JPS63238365A - Protective device for air conditioner - Google Patents

Protective device for air conditioner

Info

Publication number
JPS63238365A
JPS63238365A JP62072897A JP7289787A JPS63238365A JP S63238365 A JPS63238365 A JP S63238365A JP 62072897 A JP62072897 A JP 62072897A JP 7289787 A JP7289787 A JP 7289787A JP S63238365 A JPS63238365 A JP S63238365A
Authority
JP
Japan
Prior art keywords
compressor
time
section
signal
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62072897A
Other languages
Japanese (ja)
Other versions
JP2517266B2 (en
Inventor
持田 順一
熊倉 正行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62072897A priority Critical patent/JP2517266B2/en
Publication of JPS63238365A publication Critical patent/JPS63238365A/en
Application granted granted Critical
Publication of JP2517266B2 publication Critical patent/JP2517266B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は空気調和機の保護装置に係り、特に起動不良に
よる圧縮機の焼損防止に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a protection device for an air conditioner, and particularly to prevention of burnout of a compressor due to startup failure.

(ロ)従来の技術 一般に圧縮機の固定子巻線は、用いている鋼線の太さに
よって許容電流が定められており、この許容電流を越え
た電流が所定時間以上連続して流れると固定子巻線が焼
損することがあった。このような過電流が流れるのは主
に圧縮機がロック状態になった時や圧縮機が過負荷とな
った時であり、一般にはこの過電流を検出して圧縮機を
停止させるのが常であった。
(b) Conventional technology In general, the permissible current of the stator winding of a compressor is determined by the thickness of the steel wire used, and if a current exceeding this permissible current flows continuously for a predetermined period of time or more, the stator winding becomes fixed. The child winding was sometimes burnt out. This type of overcurrent flows mainly when the compressor is locked or overloaded, and it is common practice to detect this overcurrent and stop the compressor. Met.

しかし、このような過電流は、短時間ではあるが圧縮機
の起動時や短時間の負荷変動時などにも流れることがあ
り、これらの電流を検出して誤保護を行なってしまうこ
とがあったので、実公昭57−39714号公報や実公
昭58−38344号公報に記載されているようなもの
が試みられた。これらの公報に記載きれているものは、
自動復帰形サーマルリレーを用い、このリレーのバイメ
タルを圧縮機へ給電する配線中に設け、このバイメタル
の発熱で動作する接点を介して給電用のリレーを制御す
るものであった。このバイメタルの熱応答時間を利用し
て短時間に流れた過電流で誤保護が行なわれ圧縮機が停
止してしまうのを防止していた。
However, such overcurrents can also flow for a short time, such as when the compressor starts up or during short-term load fluctuations, and these currents may be detected and erroneously implemented protection. Therefore, methods such as those described in Japanese Utility Model Publication No. 57-39714 and Japanese Utility Model Publication No. 58-38344 were attempted. What is not listed in these bulletins is
An automatic reset type thermal relay was used, and the bimetal of this relay was installed in the wiring that supplied power to the compressor, and the relay for power supply was controlled through the contact that was activated by the heat generated by this bimetal. This thermal response time of the bimetal was used to prevent the compressor from stopping due to false protection caused by an overcurrent flowing in a short period of time.

(ハ〉発明が解決しようとする問題点 このように構成された保護装置では誤動作を充分に防止
できるものではなかった。
(C) Problems to be Solved by the Invention The protection device configured as described above cannot sufficiently prevent malfunctions.

例えば、圧縮機に過電流が流れるのは、上記のような時
のみではなく、冷媒回路内に冷媒圧力の高低圧差が大き
く残っている時には、実質的に圧縮機がロックした時と
同じ状態になり、圧縮機には過電流が流れつづけるもの
であった。上記のような従来の技術では、このような時
にも保護装置が動作し圧縮機及び空気調和機が停止して
しまうものであった。
For example, overcurrent flows to the compressor not only in the above cases, but also when there is a large difference in refrigerant pressure between high and low pressures in the refrigerant circuit, the condition is essentially the same as when the compressor is locked. As a result, excessive current continued to flow through the compressor. In the conventional technology as described above, the protection device operates even in such a case, and the compressor and air conditioner are stopped.

