JPS63238396A - Heat transfer element with heat accumulating material - Google Patents

Heat transfer element with heat accumulating material

Info

Publication number
JPS63238396A
JPS63238396A JP62073540A JP7354087A JPS63238396A JP S63238396 A JPS63238396 A JP S63238396A JP 62073540 A JP62073540 A JP 62073540A JP 7354087 A JP7354087 A JP 7354087A JP S63238396 A JPS63238396 A JP S63238396A
Authority
JP
Japan
Prior art keywords
heat
heat storage
accumulating material
storage material
heat accumulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62073540A
Other languages
Japanese (ja)
Inventor
Yoshio Mochida
芳雄 餅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62073540A priority Critical patent/JPS63238396A/en
Publication of JPS63238396A publication Critical patent/JPS63238396A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve the rate of effective utilization of a heat accumulating material and hold small the width of variation in time of the outlet temperature of a working fluid by making uniform in the longitudinal direction the state of phase change of the heat accumulating material of a heat receiving and accumulating device used for a power generation system on a space orbit. CONSTITUTION:The outer circumference of a heat transfer pipe 31 is covered by a heat accumulating material vessel 33 which has areas defined by partition walls 32 in the longitudinal direction. The split areas in the heat accumulating material vessel 33 consists in the direction of the flow of a working fluid of a low temperature chamber 34, sub-low temperature chamber 35, sub-high temperature chamber 36, and high temperature chamber 37 from the side nearer to the person facing them, and each chamber is filled with a heat accumulating material which has a different melting point. Namely the low temperature room 34 is filled with a heat accumulating material of the lowest melting point, and successively the sub-low temperature chamber 35, sub-high temperature chamber 36, and so on with heat accumulating material with stepwise higher melting point, and the high temperature chamber 37 with a heat accumulating material of the highest melting point. The numeral 38 denotes an inlet, and from there the working fluid enters the inside of the heat transfer pipe 31 and flows out from an outlet denoted by the numeral 39. For each heat accumulating material the amount of phase change increases and the states of phase change are also made uniform in the longitudinal direction.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は宇宙基地等に搭載される宇宙軌道上発電システ
ム用受蓄熱器に係り、特に伝熱素子長手方向に融点の異
なる蓄熱材を配置して熱利用効率向上させるのに好適な
受蓄熱器における蓄熱材付伝熱素子に関する6 (従来の技術) 宇宙基地等軌道上にある設備に電力を供給する発電シス
テムとして太陽熱を取入れて流体を加熱し、発生した蒸
気を膨張タービンに送って動力を得て発電を行なう方式
のものがある。この発電方式では地上に近い低軌道上で
太陽熱を取入れる場合に太陽が地球の陰に入り、太陽熱
を得られない日蝕時間が長時間あり、またその発生周期
も短くなっている。このため、低軌道上にて上記発電方
式を用いる場合には、太陽熱の蓄熱が必要とされ、蓄熱
機能を有する熱交換器、すなわち受蓄熱器が用いられる
ことが多い。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Field of Application) The present invention relates to a heat receiver and storage device for a power generation system in space orbit installed in a space base, etc. 6. Concerning heat transfer elements with heat storage materials in heat storage devices suitable for improving heat utilization efficiency by arranging different heat storage materials (Prior technology) There is a system that heats the fluid by drawing in water and sends the generated steam to an expansion turbine to obtain power and generate electricity. In this power generation method, when solar heat is harvested in low orbit close to the ground, the sun goes into the shadow of the earth, and there is a long period of solar eclipse time during which solar heat cannot be obtained, and the period of solar eclipse occurrence is also shortened. For this reason, when using the above-mentioned power generation method in low orbit, storage of solar heat is required, and a heat exchanger having a heat storage function, that is, a heat storage device is often used.

