JPS623629A - Reference contact connection box - Google Patents
Reference contact connection boxInfo
- Publication number
- JPS623629A JPS623629A JP14274185A JP14274185A JPS623629A JP S623629 A JPS623629 A JP S623629A JP 14274185 A JP14274185 A JP 14274185A JP 14274185 A JP14274185 A JP 14274185A JP S623629 A JPS623629 A JP S623629A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- thermocouple
- emitting element
- light emitting
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明は、熱電対により多点温度計測を行なう場合に、
熱電対の基準接点の温度によって変化する熱起電力を補
償するために前記熱電対と計測器本体との間に介設され
る基準接点接続箱に関する。[Detailed description of the invention] (a) Industrial application field The present invention is applicable to multi-point temperature measurements using thermocouples.
The present invention relates to a reference junction connection box interposed between the thermocouple and a measuring instrument body in order to compensate for thermoelectromotive force that changes depending on the temperature of the reference junction of the thermocouple.
(ロ)従来技術とその問題点
一般に、たとえば、各種の装置産業プラント等において
は、熱処理装置の操業条件を監視するような場合には、
熱電対を用いて多点温度計測が行なわれる。このような
場合、熱電対が設けられた測定地点とこれより得られた
温度データを処理する計測器本体とが互いに離れている
ときには、第4図に示すように、測定地点近くに基準接
点接続箱aを設け、この基準接点接続箱aに各熱電対す
を一旦集結し、この基準接点接続箱aから銅導線Cを介
して計測器本体dに接続する構成が採られる。(b) Prior art and its problems In general, for example, in various equipment industrial plants, etc., when monitoring the operating conditions of heat treatment equipment,
Multipoint temperature measurements are performed using thermocouples. In such a case, if the measurement point where the thermocouple is installed and the measuring instrument body that processes the temperature data obtained from this are far from each other, connect the reference junction near the measurement point as shown in Figure 4. A configuration is adopted in which a box a is provided, each thermocouple is temporarily assembled in this reference junction junction box a, and then connected from this reference junction junction box a to the measuring instrument main body d via a copper conducting wire C.
熱電対すの熱起電力は、その基準接点の温度によって変
化する。したがって、熱起電力が基準接点の温度によっ
て変化するのを補償する必要があるため、従来は、熱電
対すと銅導線Cとを接続する端子部の温度を一定にする
ように加熱または冷却する。あるいは、第4図に示すよ
うに、基準接点接続箱aの熱電対すとの接続部の温度を
計測する熱電対eを別途設け、この熱電対eを計測器本
体d側まで延長する。そして、この熱電対eで得られた
温度データに基づいて熱電対すの基準接点の温度によっ
て変化するそれの熱起電力を補償するなどの手段が講じ
られている。The thermoelectromotive force of a thermocouple changes depending on the temperature of its reference junction. Therefore, it is necessary to compensate for changes in the thermoelectromotive force depending on the temperature of the reference junction, so conventionally, the terminal portion connecting the thermocouple and the copper conductor C is heated or cooled to keep the temperature constant. Alternatively, as shown in FIG. 4, a thermocouple e is separately provided to measure the temperature at the connection part of the reference junction junction box a with the thermocouple, and this thermocouple e is extended to the side of the measuring instrument main body d. Based on the temperature data obtained by the thermocouple e, measures are taken to compensate for the thermoelectromotive force that varies depending on the temperature of the reference junction of the thermocouple.
しかしながら、このような従来例の構成では、数mV〜
数十IRvの微少電圧信号を基準接点接続箱aから計測
器本体dへ銅導線Cを介して長距離伝送する必要がある
ため、伝送途中でノイズの影響を受は易い。また、各熱
電対すに対応した数だけの銅導線Cが必要となり、さら
には、温度計測用の熱電対eも設けねばならないことが
あるなど、配線数が多くなり、配線工事にコストがかか
る等の問題がある。However, in such a conventional configuration, the voltage of several mV to
Since it is necessary to transmit a minute voltage signal of several tens of IRv over a long distance from the reference junction junction box a to the measuring instrument main body d via the copper conductor C, it is easily affected by noise during transmission. In addition, the number of copper conductive wires C corresponding to each thermocouple is required, and thermocouples e for temperature measurement may also need to be provided, which increases the number of wires and increases the cost of wiring work. There is a problem.