しかし、単に冷媒回路内に冷媒圧力の高低圧差が残って
いる状態は、この高低圧差がバランスすれば何ら異常状
態ではなく、従来の技術ではこのような時にも保護動作
になってしまう問題点を有していた。
However, the situation where there is simply a difference in refrigerant pressure between high and low pressures in the refrigerant circuit is not an abnormal state as long as this difference in high and low pressures is balanced, and conventional technology has the problem of going into protective operation even in such cases. had.

斯かる問題点に鑑み、本発明はこのような誤動作を抑制
する保護装置を提供するものである。
In view of such problems, the present invention provides a protection device that suppresses such malfunctions.

(ニ)問題点を解決するための手段 本発明は圧縮機、凝縮器、減圧装置、蒸発器を順に冷媒
配管を介して環状に接読した冷凍サイクルと、圧縮機の
高圧側及び低圧側の間につながれ、かつ開閉可能なバイ
パス管とを有する空気調和機の保護装置において、圧縮
機に流れる電流を検出する電流検出部と、この電流検出
部の検出値が基準値以上で信号を出力する比較部と、こ
の比較部の信号が所定時間維持された後に信号を出力す
るタイマ部と、このタイマ部からの1回目の出力で一定
時間の間圧縮機を停止し、かつバイパス管を開状態にす
る制御部と、前記タイマ部からの複数回目の出力で警報
表示をする表示部とを備えたものである。
(d) Means for Solving the Problems The present invention provides a refrigeration cycle in which a compressor, a condenser, a pressure reducing device, and an evaporator are connected in a circular manner via refrigerant piping, and a high-pressure side and a low-pressure side of the compressor. A protection device for an air conditioner that has a bypass pipe that is connected between the compressor and can be opened and closed, and includes a current detection section that detects the current flowing through the compressor, and a signal that outputs a signal when the detected value of the current detection section is equal to or higher than a reference value. A comparison section, a timer section that outputs a signal after the signal of this comparison section is maintained for a predetermined time, and the first output from this timer section stops the compressor for a certain period of time and keeps the bypass pipe open. and a display section that displays an alarm in response to a plurality of outputs from the timer section.

(*)作用 このように構成された保護装置では、冷凍サイクル内に
冷媒圧力の高低差がまだ大きく残っている時の起動時に
、過電流が流れれば最初の過電流状態を比較部で判断し
、制御部がバイパス管を開きかつ、圧縮機を停止して、
一定時間の間に冷凍サイクル内の高低圧のバランスを取
ることができる。一定時間後に再度運転を行なうことに
よって圧縮機が通常に起動するものである。
(*) In a protective device configured in this way, if an overcurrent flows during startup when there is still a large difference in refrigerant pressure within the refrigeration cycle, the comparator determines the first overcurrent condition. Then, the control section opens the bypass pipe and stops the compressor.
It is possible to balance high and low pressure within the refrigeration cycle during a certain period of time. The compressor starts normally by restarting the compressor after a certain period of time.

(へ)実施例 以下本発明の実施例を図面に基づいて説明する。第1図
に示す冷媒回路図において、1は2極と4極とに切換え
られる極数変換型圧縮機、2は冷房(除霜)サイクルと
暖房サイクルとに切換える四方切換弁、3は室外熱交換
器、4は冷暖房用膨張弁、5は逆止弁、6は冷房用毛細
管、7は冷媒調整容器、8は気液分離器、9は圧縮機1
の吐出管10と吸込管11とに跨がると共に吐出管10
側より過負荷運転時と凍結防止時と圧縮機1の極致切換
時に開く第1の弁12と第1の毛細管13とを順次設け
た第1のバイパス管、14はこの毛細管13と並列接続
され第1の弁12側より逆止弁15と圧縮機1の極数切
換時に開く第2の弁16とを順次設けた第2のバイパス
管、17は一端が除霜サイクル時に室外熱交換器3の冷
媒出口側となる管18に、他端が逆止弁15と第2の弁
16との間に接続された第2の毛細管で、これら機器が
1台の室外ユニット19に内蔵されている。
(f) Examples Examples of the present invention will now be described based on the drawings. In the refrigerant circuit diagram shown in Figure 1, 1 is a pole converter compressor that can be switched between two poles and four poles, 2 is a four-way switching valve that can be switched between a cooling (defrosting) cycle and a heating cycle, and 3 is an outdoor heat Exchanger, 4 is an expansion valve for heating and cooling, 5 is a check valve, 6 is a capillary tube for cooling, 7 is a refrigerant adjustment container, 8 is a gas-liquid separator, 9 is a compressor 1
The discharge pipe 10 and the suction pipe 11 are straddled over.
A first bypass pipe 14 is connected in parallel with this capillary 13 and is provided with a first valve 12 and a first capillary 13 in order from the side, which are opened during overload operation, anti-freezing, and peak switching of the compressor 1. A second bypass pipe is provided with a check valve 15 and a second valve 16 that opens when the number of poles of the compressor 1 is changed from the first valve 12 side, one end of which is connected to the outdoor heat exchanger 3 during the defrosting cycle. The other end is a second capillary tube connected between the check valve 15 and the second valve 16, and these devices are built into one outdoor unit 19. .