第5図は宇宙基地等軌道上にある設備に電力を供給する
発電システムの構成を示すもので、たとえば、ヘリウム
、キセノン混合ガスからなる作動流体が受蓄熱器1にお
いてリフレクタ2によって集光された太陽熱により加熱
され、蒸気となって膨張タービン3に流れて動力を発生
する。この動力により発電1114および圧縮615が
回転し、発電が行なわれる。jIIj脹タービタービン
3り出される排気は再生器6に流れ、そこで圧縮機5か
ら供給される作動流体を予熱し、さらにラジェータ7番
こ流れて熱を放熱して温度降下する。この温度降下した
作動流体は圧[1115で加圧されてその密度を高め、
再生器6に送られて予熱されて後、受蓄熱器1に戻る。
Figure 5 shows the configuration of a power generation system that supplies power to facilities in orbit such as a space base. It is heated by solar heat, becomes steam, and flows to the expansion turbine 3 to generate power. This power rotates the power generator 1114 and the compressor 615 to generate power. The exhaust gas discharged from the turbid turbine 3 flows to the regenerator 6, where it preheats the working fluid supplied from the compressor 5, and further flows to the radiator 7, where it radiates heat and lowers its temperature. This temperature-decreased working fluid is pressurized at pressure [1115 to increase its density,
After being sent to the regenerator 6 and preheated, it returns to the heat storage device 1.

この発電システムで用いられる受蓄熱器1の代表的なも
のを第6図に示している。すなわち、図において、符号
10は受蓄熱器胴であって、この受蓄熱器胴10の一端
に作動流体人口11が設けられ、これと環状の入口マニ
ホールド12とが結ばれている。入口マニホールド12
には多数の蓄熱材付伝熱素子13が接続されている。蓄
熱材付伝熱素子13は受蓄熱器胴10の内壁面に沿って
断熱材14を介して取付けられ、また、図に示されるよ
うに環状の支持リング15によって支持されている。U
字状の蓄熱材付伝熱素子13の他端は環状の出口マニホ
ールド16と結ばれ、上述した作動流体入口11と並べ
て設けられた作動流体出口17とこの出口マニホールド
16とが接続されている。また、受蓄熱器胴10の他端
中央部には開口18が設けられており、この開口18を
通してリフレクタ2にも集光された太陽熱が器内に導か
れ、蓄熱材付伝熱素子13内を流れる作動流体と伝熱壁
を隔てて接するように構成されている。
A typical heat receiver and storage device 1 used in this power generation system is shown in FIG. That is, in the figure, reference numeral 10 denotes a heat receiving and accumulating body. A working fluid port 11 is provided at one end of the heat receiving and accumulating body 10, and an annular inlet manifold 12 is connected to this. Inlet manifold 12
A large number of heat transfer elements 13 with heat storage material are connected to. The heat transfer element 13 with a heat storage material is attached along the inner wall surface of the heat receiving and storage body 10 via a heat insulating material 14, and is supported by an annular support ring 15 as shown in the figure. U
The other end of the letter-shaped heat transfer element 13 with heat storage material is connected to an annular outlet manifold 16, and this outlet manifold 16 is connected to a working fluid outlet 17 provided in parallel with the above-mentioned working fluid inlet 11. In addition, an opening 18 is provided at the center of the other end of the heat receiving and storage body 10, and through this opening 18, solar heat that is also concentrated on the reflector 2 is guided into the vessel, and inside the heat transfer element 13 with heat storage material. It is configured so that it is in contact with the working fluid flowing through it, with a heat transfer wall in between.

第7図は上記の蓄熱材付伝熱素子13の詳細を示してい
る。図に示されるように伝熱管21の外周部を覆う蓄熱
材容器22が一体的に設けられ、この蓄熱材容器22の
内部領域23は蓄熱材で満たされている。この蓄熱材は
固液の相変化の潜熱を利用して蓄熱を行なう相変化蓄熱
材である。太陽熱は蓄熱材容器22の外表面24から入
射し、その入熱の一部は充填された蓄熱材に蓄えられ、
残りは伝熱管内表面25から内部を入口26から出口2
7に向かって流れる作動流体に伝えられる。
FIG. 7 shows details of the heat transfer element 13 with heat storage material. As shown in the figure, a heat storage material container 22 is integrally provided to cover the outer periphery of the heat transfer tube 21, and an internal region 23 of this heat storage material container 22 is filled with a heat storage material. This heat storage material is a phase change heat storage material that stores heat using the latent heat of solid-liquid phase change. Solar heat enters from the outer surface 24 of the heat storage material container 22, and a portion of the input heat is stored in the filled heat storage material,
The rest is from the inside surface 25 of the heat exchanger tube to the inlet 26 and the outlet 2.
is transmitted to the working fluid flowing towards 7.

