント
21の下流側壁にボルト27により固定されている。
A heat shield plate 215 is disposed in the gap between the shroud segment 21 and the outer peripheral end of the turbine rotor blade 24, and the heat shield plate 25 is fixed to the downstream side wall of the shroud segment 21 by a bolt 27 by a flexible member 26. ing.

一方、シュラウドセグメント21のタービンケーシング
側壁には冷却空気流入孔28が、そしてシュラウドセグ
メントの内周側壁には多数の冷却空気孔29が夫々穿設
されており、冷却空気Aが冷却空気流入孔からシュラウ
ドセグメントの中空部30に流入し、冷却空気孔29を
通って、シュラウドセグメント21と遮熱板25の間隙
からガス通路部へと流れる構造となっている。また冷却
空気流入孔29には調整弁31が取付けられており、こ
の調整弁31により冷却空気Aの流入量を調整すること
ができる。
On the other hand, a cooling air inflow hole 28 is formed in the turbine casing side wall of the shroud segment 21, and a large number of cooling air holes 29 are formed in the inner peripheral side wall of the shroud segment. The structure is such that the gas flows into the hollow portion 30 of the shroud segment, passes through the cooling air hole 29, and flows from the gap between the shroud segment 21 and the heat shield plate 25 to the gas passage portion. Further, an adjustment valve 31 is attached to the cooling air inflow hole 29, and the amount of inflow of the cooling air A can be adjusted by this adjustment valve 31.

第2図は第1図を回転軸方向下流側がら見た図で、遮熱
板25は、上半部25a、下半部25bに2分割されて
おり、夫々シュラウドセグメント21にボルト27によ
り可撓部材26を介して固定されている。
FIG. 2 is a view of FIG. 1 viewed from the downstream side in the direction of the rotation axis, and the heat shield plate 25 is divided into two parts, an upper half 25a and a lower half 25b, each of which is attached to the shroud segment 21 by a bolt 27. It is fixed via a flexible member 26.

第3図は第1図における円周方Bx−x断面図で、遮熱
板25a、25bの水平合せ部には夫々水平フランジ3
2a、32bが形成されており、該水平フランジ部32
a、32bはシュラウドセグメント21の水平合せ部3
3に挟み込まれている。そして下半部25bの水平フラ
ンジ32bには、ピン34が溶接固定されており、この
ビン34と上半部25bのフランジ部32aに穿設され
た六とを嵌合させることにより、上半部25aと下半部
25bとが整合される。
FIG. 3 is a cross-sectional view taken along the circumferential direction Bx-x in FIG.
2a, 32b are formed, and the horizontal flange portion 32
a and 32b are the horizontal alignment parts 3 of the shroud segment 21
It is sandwiched between 3. A pin 34 is welded and fixed to the horizontal flange 32b of the lower half part 25b, and by fitting this pin 34 with a hole drilled in the flange part 32a of the upper half part 25b, the upper half part 25b is fixed. 25a and lower half 25b are aligned.

第4図は第1図のY−Y断面を示す図で、遮熱板25に
は、シュラウドセグメント21に形成されなキー溝3う
に嵌挿するキー36が全周6ケ所に設置されている。こ
れらのキー36、キー溝35および水平フランジ32a
、321.の挟み込み部により遮熱板25はシュラウド
セグメント21に対し位置決めされる。また、キー36
、キー溝35のはめ込み部および水平フランジ32a、
32bの挟み込み部は、半径方向の相互の移動が可能な
ように間隙37a、37bが設けられており、温度変化
によるシュラウドセグメント21と遮熱板25の半径方
向の熱伸び差を吸収できる構造となっている。
FIG. 4 is a cross-sectional view taken along the Y-Y line in FIG. 1, and the heat shield plate 25 is provided with keys 36 at six locations around the entire circumference, which are inserted into the key grooves 3 formed in the shroud segment 21. . These keys 36, keyways 35 and horizontal flange 32a
, 321. The heat shield plate 25 is positioned with respect to the shroud segment 21 by the sandwiching portion. Also, key 36
, the fitting part of the keyway 35 and the horizontal flange 32a,
The sandwiching portion 32b is provided with gaps 37a and 37b so that they can mutually move in the radial direction, and has a structure that can absorb the difference in thermal expansion in the radial direction between the shroud segment 21 and the heat shield plate 25 due to temperature changes. It has become.