20a、20bは夫々冷房用開閉弁21a、21b、逆
止弁22a、22b、冷房用毛細管23m、23b、暖
房用開閉弁24 a 、 24 b %逆止弁25a、
25b、室内熱交換器26a、26b、暖房用開閉弁2
4a、24bと室内熱交換器26a、26bとをバイパ
スする第3の毛細管27a、27bを内蔵した室内ユニ
ットで、図示の如く、室外ユニット19に対し並列接続
されている。
20a and 20b are respectively cooling on/off valves 21a, 21b, check valves 22a, 22b, cooling capillary tubes 23m, 23b, heating on/off valves 24a, 24b, % check valves 25a,
25b, indoor heat exchanger 26a, 26b, heating on-off valve 2
4a, 24b and indoor heat exchangers 26a, 26b, and is connected in parallel to the outdoor unit 19 as shown.

両方の室内ユニット20a、20bの同時暖房運転時に
は暖房用開閉弁24a、24bが開くと共に四方切換弁
2が実線状態に設定され、且つ圧縮機1が運転開始され
、圧縮機1から吐出された冷媒が四方切換弁2−室内熱
交換器26a、26b−暖房用開閉弁24a、24b−
逆止弁25a、25b−冷媒調整容器7−膨張弁4−室
外熱交換器3−四方切換弁2−気液分離器8−圧縮機1
と循環する二基暖房サイクルが形成される。
During simultaneous heating operation of both indoor units 20a and 20b, the heating on-off valves 24a and 24b are opened, the four-way switching valve 2 is set to the solid line state, and the compressor 1 is started to operate, and the refrigerant discharged from the compressor 1 is are four-way switching valve 2 - indoor heat exchangers 26a, 26b - heating on-off valves 24a, 24b -
Check valves 25a, 25b - Refrigerant adjustment container 7 - Expansion valve 4 - Outdoor heat exchanger 3 - Four-way switching valve 2 - Gas-liquid separator 8 - Compressor 1
A two-unit heating cycle is formed.

両方の室内ユニット20a、20bの同時冷房運転時に
は冷房用開閉弁21a、21bが開くと共に四方切換弁
2が点線状態に設定され、かつ圧縮機1が運転開始され
、圧縮機1から吐出された冷媒が四方切換弁2−室外熱
交換器3−膨張弁4、逆止弁5、冷房用毛細管6−冷媒
調整容器7−冷房用開閉弁21a、21b−逆止弁22
a、22b−冷房用毛細管23a、23b−室内熱交換
器26a、26b−四方切換弁2−気液分離器8、圧縮
機1と循環する二基冷房サイクルが形成される。
During simultaneous cooling operation of both indoor units 20a and 20b, the cooling on-off valves 21a and 21b are opened, the four-way switching valve 2 is set to the dotted line state, the compressor 1 is started, and the refrigerant discharged from the compressor 1 is Four-way switching valve 2 - outdoor heat exchanger 3 - expansion valve 4, check valve 5, cooling capillary 6 - refrigerant adjustment container 7 - cooling on/off valves 21a, 21b - check valve 22
a, 22b - cooling capillary tubes 23a, 23b - indoor heat exchangers 26a, 26b - four-way switching valve 2 - gas-liquid separator 8 and compressor 1, forming a two-unit cooling cycle.

第2図は第1図に示した冷媒回路に用いる要部電気回路
図である。図中圧縮機1.四方切換弁2、弁12は同一
符号を付して対応を取る。圧縮機1は回路図上では単相
圧縮機としているが、三相圧縮機を用いて2極e4極の
切換えを行なうようにしてもよい、四方切換弁2は電動
式のものを用い、通電状態で流路が第1図に示す実線の
状態になる。すなわち暖房運転の状態である。又弁12
も電動式のものを用い、通電状態で開状態となるもので
ある。
FIG. 2 is an electrical circuit diagram of a main part used in the refrigerant circuit shown in FIG. 1. Compressor 1 in the figure. The four-way switching valve 2 and the valve 12 are given the same reference numerals to correspond to each other. Although the compressor 1 is shown as a single-phase compressor in the circuit diagram, it may also be a three-phase compressor that switches between two poles and four poles. In this state, the flow path is in the state shown by the solid line in FIG. In other words, it is in a heating operation state. Mataben 12
It is also electrically powered and opens when energized.