本発明は、このような事情に鑑みてなされたものであっ
て、熱電対の熱起電力を基準接点の温度変化並びに伝送
中のノイズの影響を受けずに計測器本体に伝送すること
ができ、しかも、配線コストが低減できるともに、特に
温度補償のための専用のセンサを設けなくとも確実に熱
電対の熱起電力がそれの基準接点の温度によって変化す
るのを補償できるようにした基準接点接続箱を提供する
ことを目的とする。The present invention has been made in view of these circumstances, and is capable of transmitting the thermoelectromotive force of a thermocouple to the measuring instrument body without being affected by temperature changes at the reference junction or noise during transmission. Moreover, the wiring cost can be reduced, and the reference junction can reliably compensate for changes in the thermoelectromotive force of the thermocouple depending on the temperature of the reference junction, without the need for a dedicated sensor for temperature compensation. The purpose is to provide connection boxes.
(ハ)問題点を解決するための手段
本発明は、上記の目的を達成するために、熱電対の熱起
電力に対応した光信号に変換する発光素子を有する電光
変換回路と、この電光変換回路の前記発光素子からの光
信号の一部を受光して前記発光素子の電光変換効率の温
度変化を検出する検出回路と、この検出回路からの検出
信号に基づいて前記熱電対の基準接点の温度変化によっ
て変化す゛る熱起電力を補正する温度補正回路とを備え
て基準接点接続箱を構成している。(c) Means for Solving the Problems In order to achieve the above object, the present invention provides an electro-optical conversion circuit having a light emitting element that converts the thermoelectromotive force of a thermocouple into an optical signal corresponding to the electromotive force of the thermocouple, a detection circuit that receives a part of the optical signal from the light emitting element of the circuit and detects a temperature change in the electro-optic conversion efficiency of the light emitting element; The reference junction junction box includes a temperature correction circuit that corrects thermoelectromotive force that changes due to temperature changes.
(ニ)作用
本発明の基準接点接続箱では、電光変換回路によって各
熱電対の熱起電力をこれに対応した光信号に変換し、光
ファイバを介して計測器本体に伝送する。その際、電光
変換回路の発光素子から放射される光信号の一部を検出
回路で受光して、その発光素子の電光変換効率の温度変
化を検出する。(D) Function In the reference junction junction box of the present invention, the thermoelectromotive force of each thermocouple is converted into a corresponding optical signal by an electro-optical conversion circuit, and the optical signal is transmitted to the measuring instrument body via an optical fiber. At that time, a part of the optical signal emitted from the light emitting element of the electro-optical conversion circuit is received by the detection circuit, and a temperature change in the electro-optical conversion efficiency of the light emitting element is detected.
そして、この検出回路から前記発光素子の温度変化に対
応して出力される検出信号を温度補正用の信号として利
用する。すなわち、温度補正回路によって、検出回路か
ら与えられる検出信号に基づいて熱電対の基準接点温度
によって変化する熱起電力を温度補正する。Then, a detection signal outputted from this detection circuit in response to a temperature change of the light emitting element is used as a temperature correction signal. That is, the temperature correction circuit corrects the thermoelectromotive force that changes depending on the reference junction temperature of the thermocouple based on the detection signal provided from the detection circuit.
(ホ)実施例
以下、本発明を図面に示す実施例に基づいて詳細に説明
する。(e) Examples Hereinafter, the present invention will be explained in detail based on examples shown in the drawings.
第1図は、本発明の実施例に係る基準接点接続箱の構成
を示すブロック図である。同図において、符号1は基準
接点接続箱の全体を示し、後述の電光変換回路6、検出
回路16、温度補正回路24で構成されている。2はこ
の基準接点接続箱1に接続される多数の熱電対、4は各
熱電対2の接続を選択するマルチプレクサである。FIG. 1 is a block diagram showing the configuration of a reference junction junction box according to an embodiment of the present invention. In the figure, reference numeral 1 designates the entire reference junction junction box, which is composed of an electro-optical conversion circuit 6, a detection circuit 16, and a temperature correction circuit 24, which will be described later. 2 is a large number of thermocouples connected to this reference junction junction box 1, and 4 is a multiplexer for selecting the connection of each thermocouple 2.