このような構成のシュラウドセグメントでは、冷却空気
Aは、冷却空気流入孔28から中空部30に流入して、
シュラウドセグメント21の内面を冷却した後、冷却空
気孔29から吐出して遮熱板253インピンジメント冷
却した後、主流ガスBに混入する。
In the shroud segment having such a configuration, the cooling air A flows into the hollow portion 30 from the cooling air inflow hole 28, and
After cooling the inner surface of the shroud segment 21, the air is discharged from the cooling air hole 29 and cooled by impingement on the heat shield plate 253, and then mixed into the mainstream gas B.

このように、シュラウドセグメント21の内周面が高温
の主流ガスBと直接接触しないように遮熱板25を配置
し、この遮熱板25に熱伝達率が高く冷却効率の高いイ
ンビンジメント冷却を施したので、受熱部を効率良く冷
却することができる。
In this way, the heat shield plate 25 is arranged so that the inner circumferential surface of the shroud segment 21 does not come into direct contact with the high temperature mainstream gas B, and the heat shield plate 25 is provided with impingement cooling that has a high heat transfer coefficient and high cooling efficiency. As a result, the heat receiving section can be efficiently cooled.

また主流ガスからの輻射熱も遮熱板25により遮られる
。さらに、遮熱板25からシュラウドセグメント21へ
の熱伝導も、板厚の薄い可撓部材26を通して行われる
ので小さくなり、シュラウドセグメントの温度上昇は主
流ガスBの温度が上がっても低く抑えることができる。
In addition, radiant heat from the mainstream gas is also blocked by the heat shield plate 25. Furthermore, heat conduction from the heat shield plate 25 to the shroud segment 21 is also reduced because it is conducted through the thin flexible member 26, and the temperature rise in the shroud segment can be kept low even if the temperature of the mainstream gas B increases. can.

さて、このようなシュラウドセグメントのタービン動翼
外周端と遮熱板の間隙調整i構について説明する。
Now, a mechanism for adjusting the gap between the outer peripheral end of the turbine rotor blade of such a shroud segment and the heat shield plate will be explained.

一般に、タービン動翼外周端における間隙は、シュラウ
ドセグメント無冷却の場合、第5図の破線で示すように
変化する。この場合、横軸は起動後の時間である。同図
に示したように、起動後、ある時間で間隙が最小になる
箇所があるため、起動初期の間隙は、最小間隙のときに
タービン動翼先端がシュラウドセグメントに接触しない
ように余裕を考慮して設定する必要がある。そのため、
定格運転時のタービン動翼外周端における間隙は大きく
なり、タービン効率の低下を引き起こす。
Generally, the gap at the outer circumferential edge of the turbine rotor blade changes as shown by the broken line in FIG. 5 when the shroud segment is not cooled. In this case, the horizontal axis is the time after startup. As shown in the figure, there is a point where the gap becomes minimum at a certain time after startup, so a margin is taken into consideration for the gap at the beginning of startup so that the tip of the turbine rotor blade does not come into contact with the shroud segment when the gap is at its minimum. You need to set it. Therefore,
During rated operation, the gap at the outer peripheral edge of the turbine rotor blade becomes larger, causing a decrease in turbine efficiency.

本例では、遮熱板25の温度を制御することにより、遮
熱板25の半径方向の熱伸びを第5図の一点鎖線で示す
ように制御し、定格運転時の間隙を最小にする。即ち、
シュラウドセグメント21の入口流入孔28に設けた調
整弁31を上下動させて冷却空気Aの流量を制御するこ
とで、遮熱板25の温度制御を行うことができる。遮熱
板25の上半部25aと下半部25bは、上述したよう
に水平フランジ32a、321)の位置決めビン34に
より固定されており、また、遮熱板25は半径方向に移
動可能なキー36によりシュラウドセグメント21に対
し位置決めされており、さらにシュラウドセグメントへ
の固定は可視部材26を介して行われている。従って、
遮熱板25は温度変化に対してロータ回転軸を中心に円
形を保ちながら拡大、縮小を無理なく行うことができ、
タービン動翼外周端の間隙を変化させることができる。
In this example, by controlling the temperature of the heat shield plate 25, the thermal expansion of the heat shield plate 25 in the radial direction is controlled as shown by the dashed line in FIG. 5, and the gap during rated operation is minimized. That is,
The temperature of the heat shield plate 25 can be controlled by controlling the flow rate of the cooling air A by moving the regulating valve 31 provided in the inlet inlet hole 28 of the shroud segment 21 up and down. The upper half 25a and the lower half 25b of the heat shield plate 25 are fixed by the positioning pins 34 of the horizontal flanges 32a, 321) as described above, and the heat shield plate 25 has a key movable in the radial direction. 36 relative to the shroud segment 21, and further fixation to the shroud segment is via the visible member 26. Therefore,
The heat shield plate 25 can be expanded or contracted without difficulty while maintaining its circular shape around the rotor rotation axis in response to temperature changes.
The gap between the outer peripheral edges of the turbine blades can be changed.