圧縮機1の2極運転端子、4極運転端子、四方切換弁2
、弁12は夫々常開切片28乃至31を介して交流電源
に接続詐れている。これらの常開接片28乃至31は夫
々リレー32乃至35の通電で閉じる。またこのリレー
32乃至35はバッファ36を介して夫々マイコン37
の端子D2゜Di 、CI、CIに接続されている。
Compressor 1 2-pole operating terminal, 4-pole operating terminal, 4-way switching valve 2
, the valves 12 are connected to the alternating current power supply via normally open segments 28 to 31, respectively. These normally open contacts 28 to 31 are closed by energization of relays 32 to 35, respectively. The relays 32 to 35 are connected to the microcontroller 37 via the buffer 36.
It is connected to terminals D2゜Di, CI, and CI.

38は出力をマイコン37の端子B3に与える比較器で
あり、一方の入力端子には抵抗39,40で定められる
基準電圧が印加され、他方の入力端子には電流トランス
(C,T)41に誘起した交流電圧を整流平滑した重圧
が印加される。42.43はダイオード及びコンデンサ
であり、抵抗44,45.46と共に整流平滑回路部を
構成している。電流トランス41は圧縮機1に流れる電
流を検出できるように取り付けられている。
38 is a comparator that provides an output to terminal B3 of the microcomputer 37, one input terminal is applied with a reference voltage determined by resistors 39 and 40, and the other input terminal is applied with a current transformer (C, T) 41. Heavy pressure is applied by rectifying and smoothing the induced alternating current voltage. 42 and 43 are diodes and capacitors, which together with resistors 44 and 45 and 46 constitute a rectifying and smoothing circuit section. The current transformer 41 is installed so that the current flowing through the compressor 1 can be detected.

尚、単相圧縮機の場合は全電流を検出し、三相圧縮機の
場合はいずれか一相に流れる電流を検出できればよい。
In addition, in the case of a single-phase compressor, it is sufficient to detect the entire current, and in the case of a three-phase compressor, it is sufficient to detect the current flowing in any one phase.

従って、比較器38の出力は他方の入力端子に印加され
る電圧が一方の入力端子に印加詐れる基準電圧を越えた
時にH(高)レベル電圧からしく低)レベル電圧になる
。すなわち、電流トランス41の検出する電流値が基準
電圧に対応する電流値を越えた時(過電流時)、比較器
38の出力がLレベル電圧となる。
Therefore, the output of the comparator 38 changes from an H (high) level voltage to a low (low) level voltage when the voltage applied to the other input terminal exceeds the reference voltage applied to one input terminal. That is, when the current value detected by the current transformer 41 exceeds the current value corresponding to the reference voltage (at the time of overcurrent), the output of the comparator 38 becomes an L level voltage.

47.48は夫々室内ユニット20a、20bに設けら
れた操作部であり、夫々フォトカプラ49.50、トラ
ンジスタ51.52を介してマイコン37の端子AO、
AIに接続されている。
Reference numerals 47 and 48 indicate operation units provided in the indoor units 20a and 20b, respectively, and terminals AO and AO of the microcomputer 37 are connected via photocouplers 49 and 50 and transistors 51 and 52, respectively.
Connected to AI.

尚、53.54は負荷抵抗である。この操作部47.4
8は同じものを用いて夫々の室内ユニット20a、20
bの近傍に用いられている。例えば操作部47からは、
室内ユニット20aの運転/停止信号、冷房/暖房信号
、室温と設定値との差から求めるサーモ信号などが送信
される。このサーモ信号に基づいて圧縮機1の運転/停
止、2極/4極の切換えが行なわれる。
Note that 53.54 is the load resistance. This operating section 47.4
8 is the same indoor unit 20a, 20.
It is used near b. For example, from the operation section 47,
An operation/stop signal for the indoor unit 20a, a cooling/heating signal, a thermo signal obtained from the difference between the room temperature and a set value, and the like are transmitted. Based on this thermo signal, the compressor 1 is operated/stopped and switched between two poles and four poles.