6は各熱電対2の熱起電力をこれに対応した光信号に変
換する電光変換回路である。この電光変換回路6は、マ
ルチプレクサ4を介して入力される各熱電対12の熱起
電力をデジタル化するA/D変換器8、A/D変換器8
でデジタル化された電圧信号をシリアル化して時分割で
送出する並直列変換回路IOおよび並直列変換回路10
から出力される信号を光信号に変換する発光素子12か
ら構成され、発光素子I2は、本例ではレーザダイオー
ドが適用される。そして、この発光素子12は、熱電対
2の基準接点と同一の温度条件にするために、実装上は
マルチプレクサ4の近接位置に配置される。6 is an electro-optical conversion circuit that converts the thermoelectromotive force of each thermocouple 2 into a corresponding optical signal. This electro-optical conversion circuit 6 includes an A/D converter 8 that digitizes the thermoelectromotive force of each thermocouple 12 inputted via the multiplexer 4;
A parallel-to-serial conversion circuit IO and a parallel-to-serial conversion circuit 10 serialize the voltage signal digitized by the IO and send it out in a time division manner.
The light emitting element I2 is a laser diode in this example. The light emitting element 12 is mounted close to the multiplexer 4 in order to maintain the same temperature conditions as the reference junction of the thermocouple 2.
14は発光素子12からの光信号を計測器本例へ伝送す
るための光ファイバである。14 is an optical fiber for transmitting the optical signal from the light emitting element 12 to the measuring instrument in this example.
16は上記電光変換回路6の発光素子12から放射され
る光信号の一部を受光して発光素子12の電光変換効率
の温度変化を検出する検出回路である。この検出回路1
6は、発光素子I2から放射される光信号の一部を受光
するフォトダイオード18、フォトダイオード18から
の出力信号のピークレベルを保持するピークホールド回
路20およびピークホールド回路20で保持されたピー
クレベルを予め設定された所定値と比較し両者のレベル
差に対応した検出信号を出力する比較器22とからなる
。A detection circuit 16 receives a part of the optical signal emitted from the light emitting element 12 of the electro-optical conversion circuit 6 and detects a temperature change in the electro-optical conversion efficiency of the light emitting element 12. This detection circuit 1
Reference numeral 6 denotes a photodiode 18 that receives a part of the optical signal emitted from the light emitting element I2, a peak hold circuit 20 that holds the peak level of the output signal from the photodiode 18, and a peak level held by the peak hold circuit 20. and a comparator 22 that compares the level with a predetermined value and outputs a detection signal corresponding to the level difference between the two.
24は上記検出回路16からの検出信号に基づいて前記
熱電対2の基準接点によって変化する熱起電力を温度補
正する温度補正回路である。この温度補正回路24は、
比較器22からの検出信号にiづいて発光素子12の光
パルスの発光パワーの波高値が一定になるように該発光
素子12の電流値を制御するパワー制御信号を出力する
パワー制御回路26およびパワー制御回路26から出力
されるパワー制御信号と前記比較器22からの検出信号
との両信号に基づいて熱電対2からの熱起電力に基づく
電圧信号を補正する温度補正演算回路30とから構成さ
れる。Reference numeral 24 denotes a temperature correction circuit for temperature-correcting the thermoelectromotive force that varies depending on the reference junction of the thermocouple 2 based on the detection signal from the detection circuit 16. This temperature correction circuit 24 is
a power control circuit 26 that outputs a power control signal for controlling the current value of the light emitting element 12 so that the peak value of the light emission power of the light pulse of the light emitting element 12 is constant based on the detection signal i from the comparator 22; The temperature correction calculation circuit 30 corrects the voltage signal based on the thermoelectromotive force from the thermocouple 2 based on both the power control signal output from the power control circuit 26 and the detection signal from the comparator 22. be done.
