JPS63238436A - Active type temperature sensor - Google Patents

Active type temperature sensor

Info

Publication number
JPS63238436A
JPS63238436A JP62071479A JP7147987A JPS63238436A JP S63238436 A JPS63238436 A JP S63238436A JP 62071479 A JP62071479 A JP 62071479A JP 7147987 A JP7147987 A JP 7147987A JP S63238436 A JPS63238436 A JP S63238436A
Authority
JP
Japan
Prior art keywords
temp
temperature
transmitter
power source
converting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62071479A
Other languages
Japanese (ja)
Inventor
Kazuo Takahashi
和雄 高橋
Hiromi Tokoi
博見 床井
Hajime Yamamoto
元 山本
Shigehiro Shimoyashiki
下屋敷 重広
Hisashi Soma
相馬 尚志
Mitsuo Hayashibara
光男 林原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62071479A priority Critical patent/JPS63238436A/en
Publication of JPS63238436A publication Critical patent/JPS63238436A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure temp. to transmit the same without using an external power source, by using an element efficiently generating power at the time of the measurement of temp. and converting said power to a temp. signal and the power source of a transmitter. CONSTITUTION:This sensor is constituted of a thermoelectric converter element 1, an electrode 2, cooling fins 3 and a transmitter 4. The thermoelectric converter element 1 is constituted of a structure having a solid elements capable of directly converting heat to electricity, that is, a pair of an N-type semiconductor and a P-type semiconductor and generating potential difference on both high and low temp. sides. The generated voltage is shown by the product of the coefficient (Seebeck coefficient) determined by the characteristics of the N-type and P-type semiconductors and the temp. difference between the upper and lower surfaces of the sensor. As mentioned above, by using the element capable of directly and efficiently converting heat to electricity and transmitting temp. data by converting the quantity of the generated electricity to a temp. signal and the power source of the transmitter and providing a receiver capable of collectively receiving the signals from a large number of sensors to the outside, the wireless transmission and reception of temp. become possible without supplying a power source from the outside.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は各種プラントの計装に係り、特に温度を計測し
、伝送するのに好適な能動型温度計測伝送システムに関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to instrumentation of various plants, and particularly to an active temperature measurement and transmission system suitable for measuring and transmitting temperature.

〔従来の技術〕[Conventional technology]

温度計測には目的に応じて多種多様に手段があり、例え
ば朝食書店発行の工業計測法ハンドブック、1980年
第2刷p249〜p257に詳述しである。また、高温
プラントの一つである原子力発電では上記した計測法の
一つである熱電対が用いられており、原子炉容器内だ1
1でも約1500本あり、測定点から中央制御室までケ
ーブルを引廻しており、延べ約6万Kmにも達している
There are various methods for temperature measurement depending on the purpose, as detailed in, for example, Industrial Measurement Handbook published by Shokusen Shoten, 1980, 2nd edition, pages 249 to 257. In addition, thermocouples, which are one of the measurement methods mentioned above, are used in nuclear power generation, which is one of the high-temperature plants.
There are approximately 1,500 cables in 1, and the cables are routed from the measurement point to the central control room, totaling approximately 60,000 km.

熱電対による温度計−は最も一般的で、実績も豊富であ
るが、計測点から計測器までケーブルを引廻す必要があ
った。また、信号をワイヤレスで送る。
Thermometers using thermocouples are the most common and have a good track record, but they require a cable to be routed from the measurement point to the measuring device. It also sends signals wirelessly.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記した熱電対による温度計測法は最も一般的で実績も
豊富であるが、測定点から計測器までケーブルを引廻す
必要があった。また、温度信号をワイヤレスで送信する
には送信器を作動させるための外部電源が必要となる。
The temperature measurement method using a thermocouple described above is the most common and has a rich track record, but it requires a cable to be routed from the measurement point to the measuring device. Additionally, transmitting temperature signals wirelessly requires an external power source to operate the transmitter.

従って、計測点の多い高温プラントとなると膨大な量の
配線とその作業コストを要する。
Therefore, a high-temperature plant with many measurement points requires an enormous amount of wiring and its work cost.

本発明の目的は外部電源なしで温度計測をし、発信でき
る能動型センサーを提供し、ワイヤレス化を図り、配線
とその作業量を低減することにある。
An object of the present invention is to provide an active sensor that can measure and transmit temperature without an external power source, to make it wireless, and to reduce wiring and the amount of work involved.

〔問題点を解決するための手段〕[Means for solving problems]

上記した目的は温度計測時に効率良く電力を発生する素
子を用い、その電力を温度信号と発信器の電源に変換す
ることにより達成される。
The above object is achieved by using an element that efficiently generates electric power during temperature measurement and converting the electric power into a temperature signal and a power source for the transmitter.