尚、55は異常時に点灯する警報灯である。Note that 55 is a warning light that lights up in the event of an abnormality.

第3図は第2図の電気回路図に示したマイコン37の要
部動作を示すフローチャートである。このフローチャー
トの主な動作は、ステップS1にて起動処理を行なう。
FIG. 3 is a flowchart showing the main operations of the microcomputer 37 shown in the electrical circuit diagram of FIG. The main operation of this flowchart is to perform startup processing in step S1.

この時タイマの計時を開始させる。タイマの計時は本実
施例では約1分に設定している。ステップS2にて、操
作部47,48からの各種の運転信号を入力する。ステ
ップS3にて圧縮機1を2極(2P)運転するか、4極
(4P)運転するかを定める。4極(4P)運転の信号
が出力されればステップS4へ行き2極(2P)運転の
信号が出力されればステップS5へ行く。2極、4極運
転のいずれの信号も出ていなければ、ステップS6にて
停止処理を行なう。
At this time, the timer starts counting. In this embodiment, the timer is set to about 1 minute. In step S2, various operating signals from the operating units 47 and 48 are input. In step S3, it is determined whether the compressor 1 is to be operated in two poles (2P) or four poles (4P). If a signal for four-pole (4P) operation is output, the process goes to step S4, and if a signal for two-pole (2P) operation is output, the process goes to step S5. If neither the two-pole nor the four-pole operation signal is output, a stop process is performed in step S6.

この時停止状態が1分以上過ぎていなければタイマのス
タートを行なう。
At this time, if the stopped state has not passed for more than one minute, the timer is started.

ステップS4で、現在圧縮機1が2極(2P)運転を行
なっていれば、圧縮mlの運転を停止し、弁12を開き
、タイマのスタートを行なう。
In step S4, if the compressor 1 is currently performing two-pole (2P) operation, the compression ml operation is stopped, the valve 12 is opened, and the timer is started.

これによってタイムUPするまで前記ステップS2の動
作を繰り返す。タイムUP後にもステップS3からの4
極(4P)運転信号が維持されていればステップS7 
、S8で圧縮機1を4極(4P)運転し、かつ弁12を
閉じる。尚、ステップS4でステップS7に行くのは、
圧縮機1が2極(2P)運転をしている時と圧縮機1の
運転が停止している時である。
As a result, the operation of step S2 is repeated until the time is up. Steps S3 to 4 even after the time is up.
If the pole (4P) operation signal is maintained, step S7
, S8, the compressor 1 is operated at four poles (4P) and the valve 12 is closed. In addition, going to step S7 in step S4 is as follows.
These are when the compressor 1 is in two-pole (2P) operation and when the compressor 1 is stopped.

ステップS5で圧縮機1が4極(4P)運転を行なって
おり、FフラグがF−1の時にはステップS9による動
作を行なう。ステップS9では4極(4P)運転を維持
し、弁12を開いて、F−1に設定し、タイマのスター
トを行なう。従ってタイマが計時を行なっている間は4
極(4P)運転が維持される。タイマがタイムUPした
後は、F−1となっているのでステップSIOを行なう
。この時第2図に示す電流トランス41が過電流を2秒
以上連続して検出していなければ、圧縮機1を2極(2
P)運転し、弁12を閉じ、Fフラグ、TフラグをF−
0,T−0とする。このステップS10は、ステップS
5で圧縮機1が停止している時、又は2極(2P)運転
をしている時にも実行される。このステップS10の実
行中に過電流が2秒間流れつづけるとステップSllを
実行する。すなわち、TフラグがT≠1ならば圧縮機1
の運転を停止し、弁12を開いて、タイマをスタートさ
せると共にTフラグをT−1とする。これによって、タ
イムUPするまでの1分間の間に弁12を開いて冷媒圧
力のバランスを図った後再び2極(2P)運転の起動を
行なう。この再起動時(Tフラグ−1)の時再び過電流
が2秒以上維持されると、ステップS12を実行する。
When the compressor 1 is performing four-pole (4P) operation in step S5 and the F flag is F-1, the operation in step S9 is performed. In step S9, the four-pole (4P) operation is maintained, the valve 12 is opened, F-1 is set, and the timer is started. Therefore, while the timer is measuring time, the
Polar (4P) operation is maintained. After the timer expires, the state is F-1, so step SIO is performed. At this time, if the current transformer 41 shown in FIG.
P), close valve 12, and set F flag and T flag to F-
0, T-0. This step S10 is step S10.
It is also executed when the compressor 1 is stopped in step 5 or when it is in two-pole (2P) operation. If the overcurrent continues to flow for 2 seconds during the execution of step S10, step Sll is executed. In other words, if the T flag is T≠1, the compressor 1
operation is stopped, valve 12 is opened, a timer is started, and the T flag is set to T-1. As a result, the valve 12 is opened for one minute until the time is up to balance the refrigerant pressure, and then the two-pole (2P) operation is started again. When the overcurrent is maintained for 2 seconds or more again at the time of restart (T flag -1), step S12 is executed.