また、32は発光素子12から放射される光信号を監視
する第1警報器で、一定時間以上に渡って光信号を検出
しない場合に警報信号を出力する。Further, 32 is a first alarm device that monitors the optical signal emitted from the light emitting element 12, and outputs an alarm signal if no optical signal is detected for a certain period of time or more.
また、34は発光パワーの制御異常を監視する第2警報
器であり、比較器22からの検出信号レベルが規定した
設定範囲を越えた値に偏位した場合に警報信号を出力す
る。36は第1、第2警報器32.34が共通に接続さ
れたオア回路であり、このオア回路36の出力端子は前
記マルチプレクサ4の一つの入力端子に接続されている
。Further, 34 is a second alarm device that monitors abnormalities in the control of the light emitting power, and outputs an alarm signal when the detection signal level from the comparator 22 deviates to a value exceeding a prescribed setting range. 36 is an OR circuit to which the first and second alarm devices 32 and 34 are connected in common, and the output terminal of this OR circuit 36 is connected to one input terminal of the multiplexer 4.
第2図は、基準接点接続箱lから光ファイバ14を介し
て伝送される光信号を入力して熱電対2で検出した各測
定地点の温度を計測する計測器本体の信号入力部分のブ
ロック図である。同図において、40は光ファイバ14
で伝送される光信号を電気的なパルス信号に変換するフ
ォトダイオード、42はフォトダイオード40からのパ
ルス信号をパラレル信号に変換する直並列変換回路、4
4は直並列変換回路42でパラレル化された信号をアナ
ログ化するD/A変換器である。FIG. 2 is a block diagram of the signal input part of the main body of the measuring instrument that inputs the optical signal transmitted from the reference junction junction box l through the optical fiber 14 and measures the temperature at each measurement point detected by the thermocouple 2. It is. In the same figure, 40 is an optical fiber 14
42 is a serial/parallel conversion circuit that converts the pulse signal from the photodiode 40 into a parallel signal;
4 is a D/A converter that converts the signal parallelized by the serial/parallel converter circuit 42 into an analog signal.
このような構成を有する基準接点接続箱1の各部の動作
を説明する。The operation of each part of the reference junction junction box 1 having such a configuration will be explained.
各熱電対2の熱起電力は、マルチプレクサ4で順次切り
換えられて基準接点接続箱1に入力される。この入力さ
れた基準接点温度によって変化する熱起電力は、温度補
正演算回路30で補正された後、電光変換回路6のA/
D変換器8に入力される。A/D変換器8に入力された
電圧信号は、ここでデジタル信号に変換された後、並直
列変換回路10に与えられる。並直列変換回路IOは、
入力されたデジタル信号をシリアル化し、時分割して出
力する。並直列変換回路IOからの信号は、次段の発光
素子12によって光信号に変換され、この光信号が光フ
ァイバ14を介して計測器本体に伝送される。計測器本
体側では、光ファイバ14で伝送される光信号をフォト
ダイオード40で受光し、フォトダイオード40から受
光した光信号に応じて出力されるパルス信号を直並列変
換回路42でパラレル化する。そして、この信号をD/
A変換器44でアナログ信号に変換した後、検出された
各測定地点の温度に基づいて各種の制御を行なう。The thermoelectromotive force of each thermocouple 2 is sequentially switched by a multiplexer 4 and input to the reference junction junction box 1. The thermoelectromotive force that changes depending on the input reference junction temperature is corrected by the temperature correction calculation circuit 30 and then
The signal is input to the D converter 8. The voltage signal input to the A/D converter 8 is converted into a digital signal here and then provided to the parallel-to-serial conversion circuit 10. The parallel-to-serial conversion circuit IO is
The input digital signal is serialized, time-divided, and output. The signal from the parallel-to-serial conversion circuit IO is converted into an optical signal by the next stage light emitting element 12, and this optical signal is transmitted to the measuring instrument main body via the optical fiber 14. On the measuring instrument main body side, a photodiode 40 receives an optical signal transmitted through an optical fiber 14, and a serial-to-parallel conversion circuit 42 parallelizes a pulse signal output according to the optical signal received from the photodiode 40. Then, convert this signal to D/
After converting into an analog signal by the A converter 44, various controls are performed based on the detected temperature at each measurement point.