〔作用〕[Effect]

温度センサーに熱を直接電気に効率良く変換できる素子
を用い1発生する電気量を温度信号と発信器の電源とし
て温度データを発信させ、外部に多数本センサーからの
信号を一括受信できる受信器を設けることによって外部
から電源の供給ないワイヤレス温度送受信を可能とする
The temperature sensor uses an element that can efficiently convert heat directly into electricity, and the generated electricity is used as a temperature signal and power source for the transmitter to transmit temperature data, and an external receiver that can receive signals from multiple sensors at once is installed. By providing this, wireless temperature transmission and reception is possible without an external power supply.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。能動
型センサーは熱電変換素子1.電極2゜冷却フィン39
発信器4から構成されている。熱電変換素子1は熱を電
気に直接変換できる固体素子、すなわちN型半導体とP
型半導体を対にし。
An embodiment of the present invention will be described below with reference to FIG. Active sensors are thermoelectric conversion elements1. Electrode 2゜Cooling fin 39
It consists of a transmitter 4. The thermoelectric conversion element 1 is a solid-state element that can directly convert heat into electricity, that is, an N-type semiconductor and a P-type semiconductor.
Pair the type semiconductors.

高温側・低温側の両端に電位差を生ずる物から成る。発
生する電圧はN型とP型半導体の特性で決定される係数
(ゼーベック係数)と上下面の温度差の積で表わされる
。この熱電変換素子1の特性を第2図、発信器の模式回
路図を第3図に示す。
It consists of something that creates a potential difference between the high temperature and low temperature ends. The generated voltage is expressed as the product of a coefficient (Seebeck coefficient) determined by the characteristics of the N-type and P-type semiconductors and the temperature difference between the upper and lower surfaces. The characteristics of this thermoelectric conversion element 1 are shown in FIG. 2, and the schematic circuit diagram of the oscillator is shown in FIG.

発信器4は熱電変換素子で発生した電力を電波。The transmitter 4 converts the power generated by the thermoelectric conversion element into radio waves.

光あるいはレーザーに変換して伝送する6本適用例では
電波に変換した′例を示す。電波の発信には振幅変調(
AM)や周波数変調(FM)などの方法が考えられる。
In the six application examples of converting into light or laser and transmitting, an example of converting into radio waves is shown. Amplitude modulation (
Possible methods include AM) and frequency modulation (FM).

ここでは信号をパルス幅変調(PWM)L、FMで発信
するPWM−FM電波の回路例を示す。発信器4は基準
抵抗7.定電圧電源発生器8.のこぎり波発生器6.コ
ンパレータ9及び周波数変調器10で構成した。
Here, an example of a PWM-FM radio wave circuit that transmits signals using pulse width modulation (PWM) L and FM is shown. The transmitter 4 has a reference resistor 7. Constant voltage power supply generator8. Sawtooth wave generator6. It consists of a comparator 9 and a frequency modulator 10.

熱電変換素子1の開路電圧Exは第2図に示したように
、上下面の温度差Ts、 Tx、 Ts・・・TIlの
変化によってEx、 Ex、Ea・・・E、に増加する
As shown in FIG. 2, the open circuit voltage Ex of the thermoelectric conversion element 1 increases to Ex, Ex, Ea, .

これに基準抵抗7と定電圧電源発生器8を継ぐことによ
って開路電流が変化する。定電圧電源発生器8のツェナ
ーダイオードはのこぎり波発生器6及び周波数変調器1
0の作動電圧Eoを一定にするように働らき、基準抵抗
7を流れる電流工は(E −−E o ) / R,と
なりそれぞれIt、 It。
By connecting a reference resistor 7 and a constant voltage power supply generator 8 to this, the open circuit current changes. The Zener diode of the constant voltage power supply generator 8 is connected to the sawtooth wave generator 6 and the frequency modulator 1.
The current flowing through the reference resistor 7, which works to keep the operating voltage Eo at 0 constant, is (E--Eo)/R, and is It and It, respectively.