すなわち、第2図に示した警報灯55を1分間点灯させ
た後、イニシャル状態にもどる。
That is, after the warning light 55 shown in FIG. 2 is turned on for one minute, it returns to the initial state.

第4図は以上のように構成された空気調和機を用いた時
の動作を示すタイムチャートである。
FIG. 4 is a time chart showing the operation when using the air conditioner configured as described above.

まずt・の時刻に電源を投入する。1+までの1分間は
弁12を開いて冷凍サイクル内の冷媒圧カバランスを取
る。tlの時刻で4極(4P)運転の信号が出され、圧
縮機が起動する。この特約0.2〜0.3秒位の突入電
流が流れる。次にt。
First, the power is turned on at time t. The valve 12 is opened for 1 minute until 1+ to balance the refrigerant pressure in the refrigeration cycle. At time tl, a signal for 4-pole (4P) operation is issued and the compressor is started. This special rush current flows for about 0.2 to 0.3 seconds. Then t.

の時刻に4極(4P)運転から2極(2P)運転に切換
える信号が出力されると、このt、の時刻からt4の時
刻までの開弁12を開いて冷凍サイクル内の高低圧力差
を小さくする。時刻t4から2極(2P)運転に切換わ
る。t、の時刻に2極(2P)運転を停止した時にはt
、〜t、の開弁12を開いて圧力バランスを計る。t、
の時刻に2極(2P)運転から4極(4P)運転に切換
わる信号が出ると、t、の時刻まで圧縮機の運転を停止
し、かつ弁12を開いて冷凍サイクル内の冷媒圧力をバ
ランスさせる。この後4極(4P)運転で圧縮機を起動
させる。
When a signal to switch from 4-pole (4P) operation to 2-pole (2P) operation is output at time t, the valve 12 is opened from time t to time t4 to reduce the high and low pressure difference in the refrigeration cycle. Make it smaller. Switching to two-pole (2P) operation starts at time t4. When 2-pole (2P) operation is stopped at time t, t
, ~t, are opened to measure the pressure balance. t,
When a signal to switch from two-pole (2P) operation to four-pole (4P) operation is issued at time t, compressor operation is stopped until time t, and valve 12 is opened to reduce the refrigerant pressure in the refrigeration cycle. balance. After this, the compressor is started in 4-pole (4P) operation.

次にtlmの時刻に2極(2P)運転の信号が出た時、
圧縮機の故障や外気温の影舌で冷凍サイクル内の圧力が
充分にバランスしていなければ、第4図に示すように過
電流が流れる。この過電流がtlmからtlmまで約2
秒間流れると、tl、からtl、までの1分間圧縮機を
止め、かつ弁12を開いて冷凍サイクル内の圧力バラン
スを図る。この後t4の時刻に再び2極(2P)運転で
圧縮機を起動する。この時、再び過電流が約2秒間流れ
ると、圧縮機を運転停止して警報表示を行なう。
Next, when the 2-pole (2P) operation signal comes out at time tlm,
If the pressure within the refrigeration cycle is not sufficiently balanced due to compressor failure or changes in outside temperature, an overcurrent will flow as shown in Figure 4. This overcurrent is about 2 from tlm to tlm.
When it flows for seconds, the compressor is stopped for 1 minute from tl to tl, and the valve 12 is opened to balance the pressure in the refrigeration cycle. Thereafter, at time t4, the compressor is started again in two-pole (2P) operation. At this time, if the overcurrent flows again for about 2 seconds, the compressor is stopped and an alarm is displayed.

尚、ttiの時刻に通常の運転電流となっていれば、そ
のまま2極(2P)運転を維持する。
Incidentally, if the operating current is normal at the time of tti, the two-pole (2P) operation is maintained as it is.