一方、前記発光素子12から放射される光信号の一部は
、検出回路16のフォトダイオードI8で受光される。On the other hand, a part of the optical signal emitted from the light emitting element 12 is received by the photodiode I8 of the detection circuit 16.
したがって、このフォトダイオード18からは、発光素
子12から放射された光信号の発光パワーに対応した信
号が出力される。すなわち、フォトダイオード18の信
号出力レベルは、発光素子12の発光パワーに比例する
。そして、この信号出力レベルが、ピークホールド回路
20で保持される。Therefore, the photodiode 18 outputs a signal corresponding to the light emission power of the optical signal emitted from the light emitting element 12. That is, the signal output level of the photodiode 18 is proportional to the light emission power of the light emitting element 12. This signal output level is then held by the peak hold circuit 20.
比較器22は、ピークホールド回路20で保持されたフ
ォトダイオード18の信号出力レベルと予め設定した所
定値とを比較し両者のレベル差に対応した検出信号を出
力する。そして、この検出信号は、パワー制御回路26
と温度補正演算回路30とにそれぞれ与えられる。パワ
ー制御回路26は、入力された検出信号に基づくパワー
制御信号を発光素子12と温度補正演算回路30とにそ
れぞれ出力する。これにより、発光素子12は、パワー
制御回路26によって発光パワーが一定となるようにそ
の電流値が制御される。The comparator 22 compares the signal output level of the photodiode 18 held by the peak hold circuit 20 with a predetermined value set in advance, and outputs a detection signal corresponding to the level difference between the two. This detection signal is then transmitted to the power control circuit 26.
and temperature correction calculation circuit 30, respectively. The power control circuit 26 outputs a power control signal based on the input detection signal to the light emitting element 12 and the temperature correction calculation circuit 30, respectively. Thereby, the current value of the light emitting element 12 is controlled by the power control circuit 26 so that the light emitting power is constant.
ところで、発光素子12の発光パワーp1電流値11温
度θとの間には、第3図に示すような相互関係がある。Incidentally, there is a correlation between the light emitting power p1, current value, and temperature θ of the light emitting element 12 as shown in FIG.
したがって、発光素子I2の発光パワーを常に一定値に
保つには、発光素子12に流す電流値iを制御する必要
があるが、このとき、電流値iが温度θの関数となる。Therefore, in order to always maintain the light emission power of the light emitting element I2 at a constant value, it is necessary to control the current value i flowing through the light emitting element 12, and at this time, the current value i becomes a function of the temperature θ.
たとえば第3図において、発光パワーを一定値p。に制
御する場合、発光素子12に流す電流値がi、ならばそ
のときの温度はθ2であり、また、電流値が14ならば
そのときの温度はθ4となる。ゆえに、発光素子12に
流す電流値iと発光パワーpとが分かれば温度θを算出
することができる。For example, in FIG. 3, the emission power is set to a constant value p. When the current value flowing through the light emitting element 12 is i, the temperature at that time is θ2, and if the current value is 14, the temperature at that time is θ4. Therefore, if the current value i flowing through the light emitting element 12 and the light emitting power p are known, the temperature θ can be calculated.
温度補正演算回路30には、パワー制御回路26から出
力されるパワー制御信号と比較器22からの検出信号と
が共通に入力される。パワー制御信号は、発光素子12
に流れる電流値iに対応し、また、検出信号は発光パワ
ーpに対応するので、温度補正演算回路30は、人力さ
れる両信号に基づいて温度θを算出し、算出した温度θ
に基づいて熱電対2の基準接点温度によって変化する熱
起電力を補正する。したがって、温度補正演算回路30
からは、常に基準接点の温度変化が補正された熱起電力
が電光変換回路6に与えられることになる。The power control signal output from the power control circuit 26 and the detection signal from the comparator 22 are commonly input to the temperature correction calculation circuit 30 . The power control signal is transmitted to the light emitting element 12
Since the detection signal corresponds to the light emitting power p, the temperature correction calculation circuit 30 calculates the temperature θ based on both the manually inputted signals, and the calculated temperature θ
The thermoelectromotive force that changes depending on the reference junction temperature of the thermocouple 2 is corrected based on the following. Therefore, the temperature correction calculation circuit 30
From then on, the thermoelectromotive force corrected for the temperature change at the reference junction is always applied to the electro-optical conversion circuit 6.