また、日蝕時には蓄熱材に蓄えられた熱が伝熱管内表面
25から作動流体に伝達される。
Further, during a solar eclipse, the heat stored in the heat storage material is transferred from the inner surface 25 of the heat transfer tube to the working fluid.

(発明が解決しようとする問題点) ところで、このような蓄熱材付伝熱素子13に要求され
る働きは内部を流れる作動流体を日射時、日蝕時の区別
なく、できるだけ一定の出口温度にまで加熱することで
ある。しかしながら、伝熱管21内を流れる作動流体の
入口26と、出口27とにおける温度差は通常200℃
以上あるため、蓄熱材の相変化の状態が伝熱管21の軸
方向に不均一となり、その結果作動流体の出口温度も時
間と共に大きく変化しまうという問題がある。
(Problem to be Solved by the Invention) By the way, the function required of such a heat transfer element 13 with a heat storage material is to maintain the working fluid flowing inside to a constant outlet temperature as much as possible, regardless of whether it is during solar radiation or solar eclipse. It means heating. However, the temperature difference between the inlet 26 and outlet 27 of the working fluid flowing inside the heat transfer tube 21 is usually 200°C.
Because of the above, there is a problem that the state of phase change of the heat storage material becomes non-uniform in the axial direction of the heat exchanger tube 21, and as a result, the outlet temperature of the working fluid also changes significantly over time.

すなわち、第8図には太陽熱入射開始時(蓄熱開始)A
と太陽熱入射終了時(M熱終了)Bにおける蓄熱材の液
相質量比の伝熱管長手方向の分布が示しである。図から
明らかなように、入口26と出口27との中間付近では
、蓄熱開始と終了との間に多くの部分の蓄熱材が固相か
ら液相へと変化して相変化蓄熱材として有効に利用され
ているが、入口26付近では蓄熱終了時にも固相のまま
液化しない蓄熱材が、また出口27付近では蓄熱開始時
、すなわち放熱終了時にも液相のまま固化しない蓄熱材
が多く、相変化蓄熱材としての有効な利用がなされてい
ない、第9図および第10図に太陽熱入射開始時(蓄−
熱開始)における蓄熱材と作動流体の伝熱管長手方向の
分布、および太陽熱入射終了時(蓄熱終了)における同
様の分布が各々示しである。蓄熱材が相変化しない部分
では時間と共に蓄熱材の温度が大きく変化し、伝熱管内
表面25から作動流体への伝達熱量もそれに従って変化
するため、作動流体の出口変動幅も大きくなり、一定し
た発電量を得ることができない。
In other words, Fig. 8 shows A at the start of solar heat incidence (start of heat storage).
The distribution of the liquid phase mass ratio of the heat storage material in the longitudinal direction of the heat exchanger tube at the end of solar heat input (end of M heat) B is shown. As is clear from the figure, in the vicinity of the middle between the inlet 26 and the outlet 27, a large portion of the heat storage material changes from the solid phase to the liquid phase between the start and end of heat storage, and becomes effective as a phase change heat storage material. However, near the inlet 26, there are many heat storage materials that remain in a solid state and do not liquefy even at the end of heat storage, and near the exit 27, there are many heat storage materials that remain in a liquid state and do not solidify even when heat storage begins, that is, at the end of heat dissipation. Figures 9 and 10 show the temperature at the start of solar heat incidence (storage), which has not been effectively used as a variable heat storage material.
The distribution of the heat storage material and the working fluid in the longitudinal direction of the heat exchanger tube at the beginning of heat generation (heat start) and the similar distribution at the end of solar heat input (end of heat storage) are shown, respectively. In areas where the heat storage material does not change its phase, the temperature of the heat storage material changes greatly over time, and the amount of heat transferred from the inner surface 25 of the heat transfer tube to the working fluid also changes accordingly, so the range of fluctuation at the outlet of the working fluid also increases, making it difficult to maintain a constant temperature. Unable to obtain power generation amount.