このように上記実施例では、圧縮機の運転極数を2極か
ら4極に切換える時又は、4極から2極に切換える時の
いずれにおいても、弁を開きバイパス管を開状態にして
冷凍サイクル内の高低圧バランスを速く取ることができ
る。又4極から2極に切換える時は、圧縮機を停止させ
ずに極数切換えができ被調和室の温度変動幅を小きくす
ることができる。
In this way, in the above embodiment, when switching the number of operating poles of the compressor from 2 to 4 poles or from 4 to 2 poles, the valve is opened and the bypass pipe is opened to operate the refrigeration cycle. It is possible to quickly balance high and low pressure within the body. Furthermore, when switching from four poles to two poles, the number of poles can be changed without stopping the compressor, and the range of temperature fluctuations in the conditioned room can be reduced.

又、圧縮機の起動時に過電流が流れても、すぐには警報
表示が作動せず、一度、冷凍サイクル内の冷媒圧カバラ
ンスを取った後に再起動を行なうようにしたので、過電
流が流れた原因が冷凍サイクル内の高低圧差によるもの
ならば再び過電流が流れることはなくなる。すなわち、
5報の誤表示を抑制できるものである。
In addition, even if an overcurrent flows when the compressor is started, the alarm display does not activate immediately; instead, the restart is performed after the refrigerant pressure in the refrigeration cycle is balanced, so that overcurrent does not occur. If the cause of the current flow is due to the high-low pressure difference within the refrigeration cycle, the overcurrent will not flow again. That is,
This can suppress erroneous display of 5 reports.

(ト)発明の効果 以上のように成きれた本発明は、圧縮機に流れる電流を
電流検出部で検出し、この検出値が基準値以上の過電流
値になり、この過電流状態が所定時間維持された後に一
定時間の間バイパス管を開き、かつ圧縮機を停止するの
で、冷凍サイクル内の高低圧力差を小さくすることがで
きる。従って圧縮機に過電流が流れた原因が冷凍サイク
ル内に残っている高低圧力差で圧縮機がロック状態にな
って過電流が流れたのであれば、この一定時間の間に冷
凍サイクル内の高低圧力差をバランスさせることができ
、この一定時間後には圧縮機を通常に起動させることが
できる。また、圧縮機に過、  電流が流れた原因が他
の原因による時は上記の動作を複数回行なった後に警報
表示を行なうものである。
(G) Effects of the Invention The present invention achieved as described above detects the current flowing through the compressor with the current detection section, and this detected value becomes an overcurrent value that is higher than the reference value, and this overcurrent state After the time is maintained, the bypass pipe is opened for a certain period of time and the compressor is stopped, so that the difference in high and low pressures within the refrigeration cycle can be reduced. Therefore, if the cause of the overcurrent flowing in the compressor is that the compressor is locked due to the difference in high and low pressure remaining in the refrigeration cycle, then the overcurrent flows in the refrigeration cycle during this certain period of time. The pressure difference can be balanced and the compressor can be started normally after this certain period of time. Additionally, if the cause of excessive current flowing through the compressor is due to other causes, an alarm will be displayed after the above operations have been performed multiple times.

すなわち、冷凍サイクル内に残った高低圧差による過電
流時には保護装置の誤動作を抑制できるものです。
In other words, it can prevent the malfunction of the protective device in the event of an overcurrent caused by the difference in high and low pressure remaining within the refrigeration cycle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を用いる冷凍サイクルを表わす
冷媒回路図、第2図は第1図に示した冷爵、第4図は第
1図に示した圧縮機、弁の動作を示すタイムチャートで
ある。 1・・・圧縮機、 2・・・四方切換弁、 12・・・
弁、37・・・マイコン、  41・・・電流トランス
、55・・・警報灯。
Fig. 1 is a refrigerant circuit diagram showing a refrigeration cycle using an embodiment of the present invention, Fig. 2 shows the operation of the refrigerant shown in Fig. 1, and Fig. 4 shows the operation of the compressor and valves shown in Fig. 1. This is a time chart. 1... Compressor, 2... Four-way switching valve, 12...
Valve, 37...Microcomputer, 41...Current transformer, 55...Warning light.