なお、間隙制御はシュラウドセグメント21に非接触形
クリアランスメータを取付け、この非接触形クリアラン
スメータにより測定された信号から冷却空気調整弁31
を制御すればよい。
For gap control, a non-contact clearance meter is attached to the shroud segment 21, and the cooling air regulating valve 31 is controlled based on the signal measured by the non-contact clearance meter.
All you have to do is control.

このように本例のシュラウドセグメントを用いれば、冷
却効率が向上するため主流ガス温度をさらに上昇させる
ことが可能になり、また、間隙制御によりタービン動翼
外周端からの主流ガスの漏洩を減少させることができ、
タービン効率の向上を図ることができる。
In this way, by using the shroud segment of this example, it is possible to further increase the temperature of the mainstream gas due to improved cooling efficiency, and the leakage of the mainstream gas from the outer peripheral edge of the turbine rotor blade is reduced by controlling the gap. It is possible,
Turbine efficiency can be improved.

第6図は本発明の他の実施例を示す図で、遮熱板25の
上流側に冷却空気孔41が主流ガス通路に貫通する形で
穿設されている4本例によれば。
FIG. 6 shows another embodiment of the present invention, in which four cooling air holes 41 are formed on the upstream side of the heat shield plate 25 so as to penetrate into the mainstream gas passage.

遮熱板25をインビンジメント冷却した冷却空気Aが遮
熱板25の上流側に開けられた冷却空気孔41から主流
ガス通路に噴出し、遮熱板25とタービン動翼24外周
端との間隙を流れ、遮熱板25の主流ガス通路側壁をフ
ィルム冷却する。このため、遮熱板25の冷却効率をさ
らに上げることができ、また、冷却空気Aがタービン動
翼24外周端と遮熱板25との間隙を流れるため、この
間隙からの主流ガスの漏れも小さく抑えることが可能と
なり、タービン効率を向上させることができる。
The cooling air A that impingement-cooled the heat shield plate 25 is ejected from the cooling air hole 41 opened on the upstream side of the heat shield plate 25 into the mainstream gas passage, and the gap between the heat shield plate 25 and the outer peripheral end of the turbine rotor blade 24 is The main gas passage side wall of the heat shield plate 25 is cooled by a film. Therefore, the cooling efficiency of the heat shield plate 25 can be further increased, and since the cooling air A flows through the gap between the outer peripheral end of the turbine rotor blade 24 and the heat shield plate 25, leakage of mainstream gas from this gap is also prevented. This makes it possible to keep it small and improve turbine efficiency.

[発明の効果] 以上説明したように本発明のガスタービンシュラウドに
よれば、シュラウドセグメントの冷却効率が向上し、し
かもシュラウドセグメントとタービン動翼との間隙を任
意に調整できる。
[Effects of the Invention] As explained above, according to the gas turbine shroud of the present invention, the cooling efficiency of the shroud segment is improved, and the gap between the shroud segment and the turbine rotor blade can be arbitrarily adjusted.