また、蓄熱材の大きな温度変動は蓄熱材容器22の疲労
寿命の低下を招く危険性がある。
Furthermore, large temperature fluctuations in the heat storage material may lead to a decrease in the fatigue life of the heat storage material container 22.

したがって□、本発明の目的は宇宙軌道上発電システム
州営蓄熱器における蓄熱材の相変化状態を長手方向に均
一化し、もって蓄熱材の有効利用率を向上させ、しかも
作動流体出口温度の時間変動幅を小さく保つことのでき
る蓄熱材付伝熱素子を提供することにある。
Therefore, the purpose of the present invention is to uniformize the phase change state of the heat storage material in the state-operated heat storage device of the space orbit power generation system in the longitudinal direction, thereby improving the effective utilization rate of the heat storage material, and to improve the temporal fluctuation of the working fluid outlet temperature. An object of the present invention is to provide a heat transfer element with a heat storage material whose width can be kept small.

[発明の構成] (問題点を解決するための手段) 本発明の特徴とするところは相変化蓄熱材を伝熱管外周
部に取付けられる蓄熱材容器の内部に充填してなる蓄熱
材付伝熱素子において、蓄熱材容器内を隔壁により仕切
って伝熱素子長手方向に並ぶ複数の領域を形成し、これ
らの各領域には融解温度がそれぞれ異なる蓄熱材を伝熱
素子入口から出口側にかけて低温のものから順次高温の
ものへと並ぶように各々充填したものである。
[Structure of the Invention] (Means for Solving the Problems) The present invention is characterized by heat transfer with a heat storage material in which a phase change heat storage material is filled inside a heat storage material container attached to the outer periphery of a heat transfer tube. In the element, the inside of the heat storage material container is partitioned by partition walls to form multiple regions lined up in the longitudinal direction of the heat transfer element, and in each of these regions, heat storage materials with different melting temperatures are placed at a low temperature from the inlet to the exit of the heat transfer element. They are filled in order of temperature, starting with the highest temperature.

(作 用) 本発明の蓄熱材付伝熱素子は上記構成からなるもので、
蓄熱材の相変化状態が伝熱素子長手方向に均一化され、
蓄熱材温度および作動流体への熱供給量の時間変動が減
少し、作動流体の出口温度の時間変動が小さくなる。
(Function) The heat transfer element with heat storage material of the present invention has the above configuration,
The phase change state of the heat storage material is made uniform in the longitudinal direction of the heat transfer element,
Time fluctuations in the heat storage material temperature and the amount of heat supplied to the working fluid are reduced, and time fluctuations in the outlet temperature of the working fluid are reduced.

また、蓄熱材の相変化状態の均一かにより蓄熱材の有効
利用率が格段に高くなる。
In addition, the effective utilization rate of the heat storage material is significantly increased depending on whether the phase change state of the heat storage material is uniform.

(実施例)   ・ 以下本発明を一実施例を示す第1図を参照して説明する
(Example) - The present invention will be explained below with reference to FIG. 1 showing one example.