Claims (1)

【特許請求の範囲】[Claims] (1)圧縮機、凝縮器、減圧装置、蒸発器を順に冷媒配
管を介して環状に接続した冷凍サイクルと、圧縮機の高
圧側及び低圧側の間につながれ、かつ開閉可能なバイパ
ス管とを有する空気調和機の保護装置において、圧縮機
に流れる電流を検出する電流検出部と、この電流検出部
の検出値が基準値以上で信号を出力する比較部と、この
比較部の信号が所定時間維持された後に、信号を出力す
るタイマ部と、このタイマ部からの1回目の出力で一定
時間の間圧縮機を停止し、かつバイパス管を開状態にす
る第1制御部と、前記タイマ部からの複数回目の出力で
警報表示をする表示部とを備えたことを特徴とする空気
調和機の保護装置。
(1) A refrigeration cycle in which a compressor, a condenser, a pressure reducer, and an evaporator are sequentially connected in a ring through refrigerant piping, and a bypass pipe that is connected between the high-pressure side and the low-pressure side of the compressor and that can be opened and closed. A protection device for an air conditioner has a current detection section that detects the current flowing through the compressor, a comparison section that outputs a signal when the detected value of the current detection section is equal to or higher than a reference value, and a signal of the comparison section that outputs a signal for a predetermined period of time. a timer section that outputs a signal after the signal is maintained; a first control section that stops the compressor for a certain period of time and opens the bypass pipe according to the first output from the timer section; and the timer section. 1. A protection device for an air conditioner, comprising: a display section that displays an alarm upon multiple outputs from the air conditioner.
JP62072897A 1987-03-26 1987-03-26 Air conditioner protection device Expired - Lifetime JP2517266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62072897A JP2517266B2 (en) 1987-03-26 1987-03-26 Air conditioner protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62072897A JP2517266B2 (en) 1987-03-26 1987-03-26 Air conditioner protection device

Publications (2)

Publication Number Publication Date
JPS63238365A true JPS63238365A (en) 1988-10-04
JP2517266B2 JP2517266B2 (en) 1996-07-24

Family

ID=13502600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62072897A Expired - Lifetime JP2517266B2 (en) 1987-03-26 1987-03-26 Air conditioner protection device

Country Status (1)

Country Link
JP (1) JP2517266B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4601507B2 (en) * 2005-07-20 2010-12-22 三洋電機株式会社 Air conditioning system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5459652A (en) * 1977-10-19 1979-05-14 Matsushita Electric Ind Co Ltd Overload protection device of airconditioner
JPS5482825A (en) * 1977-12-15 1979-07-02 Matsushita Electric Ind Co Ltd Controller for air conditioner
JPS59153076A (en) * 1983-02-18 1984-08-31 松下電器産業株式会社 Controller for operation of air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5459652A (en) * 1977-10-19 1979-05-14 Matsushita Electric Ind Co Ltd Overload protection device of airconditioner
JPS5482825A (en) * 1977-12-15 1979-07-02 Matsushita Electric Ind Co Ltd Controller for air conditioner
JPS59153076A (en) * 1983-02-18 1984-08-31 松下電器産業株式会社 Controller for operation of air conditioner

Also Published As

Publication number Publication date
JP2517266B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
JP3703346B2 (en) Air conditioner
JPH0765792B2 (en) Air conditioner
JPS63238365A (en) Protective device for air conditioner
JPH07117327B2 (en) Air conditioner
JPH10178736A (en) Protective device for air conditioner
JPH04350439A (en) Control method of detection of erroneous wiring in heat pump type air conditioner
JP2517269B2 (en) Air conditioner control method
JP2015055450A (en) Air conditioning device
JP4015665B2 (en) Air conditioner
JPH02272260A (en) Operation-controlling device in air-conditioning apparatus
JP2541174B2 (en) Refrigerator protection device
JP2598513B2 (en) Operation control device for air conditioner
JPH0571785A (en) Failure diagnosis device
JPH0784971B2 (en) Operation control device for air conditioner
JPH02263075A (en) Operation controller for air conditioner
JPS609651Y2 (en) Refrigeration equipment
JPH07117284B2 (en) Operation control device for air conditioner
JPH0514181B2 (en)
JPH0749306Y2 (en) Air conditioner protector
JP3026879B2 (en) Air conditioner
KR20240006212A (en) air conditioner
JPS6262268B2 (en)
JP2715631B2 (en) Indoor unit switching device for separation type air conditioners
JPH085129A (en) Air-conditioning device and its motor abnormality-detecting method
JPH09287833A (en) Air-conditioning apparatus