なお、検出回路16のフォトダイオード18の出力は第
1警報器32にも与えられるので、発光素子12から光
信号が一定時間以上続けて出力されない場合には、伝送
異常として第1警報器32から警報信号が出力される。Note that the output of the photodiode 18 of the detection circuit 16 is also given to the first alarm device 32, so if the light signal is not output from the light emitting element 12 for a certain period of time or more, the first alarm device 32 detects a transmission abnormality. An alarm signal is output.
また、比較器22から出力される検出信号は第2警報器
34に与えられるので、発光パワーの制御異常が発生し
た場合には、第2警報器34から警報信号が出力される
。Furthermore, since the detection signal output from the comparator 22 is given to the second alarm device 34, an alarm signal is output from the second alarm device 34 when an abnormality in the control of the light emitting power occurs.
そして、第1警報器32あるいは第2警報器34から出
力された警報信号は、オア回路36を介してマルチプレ
クサ4に人力されるため、電光変換回路6で熱電対2か
らの電圧信号とともに光信号に変換されて計測器本体側
に伝送されることになる。The alarm signal output from the first alarm device 32 or the second alarm device 34 is manually inputted to the multiplexer 4 via the OR circuit 36, so that an optical signal is sent together with the voltage signal from the thermocouple 2 to the light-to-light conversion circuit 6. It will be converted into and transmitted to the measuring instrument main body.
(へ)効果
以上のように本発明によれば、熱電対で得られた熱起電
力のデータを基準接点の温度変化ならびにノイズの影響
を受けずに計測器本体に伝送することができ、し7かも
、配線コストが低減できる。(F) Effects As described above, according to the present invention, data on thermoelectromotive force obtained with a thermocouple can be transmitted to the measuring instrument body without being affected by temperature changes at the reference junction or noise. 7, the wiring cost can be reduced.
さらに、温度補償専用のセンサを特に設けなくても、熱
電対の基準接点の温度変化によって変化する熱起電力の
温度補償ができるようになる等、実用上骨れた効果が発
揮される。Furthermore, even without the provision of a sensor dedicated to temperature compensation, significant practical effects can be achieved, such as the ability to compensate for the temperature of the thermoelectromotive force that changes due to temperature changes at the reference junction of the thermocouple.
第1図ないし第3図は本発明の実施例をそれぞれ示すも
ので、第1図は基準接点接続箱の構成を示すブロック図
、第2図は基準接点接続箱からの光信号を受光する計測
器本体の受光部分を示すブロック図、第3図は発光素子
の電光変換効率の温度依存性を示す特性図、第4図は従
来例の熱電対、基準接点接続箱および計測器本体の各接
続状態を示す説明図である。
1・・・基準接点接続箱、2・・・熱電対、6・・・電
光変換回路、12・・・発光素子、16・検出回路、2
4・・温度補正回路。Figures 1 to 3 show embodiments of the present invention. Figure 1 is a block diagram showing the configuration of a reference junction junction box, and Figure 2 is a measurement system that receives optical signals from the reference junction junction box. A block diagram showing the light-receiving part of the instrument body, Figure 3 is a characteristic diagram showing the temperature dependence of the light-to-light conversion efficiency of the light emitting element, and Figure 4 shows the connections of the conventional thermocouple, reference junction junction box, and measuring instrument body. It is an explanatory diagram showing a state. DESCRIPTION OF SYMBOLS 1... Reference junction junction box, 2... Thermocouple, 6... Electro-optical conversion circuit, 12... Light emitting element, 16... Detection circuit, 2
4...Temperature correction circuit.