図において、符号31は伝熱管であって、この伝熱管3
1の外周は長手方向に隔5!32で区分された領域を有
する蓄熱材容器33により覆われている。ここで、蓄熱
材容器33内に区分された領域は作動流体の流れる方向
に向かって手前側から順に低温室34、亜低温室35、
亜高温室36および高温室37とそれぞれ称し、融解温
度の異なる蓄熱材が各々充填される。すなわち、低温室
34には最も低い融点の蓄熱材が、以下並低温室35、
亜高温室36と順次高くして行き、高温室37に最も高
い融点の蓄熱材が充填される。なお、図中符号38は入
口であって、ここから作動流体が伝熱管31内に入り、
一方符号39で示す出口から流出する。
In the figure, reference numeral 31 indicates a heat exchanger tube, and this heat exchanger tube 3
The outer periphery of the heat storage material container 1 is covered with a heat storage material container 33 having a region divided by intervals 5!32 in the longitudinal direction. Here, the areas divided in the heat storage material container 33 are a cold room 34, a sub-low temperature room 35,
They are called a sub-high temperature chamber 36 and a high temperature chamber 37, respectively, and are filled with heat storage materials having different melting temperatures. That is, the heat storage material with the lowest melting point is in the low temperature chamber 34,
The temperature of the sub-high temperature chamber 36 is increased one by one, and the high temperature chamber 37 is filled with the heat storage material having the highest melting point. Note that the reference numeral 38 in the figure is an inlet from which the working fluid enters the heat transfer tube 31.
On the other hand, it flows out from an outlet indicated by reference numeral 39.

上記実施例の構成によるところの蓄熱材付伝熱素子は次
の機能を備えている。すなわち、従来技術によるところ
の第8図と対比される第2図の特性は太陽熱入射開始時
(蓄熱開始)Aと太陽熱入射終了時(蓄熱終了)Bにお
ける蓄熱材の液相質量比の伝熱素子長手方向の分布に端
的に表われている。ここで、便宜上蓄熱材を蓄熱材容器
33の各部屋の呼び名で示すならば、低温蓄熱材、亜低
温蓄熱材、亜高温蓄熱材および高温蓄熱材となるが、各
蓄熱材共に蓄熱時に相変化を生じる量が増加し、相変化
の状態も長手方向に均一化されていることがわかる。
The heat transfer element with heat storage material according to the configuration of the above embodiment has the following functions. In other words, the characteristics in FIG. 2, which are compared with FIG. 8 according to the prior art, are the heat transfer of the liquid phase mass ratio of the heat storage material at the start of solar heat input (heat storage start) A and at the end of solar heat input (heat storage end) B. This can clearly be seen in the distribution in the longitudinal direction of the element. Here, for convenience, if the heat storage materials are referred to by the names of the respective rooms of the heat storage material container 33, they are low temperature heat storage materials, sub-low temperature heat storage materials, sub-high temperature heat storage materials, and high temperature heat storage materials, but each heat storage material undergoes a phase change during heat storage. It can be seen that the amount of phase change occurring increases, and the state of phase change becomes more uniform in the longitudinal direction.

また、第3図および第4図に太陽熱入射開始時(蓄熱開
始)における蓄熱材と作動流体の伝熱管長手方向の分布
、および太陽熱入射終了時(蓄熱終了)における同様の
分布がそれぞれ示しである。
Furthermore, Figures 3 and 4 show the distribution of the heat storage material and working fluid in the longitudinal direction of the heat transfer tube at the start of solar heat input (heat storage start), and the same distribution at the end of solar heat input (heat storage end), respectively. .

図に示されるように作動流体の出口温度幅は従来例の1
50℃から本実施例の20℃へと大幅な減少が見られ、
また、蓄熱材の温度変動も低下している。
As shown in the figure, the working fluid outlet temperature range is 1
A significant decrease was seen from 50°C to 20°C in this example,
Furthermore, the temperature fluctuation of the heat storage material has also decreased.