従って、主流ガスの間隙からの漏れ量を少なくすること
ができ、さらにタービン主流ガス温度を上げることがで
きるのでガスタービンの全体効率の向上に大きく貢獣す
る。
Therefore, the amount of leakage of the mainstream gas from the gap can be reduced, and the temperature of the turbine mainstream gas can be increased, which greatly contributes to improving the overall efficiency of the gas turbine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による一実施例の断面図、第2図は第1
図を主流ガス下流から見た一部断面図、第3図は第1、
図の水平部におけるx−x断面図、第4図は第1図にお
けるY−Y断面図、第5図はタービン動翼外周端間隙の
起動後の時間に対する変化を示す図、第6図は他の実施
例を示す断面図、第7図および第8図は従来のシュラウ
ドセグメントを示す断面図である。 21・・・・・・・・・シュラウドセグメント22・・
・・・・・・・タービンケーシング24・・・・・・・
・・タービン動翼 25・・・・・・・・・遮熱板 26・・・・・・・・・可撓部材 28・・・・・・・・・冷却空気流入孔29・・・・・
・・・・冷却空気孔 31・・・・・・・・・調整弁 出願人      株式会社 東芝 代理人 弁理士  須 山 佐 − 第1図 第2rg 第3図 第4rIIJ 第5@ 第6図 第7図 第8図
FIG. 1 is a cross-sectional view of one embodiment of the present invention, and FIG.
Figure 3 is a partial cross-sectional view of the figure viewed from the downstream side of the mainstream gas.
4 is a sectional view taken along Y-Y in FIG. 7 and 8 are cross-sectional views showing conventional shroud segments. 21...Shroud segment 22...
......Turbine casing 24...
...Turbine rotor blade 25... Heat shield plate 26... Flexible member 28... Cooling air inflow hole 29...・
・・・・Cooling air hole 31・・・・・Adjusting valve applicant Toshiba Corporation Patent attorney Sa Suyama - Figure 1 2rg Figure 3 4rIIJ 5 @ Figure 6 7 Figure 8

Claims (2)

【特許請求の範囲】[Claims] (1)タービンケーシング内周面にタービン動翼の外周
端と間隙を保持して環状に連設された中空状のシュラウ
ドセグメントと、このシュラウドセグメントのタービン
ケーシング側の壁面に穿設されたシュラウドセグメント
内に冷却空気を導入するための冷却空気導入孔と、この
冷却空気導入孔から流入する冷却空気の流入量を調整す
るための流量調整弁と、前記シュラウドセグメントの内
周側の壁面に多数穿設された冷却空気吐出孔と、前記シ
ュラウドセグメントの内周面を全周にわたつて覆うよう
に前記シュラウドセグメントとタービン動翼の間隙に配
置された遮熱板とを備えたガスタービンシュラウドにお
いて、 前記遮熱板を全周複数分割に構成するとともに、前記遮
熱板と前記シュラウドセグメントとの取付け部をシュラ
ウドセグメントの半径方向に移動可能な柔構造としたこ
とを特徴とするガスタービンシュラウド。
(1) A hollow shroud segment that is connected in an annular manner to the inner circumferential surface of the turbine casing with a gap between it and the outer circumferential end of the turbine rotor blade, and a shroud segment that is bored in the wall surface of this shroud segment on the turbine casing side. A cooling air introduction hole for introducing cooling air into the shroud segment, a flow rate adjustment valve for adjusting the amount of cooling air flowing in from the cooling air introduction hole, and a number of holes formed on the inner peripheral wall of the shroud segment. A gas turbine shroud comprising: a cooling air discharge hole provided therein; and a heat shield plate disposed in a gap between the shroud segment and the turbine rotor blade so as to cover the entire inner peripheral surface of the shroud segment, A gas turbine shroud, characterized in that the heat shield plate is divided into a plurality of parts all around the circumference, and a mounting portion between the heat shield plate and the shroud segment has a flexible structure that is movable in the radial direction of the shroud segment.
(2)遮熱板が、シュラウドセグメントの冷却空気吐出
孔から吐出した冷却空気を透過させるための多数の孔を
穿設していることを特徴とする特許請求の範囲第1項記
載のガスタービンシュラウド。
(2) The gas turbine according to claim 1, wherein the heat shield plate has a large number of holes for transmitting the cooling air discharged from the cooling air discharge holes of the shroud segment. Shroud.
JP62073534A 1987-03-27 1987-03-27 Gas turbine shroud Expired - Lifetime JP2659950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62073534A JP2659950B2 (en) 1987-03-27 1987-03-27 Gas turbine shroud

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62073534A JP2659950B2 (en) 1987-03-27 1987-03-27 Gas turbine shroud

Publications (2)

Publication Number Publication Date
JPS63239301A true JPS63239301A (en) 1988-10-05
JP2659950B2 JP2659950B2 (en) 1997-09-30

Family

ID=13520991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62073534A Expired - Lifetime JP2659950B2 (en) 1987-03-27 1987-03-27 Gas turbine shroud

Country Status (1)