工3・・・ 工、の値となる。この電流値を電圧V、に
変換してコンパレータ9の変調信号とした。コンパレー
タ9では定電圧電源発生器8から供給される電源によっ
てのこぎり波発生器を作動させ、のこぎり波を受けて変
調信号とコンパレートしてパルス幅に変調する。パルス
幅に変調したPWM信号をのこぎり波発生器6と同様に
定電圧電源発生器8から供給された電源によって作動し
ている周波数変調器10へと導びきFM波として発信さ
せた。
Engineering 3... The value of engineering. This current value was converted into a voltage V, which was used as a modulation signal for the comparator 9. The comparator 9 operates a sawtooth wave generator using the power supplied from the constant voltage power supply generator 8, receives the sawtooth wave, compares it with a modulation signal, and modulates it into a pulse width. The PWM signal modulated into a pulse width was guided to a frequency modulator 10 operated by a power source supplied from a constant voltage power source generator 8, similar to the sawtooth wave generator 6, and was transmitted as an FM wave.

発信させたFM波は受信器(図示せず)で受信し、電圧
V、に逆変換した。開路電圧E’xは既知のEoとvl
の和で求め、この値から熱電変換素子1の温度差に換算
し、さらに雰囲気の温度を加えて被測定物の温度を求め
た。
The transmitted FM wave was received by a receiver (not shown) and inversely converted into a voltage V. The open circuit voltage E'x is the known Eo and vl
This value was converted into the temperature difference of the thermoelectric conversion element 1, and the temperature of the object was determined by adding the temperature of the atmosphere.

次に第1図に示した熱電変換素子1にFe−5i系の半
導体を適用した例を示す。縦2mn+、横2nm、厚み
1mmの半導体チップ20対を直列に接続して外形寸法
15X10X2++n+の熱電変換素子1とした。電極
2に銅を用い、冷却フィン3にはAΩを用いた。冷却フ
ィン3の長さを100nnとし、熱電変換素子1の上面
が充分冷却できる構造とした。熱電変換素子1の上下面
で200℃の温度差を与えた時の開路電圧は2V、電流
約2Aが得られ、発信器の作動電圧を1vとすると温度
差100’Cから発信可能4となる。室温30℃を補正
し被測物の温度は130℃から測定できる。
Next, an example will be shown in which an Fe-5i semiconductor is applied to the thermoelectric conversion element 1 shown in FIG. Twenty pairs of semiconductor chips each having a length of 2 mm+, a width of 2 nm, and a thickness of 1 mm were connected in series to form a thermoelectric conversion element 1 having external dimensions of 15×10×2++n+. Copper was used for the electrode 2, and AΩ was used for the cooling fin 3. The length of the cooling fins 3 was set to 100 nn, and the structure was such that the upper surface of the thermoelectric conversion element 1 could be sufficiently cooled. When a temperature difference of 200°C is applied between the upper and lower surfaces of the thermoelectric conversion element 1, an open circuit voltage of 2V and a current of about 2A are obtained.If the operating voltage of the transmitter is 1V, it is possible to transmit from a temperature difference of 100'C. . The temperature of the object to be measured can be measured from 130°C by correcting the room temperature of 30°C.

以上、本発明によれば、計測した温度データをワイヤレ
スで送信可能となり、外部電源及び配線作業のコスト低
減が図れる。
As described above, according to the present invention, measured temperature data can be transmitted wirelessly, and the cost of external power supply and wiring work can be reduced.

次に、このセンサーを実際に高温プラントへ適用した例
について示す。高温プラントの被測定物10の表面には
放熱を防止するために保温11が施こされる。この保温
の一部をはがし、熱良導体12、例えば炭化ケイ素(S
 i C)や熱異方性カーボン等を被測定物10に取付
け、その上に本発明となる能動型センサーを取付ける。
Next, we will show an example in which this sensor is actually applied to a high-temperature plant. A heat insulator 11 is applied to the surface of the object to be measured 10 in a high-temperature plant to prevent heat radiation. A part of this insulation is peeled off and a good thermal conductor 12, such as silicon carbide (S) is removed.
iC), thermally anisotropic carbon, or the like is attached to the object to be measured 10, and the active sensor of the present invention is attached thereon.

他方、受信側は高温プラントの場合、安全性を確保する
ために隔壁を設けることが多いので、この隔壁13内に
多数本の能動センサーから送信される電波を受信するた
めのアンテナ14をはり、受信器15を隔壁13の外側
に設置する。受信器15からは、高温プラントの中央制
御室へ測定データを伝送する必要があるため、伝送回路
16へつないである。
On the other hand, in the case of a high-temperature plant, on the receiving side, a bulkhead is often provided to ensure safety, so an antenna 14 is installed inside the bulkhead 13 to receive radio waves transmitted from a large number of active sensors. A receiver 15 is installed outside the partition wall 13. The receiver 15 is connected to a transmission circuit 16 because it is necessary to transmit measurement data to the central control room of the high-temperature plant.