なお、本実施例は宇宙軌道上発電システム州営蓄熱器の
蓄熱材付伝熱素子の蓄熱材容器33を長手方向に4つの
領域に区分した場合のものであるが、この領域は3つで
あっても、つまり亜低温室34と亜高温室35とを一つ
にしてここに融点が低温と高温の中間の値となる蓄熱材
を充填したものでも本実施例よりも若干劣るがそれに近
い効果がある。
In this example, the heat storage material container 33 of the heat transfer element with heat storage material of the state-run heat storage device of the space orbit power generation system is divided into four regions in the longitudinal direction. Even if there is, that is, the sub-low temperature chamber 34 and the sub-high temperature chamber 35 are combined and filled with a heat storage material whose melting point is between low and high temperatures, it is still slightly inferior to this example, but close to it. effective.

また、5つ以上の領域に区分してそれぞれに融点の異な
る蓄熱材を決められた順に充填するならば、本実施例以
上の有効利用率が得られることも上記説明から明らかで
ある。
Furthermore, it is clear from the above description that if the heat storage materials are divided into five or more regions and filled with heat storage materials having different melting points in a predetermined order, an effective utilization rate higher than that of this embodiment can be obtained.

[発明の効果] 以上説明したように本発明は蓄熱材容器内を隔壁により
仕切って伝熱素子長手方向に並ぶ複数の領域を形成し、
これらの各領域に融解温度がそれぞれ異なる蓄熱材を伝
熱素子入口側から出口側にかけて低温のものから順次高
温のものへと並ぶように充填しているので、宇宙軌道上
発電システム州営蓄熱器における蓄熱材の相変化状態を
伝熱素子長手方向に均一化することができ、これにより
蓄熱材の有効利用率の向上が図れ、しかも作動流体出口
温度の時間変動幅が小さくなるという効果を奏する。
[Effects of the Invention] As explained above, the present invention partitions the inside of the heat storage material container with partition walls to form a plurality of regions lined up in the longitudinal direction of the heat transfer element,
Each of these regions is filled with heat storage materials with different melting temperatures from the inlet side to the outlet side of the heat transfer element, in order from low temperature to high temperature. The phase change state of the heat storage material in the heat transfer element can be made uniform in the longitudinal direction of the heat transfer element, thereby improving the effective utilization rate of the heat storage material and reducing the time fluctuation width of the working fluid outlet temperature. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による蓄熱材付伝熱素子の一実施例を示
す構成図、第2図は本発明の実施例における蓄熱材の相
変化状態を示す線図、第3図および第4図は本発明の実
施例における蓄熱材と作動流体との温度分布を示す線図
、第5図は宇宙軌道上発電システムの系統図、第6図は
従来の受蓄熱器の一例を示す斜視図、第7図は従来例の
蓄熱材付伝熱素子を示す構成図、第8図は従来例の蓄熱
材の相変化状態を示す線図、第9図および第10図は従
来例の蓄熱材と作動流体との温度分布を示す線図である
。 10・・・受蓄熱器胴 13・・・蓄熱材付伝熱素子 21.31・・・伝熱管 22.33・・・蓄熱材容器 32・・・隔壁 34・・・低温室 35・・・亜低温室 36・・・亜高温室 37・・・高温室 出願人     株式会社 東芝 代理人 弁理士 須 山 佐 − 第1図 第2図 惰3図 第4図 第=3′山 第7r1jJ
FIG. 1 is a configuration diagram showing an embodiment of a heat transfer element with a heat storage material according to the present invention, FIG. 2 is a diagram showing a phase change state of a heat storage material in an embodiment of the present invention, and FIGS. 3 and 4 is a diagram showing the temperature distribution of the heat storage material and the working fluid in an embodiment of the present invention, FIG. 5 is a system diagram of a power generation system on space orbit, and FIG. 6 is a perspective view showing an example of a conventional heat storage device. Fig. 7 is a configuration diagram showing a heat transfer element with heat storage material of a conventional example, Fig. 8 is a diagram showing a phase change state of a heat storage material of a conventional example, and Figs. FIG. 3 is a diagram showing temperature distribution with a working fluid. 10... Heat storage body 13... Heat transfer element with heat storage material 21.31... Heat transfer tube 22.33... Heat storage material container 32... Partition wall 34... Low temperature chamber 35... Sub-low temperature chamber 36...Sub-temperature chamber 37...High temperature chamber Applicant: Toshiba Corporation Patent attorney Suyama Sa - Figure 1 Figure 2 Inasa 3 Figure 4 Figure 3' Mountain 7r1jJ