Country Link
JP (1) JP2659950B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6113349A (en) * 1998-09-28 2000-09-05 General Electric Company Turbine assembly containing an inner shroud
JP2008180220A (en) * 2007-01-24 2008-08-07 General Electric Co <Ge> Predictive model type control system for high horsepower gas turbine
JP2010261447A (en) * 2009-05-01 2010-11-18 General Electric Co <Ge> Turbine engine having cooling pin
US20110236188A1 (en) * 2010-03-26 2011-09-29 United Technologies Corporation Blade outer seal for a gas turbine engine
JP2012122390A (en) * 2010-12-08 2012-06-28 Mitsubishi Heavy Ind Ltd Turbo rotary machine and method for operating the same
GB2486964A (en) * 2010-12-30 2012-07-04 Gen Electric Turbine shroud mounting
EP2540994A1 (en) * 2011-06-30 2013-01-02 General Electric Company Chordal mounting arrangement for low-ductility turbine shroud
CN103161520A (en) * 2013-03-01 2013-06-19 哈尔滨汽轮机厂有限责任公司 First class turbine protective ring of middle-low calorific value gas turbine and disassembling method thereof
US8753073B2 (en) * 2010-06-23 2014-06-17 General Electric Company Turbine shroud sealing apparatus
CN105612313A (en) * 2013-05-17 2016-05-25 通用电气公司 CMC shroud support system of a gas turbine
JP2016532048A (en) * 2013-08-09 2016-10-13 シーメンス アクティエンゲゼルシャフト Insert element, ring segment, gas turbine, mounting method
JP2016535188A (en) * 2013-09-25 2016-11-10 シーメンス アクティエンゲゼルシャフト Insert element, annular segment, gas turbine, and mounting method
CN106224021A (en) * 2015-05-11 2016-12-14 通用电气公司 There is the turbine shroud bay assemblies of expansion pipe
US9726043B2 (en) 2011-12-15 2017-08-08 General Electric Company Mounting apparatus for low-ductility turbine shroud
US9874104B2 (en) 2015-02-27 2018-01-23 General Electric Company Method and system for a ceramic matrix composite shroud hanger assembly
US10309244B2 (en) 2013-12-12 2019-06-04 General Electric Company CMC shroud support system
US10400619B2 (en) 2014-06-12 2019-09-03 General Electric Company Shroud hanger assembly
US10465558B2 (en) 2014-06-12 2019-11-05 General Electric Company Multi-piece shroud hanger assembly
FR3099787A1 (en) * 2019-08-05 2021-02-12 Safran Helicopter Engines Ring for a turbine engine or turbine engine turbine
US11668207B2 (en) 2014-06-12 2023-06-06 General Electric Company Shroud hanger assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4329113A (en) * 1978-10-06 1982-05-11 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Temperature control device for gas turbines
JPS5818502A (en) * 1981-07-11 1983-02-03 ロ−ルス・ロイス・リミテツド Shroud structure for gas turbine engine
JPS5910706A (en) * 1982-07-12 1984-01-20 Hitachi Ltd Shroud ring for gas turbine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4329113A (en) * 1978-10-06 1982-05-11 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Temperature control device for gas turbines
JPS5818502A (en) * 1981-07-11 1983-02-03 ロ−ルス・ロイス・リミテツド Shroud structure for gas turbine engine
JPS5910706A (en) * 1982-07-12 1984-01-20 Hitachi Ltd Shroud ring for gas turbine