Claims (1)
って変化することを補償するために設けられる基準接点
接続箱において、 前記熱電対の熱起電力をこれに対応した光信号に変換す
る発光素子を有する電光変換回路と、この電光変換回路
の前記発光素子からの光信号の一部を受光して前記発光
素子の電光変換効率の温度変化を検出する検出回路と、 この検出回路からの検出信号に基づいて前記熱電対の基
準接点温度によって変化する熱起電力を補正する温度補
正回路とを備えることを特徴とする基準接点接続箱。(1) In a reference junction junction box provided to compensate for changes in the thermoelectromotive force of the thermocouple due to temperature changes at its reference junction, the thermoelectromotive force of the thermocouple is converted into an optical signal corresponding to this. an electro-optical conversion circuit having a light-emitting element; a detection circuit that receives a part of the optical signal from the light-emitting element of the electro-optical conversion circuit and detects a temperature change in the electro-optical conversion efficiency of the light-emitting element; A reference junction junction box comprising: a temperature correction circuit that corrects a thermoelectromotive force that changes depending on the reference junction temperature of the thermocouple based on a detection signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14274185A JPS623629A (en) | 1985-06-28 | 1985-06-28 | Reference contact connection box |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14274185A JPS623629A (en) | 1985-06-28 | 1985-06-28 | Reference contact connection box |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS623629A true JPS623629A (en) | 1987-01-09 |
Family
ID=15322497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14274185A Pending JPS623629A (en) | 1985-06-28 | 1985-06-28 | Reference contact connection box |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS623629A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011072371A1 (en) * | 2009-12-15 | 2011-06-23 | Hatch Ltd. | Thermal sensing for material processing assemblies |
-
1985
- 1985-06-28 JP JP14274185A patent/JPS623629A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011072371A1 (en) * | 2009-12-15 | 2011-06-23 | Hatch Ltd. | Thermal sensing for material processing assemblies |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5700090A (en) | Temperature sensor transmitter with sensor sheath lead | |
US20060291856A1 (en) | Measuring system comprising an intelligent sensor head and having a reduced power consumption for medium-voltage or high-voltage systems or in mining, and method therefor | |
CN111198289A (en) | Control method of optical fiber type current measuring device | |
CN201016813Y (en) | High-voltage charged body temperature on-line monitoring device | |
JPH085686A (en) | Field sensor | |
JPS623629A (en) | Reference contact connection box | |
CN111198299A (en) | On-site collection type optical fiber type current measuring device | |
RU2761084C1 (en) | MONITORING SYSTEM FOR ICE AND FROST DEPOSITS ON WIRES AND LIGHTNING PROTECTION CABLES OF 110-220 kV OVERHEAD LINES | |
CN108398144A (en) | Aerospace fiber grating sensing system and method | |
JPS63238436A (en) | Active type temperature sensor | |
GB2223638A (en) | Radiation measuring apparatus | |
KR100310894B1 (en) | Apparatus for detecting non-touch electric current and temperature of power line | |
JPS6217621A (en) | Optical power meter | |
KR100434760B1 (en) | Apparatus for measuring temperature of a electric power line | |
JP2002022543A (en) | Temperature measuring instrument using thermocouple | |
KR100211724B1 (en) | Temperature detecting apparatus using ultrasonic wave | |
JPS63285430A (en) | Temperature measuring apparatus | |
KR102511177B1 (en) | Apparatus and method to measure voltage and temperature of battery | |
JP2959634B2 (en) | Power control method | |
JPH09304494A (en) | Sensor unit for sensing magnetic field or electric field utilizing magneto-optic effect, and method for compensating temperature characteristic thereof, and temperature sensor unit | |
CN116380273A (en) | Contact net connecting wire clamp temperature detection method and system | |
JPS6256836A (en) | Measuring instrument for light emission characteristics of laser diode | |
JPH0895651A (en) | Power circuit | |
JPS63122965A (en) | Aerial ground wire current sensor for overhead transmission line | |
JPH01237477A (en) | Optical fiber sensor |