Claims (1)

【特許請求の範囲】[Claims] 相変化蓄熱材を伝熱管外周部に取付けられる蓄熱材容器
の内部に充填してなる蓄熱材付伝熱素子において、前記
蓄熱材容器内を隔壁により仕切って伝熱素子長手方向に
並ぶ複数の領域を形成し、これらの各領域に融解温度が
それぞれ異なる蓄熱材を伝熱素子入口側から出口側にか
けて低温のものから順次高温のものへと並ぶように各々
充填したことを特徴とする蓄熱材付伝熱素子。
In a heat transfer element with a heat storage material, which is formed by filling a phase change heat storage material inside a heat storage material container attached to the outer periphery of a heat transfer tube, the inside of the heat storage material container is partitioned by a partition wall, and a plurality of regions are arranged in the longitudinal direction of the heat transfer element. , and each of these regions is filled with heat storage materials having different melting temperatures from the inlet side to the outlet side of the heat transfer element, in order from low temperature to high temperature. heat transfer element.
JP62073540A 1987-03-27 1987-03-27 Heat transfer element with heat accumulating material Pending JPS63238396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62073540A JPS63238396A (en) 1987-03-27 1987-03-27 Heat transfer element with heat accumulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62073540A JPS63238396A (en) 1987-03-27 1987-03-27 Heat transfer element with heat accumulating material

Publications (1)

Publication Number Publication Date
JPS63238396A true JPS63238396A (en) 1988-10-04

Family

ID=13521169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62073540A Pending JPS63238396A (en) 1987-03-27 1987-03-27 Heat transfer element with heat accumulating material

Country Status (1)

Country Link
JP (1) JPS63238396A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5957193A (en) * 1995-05-16 1999-09-28 Nippondenso Co., Ltd. Heat accumulator with agitating function
JP2015175538A (en) * 2014-03-14 2015-10-05 株式会社デンソー Thermal storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5957193A (en) * 1995-05-16 1999-09-28 Nippondenso Co., Ltd. Heat accumulator with agitating function
JP2015175538A (en) * 2014-03-14 2015-10-05 株式会社デンソー Thermal storage device

Similar Documents

Publication Publication Date Title
US4768345A (en) Continuous thermal energy delivery from a periodically active energy source
US3152774A (en) Satellite temperature stabilization system
US10330393B2 (en) Modular latent heat thermal energy storage systems
US8378280B2 (en) Integrated solar energy receiver-storage unit
US3931532A (en) Thermoelectric power system
US4270523A (en) Heat storage apparatus and heat exchanger element for use therein
US20130042857A1 (en) Storing and transport device and system with high efficiency
US4560533A (en) Fast reactor power plant design having heat pipe heat exchanger
US5735123A (en) Energy generating system
Strumpf et al. Solar receiver for the space station Brayton engine
US4633819A (en) Water-sodium steam generator with straight concentric tubes and gas circulating in the annular space
GB1576635A (en) Hot-gas engine
US4244350A (en) Solar energy heat-storage tank
JPS63238396A (en) Heat transfer element with heat accumulating material
US20210125737A1 (en) Heat pipe networks for heat removal, such as heat removal from nuclear reactors, and associated systems and methods
CN112484324B (en) Solar energy collection system and method thereof
WO2011055307A2 (en) Apparatus for storage and transmission of thermal energy
JPH0230988A (en) Power plant on spatial orbit
JP2002039013A (en) Solar heat rocket
JPH0252953A (en) Heat receiver-accumulator
WO2011055305A2 (en) System for storage of thermal energy
JPH0470522B2 (en)
JPH0230987A (en) Power plant on spatial orbit
JPH01249923A (en) Heat transfer pipe containing heat storage material
JPS5847640B2 (en) Regenerative heat exchange device