伝送回路16には隔壁13内の雰囲気温度を測定し、能
動型センサーの基準とする熱電対17を1本設けである
。ここで、多数本のセンサーを設置した場合、センサー
の弁別が問題となる。そこで第5図に示すようにFM波
を発信する時周波数帯域を変えた多重発信を採用し、セ
ンサーの弁別をできるようにした。
The transmission circuit 16 is provided with one thermocouple 17 that measures the atmospheric temperature within the partition wall 13 and serves as a reference for the active sensor. Here, when a large number of sensors are installed, sensor discrimination becomes a problem. Therefore, as shown in Figure 5, we adopted multiplex transmission in which the frequency band was changed when transmitting FM waves, making it possible to discriminate between sensors.

以上、本発明を高温プラントの多数本温度計測に適用し
た場合、壁隔内のケーブルが不必要となり、さらに隔壁
を貫通するケーブルも1本ですむことから、安全性も向
上する。特に原子力発電プラント1次冷却系に適用した
場合には隔壁が放射線じゃへいの役割を有するため、貫
通ケーブルを消減し、放射能の外部汚染をも防止するの
に有効である。
As described above, when the present invention is applied to multiple temperature measurements in a high-temperature plant, there is no need for cables inside the walls, and only one cable is required to penetrate the partitions, which improves safety. Particularly when applied to the primary cooling system of a nuclear power plant, the bulkhead has the role of a radiation shield, so it is effective in reducing the number of through cables and preventing external contamination with radioactivity.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ワイヤレス温度計測ができるので、配
線量の消滅、配線作業コストの大幅低減が図れるなどの
効果がある。
According to the present invention, since wireless temperature measurement is possible, there are effects such as eliminating the amount of wiring and significantly reducing wiring work costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の能動型センサーの縦断面図
、第2図は第1図の熱発電変換素子の特性模式図、第3
図は第1図の回路構成図、第4図は本発明の能動型セン
サーをプラントに適用した場合のシステム構成図、第5
図は第4図のデータ送信例を示したものである。 1・・・熱電変換素子、2・・・電極、3・・・冷却フ
ィン、4・・・発信器、6・・・のこぎり波発生器、7
・・・基準抵抗、8・・・定電圧電源発生器、9・・・
コンパレータ、LhT3   I、L r#I跡t8え(I)
FIG. 1 is a vertical cross-sectional view of an active sensor according to an embodiment of the present invention, FIG. 2 is a schematic diagram of the characteristics of the thermoelectric power conversion element shown in FIG.
The figure is a circuit configuration diagram of Figure 1, Figure 4 is a system configuration diagram when the active sensor of the present invention is applied to a plant, and Figure 5 is a diagram of the system configuration when the active sensor of the present invention is applied to a plant.
The figure shows an example of data transmission in FIG. 4. DESCRIPTION OF SYMBOLS 1... Thermoelectric conversion element, 2... Electrode, 3... Cooling fin, 4... Transmitter, 6... Sawtooth wave generator, 7
...Reference resistance, 8...Constant voltage power supply generator, 9...
Comparator, LhT3 I, L r#I trace t8e (I)

Claims (1)

【特許請求の範囲】 1、対象物の温度を熱起電力に変換して出力する温度測
定部と上記熱起電力を電気信号又は光信号に変換して送
信する送信器を有し、温度測定信号をワイヤレスで送信
できるようにしたことを特徴とした能動型温度センサー
。 2、上記温度測定部に半導体の固体素子を用い、発生し
た熱起電力を温度信号及び送信器の供給電源として用い
ることを特徴とする特許請求の範囲第1項記載の能力型
温度センサー。
[Claims] 1. A temperature measurement unit comprising a temperature measurement unit that converts the temperature of an object into a thermoelectromotive force and outputs it, and a transmitter that converts the thermoelectromotive force into an electrical signal or an optical signal and transmits the same, An active temperature sensor characterized by the ability to transmit signals wirelessly. 2. The performance temperature sensor according to claim 1, wherein a semiconductor solid-state element is used in the temperature measurement section, and the generated thermoelectromotive force is used as a temperature signal and a power supply for a transmitter.
JP62071479A 1987-03-27 1987-03-27 Active type temperature sensor Pending JPS63238436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62071479A JPS63238436A (en) 1987-03-27 1987-03-27 Active type temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62071479A JPS63238436A (en) 1987-03-27 1987-03-27 Active type temperature sensor

Publications (1)

Publication Number Publication Date
JPS63238436A true JPS63238436A (en) 1988-10-04

Family

ID=13461810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62071479A Pending JPS63238436A (en) 1987-03-27 1987-03-27 Active type temperature sensor

Country Status (1)