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6113349A (en) * 1998-09-28 2000-09-05 General Electric Company Turbine assembly containing an inner shroud
JP2008180220A (en) * 2007-01-24 2008-08-07 General Electric Co <Ge> Predictive model type control system for high horsepower gas turbine
JP2010261447A (en) * 2009-05-01 2010-11-18 General Electric Co <Ge> Turbine engine having cooling pin
US8556575B2 (en) * 2010-03-26 2013-10-15 United Technologies Corporation Blade outer seal for a gas turbine engine
US20110236188A1 (en) * 2010-03-26 2011-09-29 United Technologies Corporation Blade outer seal for a gas turbine engine
US8753073B2 (en) * 2010-06-23 2014-06-17 General Electric Company Turbine shroud sealing apparatus
JP2012122390A (en) * 2010-12-08 2012-06-28 Mitsubishi Heavy Ind Ltd Turbo rotary machine and method for operating the same
GB2486964A (en) * 2010-12-30 2012-07-04 Gen Electric Turbine shroud mounting
GB2486964B (en) * 2010-12-30 2017-05-31 Gen Electric Structural low-ductility turbine shroud apparatus
EP2540994A1 (en) * 2011-06-30 2013-01-02 General Electric Company Chordal mounting arrangement for low-ductility turbine shroud
US9726043B2 (en) 2011-12-15 2017-08-08 General Electric Company Mounting apparatus for low-ductility turbine shroud
CN103161520A (en) * 2013-03-01 2013-06-19 哈尔滨汽轮机厂有限责任公司 First class turbine protective ring of middle-low calorific value gas turbine and disassembling method thereof
CN105612313B (en) * 2013-05-17 2017-11-21 通用电气公司 The CMC shield support systems of combustion gas turbine
CN105612313A (en) * 2013-05-17 2016-05-25 通用电气公司 CMC shroud support system of a gas turbine
US10378387B2 (en) 2013-05-17 2019-08-13 General Electric Company CMC shroud support system of a gas turbine
JP2016532048A (en) * 2013-08-09 2016-10-13 シーメンス アクティエンゲゼルシャフト Insert element, ring segment, gas turbine, mounting method
JP2016535188A (en) * 2013-09-25 2016-11-10 シーメンス アクティエンゲゼルシャフト Insert element, annular segment, gas turbine, and mounting method
US10018051B2 (en) 2013-09-25 2018-07-10 Siemens Aktiengesellschaft Gas turbine and mounting method
US10309244B2 (en) 2013-12-12 2019-06-04 General Electric Company CMC shroud support system
US10400619B2 (en) 2014-06-12 2019-09-03 General Electric Company Shroud hanger assembly
US10465558B2 (en) 2014-06-12 2019-11-05 General Electric Company Multi-piece shroud hanger assembly
US11092029B2 (en) 2014-06-12 2021-08-17 General Electric Company Shroud hanger assembly
US11668207B2 (en) 2014-06-12 2023-06-06 General Electric Company Shroud hanger assembly
US9874104B2 (en) 2015-02-27 2018-01-23 General Electric Company Method and system for a ceramic matrix composite shroud hanger assembly
US9915153B2 (en) 2015-05-11 2018-03-13 General Electric Company Turbine shroud segment assembly with expansion joints
CN106224021A (en) * 2015-05-11 2016-12-14 通用电气公司 There is the turbine shroud bay assemblies of expansion pipe
FR3099787A1 (en) * 2019-08-05 2021-02-12 Safran Helicopter Engines Ring for a turbine engine or turbine engine turbine

Also Published As

Publication number Publication date
JP2659950B2 (en) 1997-09-30

Similar Documents

Publication Publication Date Title
JPS63239301A (en) Gas turbine shroud
US5127793A (en) Turbine shroud clearance control assembly
US8181443B2 (en) Heat exchanger to cool turbine air cooling flow
US5823741A (en) Cooling joint connection for abutting segments in a gas turbine engine
JP4575532B2 (en) Hot wall with impingement baffle with dimples
US4187054A (en) Turbine band cooling system
US5383766A (en) Cooled vane
US6932568B2 (en) Turbine nozzle segment cantilevered mount
US5593278A (en) Gas turbine engine rotor blading sealing device
JP4698847B2 (en) Gas turbine split ring
EP0926314B1 (en) Seal structure for gas turbines
US6969233B2 (en) Gas turbine engine turbine nozzle segment with a single hollow vane having a bifurcated cavity
US8585357B2 (en) Blade outer air seal support
US7008185B2 (en) Gas turbine engine turbine nozzle bifurcated impingement baffle
US3388888A (en) Cooled turbine nozzle for high temperature turbine
US7722315B2 (en) Method and system to facilitate preferentially distributed recuperated film cooling of turbine shroud assembly
JP5723101B2 (en) Gas turbine engine temperature management method and apparatus
EP2182175B1 (en) Casing structure for and method of improving a turbine&#39;s thermal response during transient and steady state operating conditions
JPH0776619B2 (en) Fuel injection nozzle support
JP2011157962A (en) Retaining ring for turbine nozzle improved in thermal separation
US7611324B2 (en) Method and system to facilitate enhanced local cooling of turbine engines
US4460313A (en) Heat shield for radial gas turbine
EP3339580B1 (en) Gas turbine
EP0103260A2 (en) Clearance control for turbine blade tips
JPS62153504A (en) Shrouding segment