Country Link
JP (1) JPS63238436A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005346442A (en) * 2004-06-03 2005-12-15 Fukuoka Institute Of Technology Power receiving state monitoring device for electric appliance
US7004621B2 (en) * 2004-06-17 2006-02-28 Cryovac, Inc. Method of monitoring temperature exposure
JP2008292319A (en) * 2007-05-24 2008-12-04 Kobe Steel Ltd Vibration sensor system
WO2013149919A3 (en) * 2012-04-04 2014-04-03 Continental Automotive Gmbh Device for temperature monitoring, and battery safety system with such a device
JP2014095512A (en) * 2012-11-09 2014-05-22 Mitsubishi Heavy Ind Ltd Measuring device, measuring system and measuring method
CN104090193A (en) * 2014-07-26 2014-10-08 山东大学 Remote measurement device for Seebeck coefficient and resistance of thermoelectric material and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52352A (en) * 1975-06-23 1977-01-05 Nippon Seimitsu Keisoku Kk Remote temperature monitor system of electric systems
JPS5224569A (en) * 1975-08-20 1977-02-24 Matsushita Electric Ind Co Ltd Thermoelectromotive force element
JPS567031A (en) * 1979-06-29 1981-01-24 Hitachi Cable Ltd Measuring temperature of power cable conductor
JPS61240130A (en) * 1985-04-17 1986-10-25 Matsushita Electric Ind Co Ltd Cooking thermometer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52352A (en) * 1975-06-23 1977-01-05 Nippon Seimitsu Keisoku Kk Remote temperature monitor system of electric systems
JPS5224569A (en) * 1975-08-20 1977-02-24 Matsushita Electric Ind Co Ltd Thermoelectromotive force element
JPS567031A (en) * 1979-06-29 1981-01-24 Hitachi Cable Ltd Measuring temperature of power cable conductor
JPS61240130A (en) * 1985-04-17 1986-10-25 Matsushita Electric Ind Co Ltd Cooking thermometer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005346442A (en) * 2004-06-03 2005-12-15 Fukuoka Institute Of Technology Power receiving state monitoring device for electric appliance
US7004621B2 (en) * 2004-06-17 2006-02-28 Cryovac, Inc. Method of monitoring temperature exposure
JP2008292319A (en) * 2007-05-24 2008-12-04 Kobe Steel Ltd Vibration sensor system
WO2013149919A3 (en) * 2012-04-04 2014-04-03 Continental Automotive Gmbh Device for temperature monitoring, and battery safety system with such a device
JP2014095512A (en) * 2012-11-09 2014-05-22 Mitsubishi Heavy Ind Ltd Measuring device, measuring system and measuring method
CN104090193A (en) * 2014-07-26 2014-10-08 山东大学 Remote measurement device for Seebeck coefficient and resistance of thermoelectric material and application thereof
CN104090193B (en) * 2014-07-26 2016-08-31 山东大学 A kind of thermoelectric material Seebeck coefficient and the remote measuring unit of resistance and application thereof

Similar Documents

Publication Publication Date Title
US5235861A (en) Power transmission line monitoring system
US3562729A (en) Two wire mv./v. transmitter
GB907428A (en) Thermoelectric device
JPS63238436A (en) Active type temperature sensor
KR101152222B1 (en) Flexible Thermoelectric Generator, Wireless Sensor Node Comprising The Same and Method for Manufacturing the Same
KR20150025919A (en) Temperature sensing circuit for igbt module
CN201145943Y (en) Temperature difference wireless infrared temperature sensor
EP3430358B1 (en) Arrangement and method for determining a measurement value for a power cable
US3637985A (en) Portable remote location measuring system
US5328264A (en) Compensation device for the cold junction of a thermocouple
US4573806A (en) Thermocouple isolation block system
JP2002022543A (en) Temperature measuring instrument using thermocouple
vom Boegel et al. Wireless sensor system for industrial applications powered by thermoelectric generator
KR20170024456A (en) Infrared detector and infrared thermal sensor having thereof
US2844639A (en) Thermo-electric generator
JP2513892B2 (en) Temperature sensor for strong magnetic field
JP2002083389A (en) Temperature rise monitoring sensor device and facility monitoring system
CN220602748U (en) Temperature measuring circuit of thermocouple
SU723463A1 (en) Method of measuring voltage effective value
JPH02147927A (en) Temperature measuring system
JPS623629A (en) Reference contact connection box
JPS593069B2 (en) solid-state imaging device
Zadornov et al. A multifunction optoelectronic measurement system for ac three-phase networks
CN110823397A (en) Wireless temperature measurement system
SU1373095A1 (en) Device for contactless measurement of surface temperature