JPS63238223A - Method for crucible melting of active metal - Google Patents

Method for crucible melting of active metal

Info

Publication number
JPS63238223A
JPS63238223A JP62071698A JP7169887A JPS63238223A JP S63238223 A JPS63238223 A JP S63238223A JP 62071698 A JP62071698 A JP 62071698A JP 7169887 A JP7169887 A JP 7169887A JP S63238223 A JPS63238223 A JP S63238223A
Authority
JP
Japan
Prior art keywords
crucible
melting
pressure
active metal
melted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62071698A
Other languages
Japanese (ja)
Other versions
JPH0442460B2 (en
Inventor
Tomoo Izawa
智生 井澤
Naoki Sakata
坂田 直起
Akiya Ozeki
尾関 昭矢
Takao Kawakazu
高穂 川和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP62071698A priority Critical patent/JPS63238223A/en
Publication of JPS63238223A publication Critical patent/JPS63238223A/en
Publication of JPH0442460B2 publication Critical patent/JPH0442460B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To suppress the erosion of a refractory crucible by melting an active metal housed in the crucible by induction heating in an inert gaseous atmosphere above the atm. pressure. CONSTITUTION:The inert gaseous atmosphere in excess of the atmospheric pressure, for example, <=10atm. is maintained in a pressure vessel 2. The active metal such as Ti or the alloy thereof housed in the refractory crucible 1 is melted under induction heating by a heating coil 3 under the pressurization generated by the inert gas. The decomposition of the refractories of the crucible is suppressed and the active metal is melted without largely eroding the crucible 1 according to this melting method. In addition, the contamination from the crucible 1 is decreased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、チタン等の活性金属またはその合金を耐火
物製るつぼ内で誘導加熱により溶解する、活性金属のる
つぼ溶解方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an active metal crucible melting method in which an active metal such as titanium or its alloy is melted by induction heating in a refractory crucible.

〔従来の技術〕[Conventional technology]

極めて活性であるために溶解に際して酸化され易い活性
金属、例えばチタンやその合金の溶解には、一般に同様
な溶解法が用いられている。
Similar melting methods are generally used to melt active metals, such as titanium and its alloys, which are extremely active and therefore easily oxidized during melting.

即ち、チタンま几はチタン合金の溶解素材が100f程
度の場合には、タングステン電極と水冷銅鋳型を用いて
アルザンガス雰囲気中で溶解素材をアーク溶解する。溶
解素材が5Kg以上の場合には、溶解素材のブリケット
を成形し、それをつなぎ合せて消耗電極を製作し、この
消耗電極と水冷銅るつぼの間に真空中でアークを発生さ
せて、消耗電極自身を水冷銅るつぼ内に溶解していく(
梅田洋−他、′チタニウム・ジルコニウム”、32(1
985)1.25)。後者の消耗電極式真空アーク溶解
法(VAR法)は、機構上および作業上の点から溶解が
大規模なほど容易である。その他、最近では、真空中で
の電子ビームによる加熱を利用しt溶解法CEB法)も
行なわれている。
That is, when the titanium alloy melted material is about 100 f, the titanium furnace arc-melts the melted material in an Alzan gas atmosphere using a tungsten electrode and a water-cooled copper mold. If the amount of melted material is 5 kg or more, briquettes of the melted material are formed, the briquettes are joined together to make a consumable electrode, and an arc is generated in a vacuum between the consumable electrode and a water-cooled copper crucible. Dissolves itself in a water-cooled copper crucible (
Hiroshi Umeda et al., 'Titanium/Zirconium', 32 (1)
985) 1.25). In the latter consumable electrode vacuum arc melting method (VAR method), the larger the scale, the easier the melting from a mechanical and operational point of view. In addition, recently, a t-melting method (CEB method) using heating with an electron beam in a vacuum has also been carried out.

以上のVAR法やEB法は、チタンやチタン合金のみな
らず、他の種類の活性金属およびその合金の溶解にも使
用されている。
The above VAR method and EB method are used not only for melting titanium and titanium alloys, but also for melting other types of active metals and their alloys.

しかしながら、VAR法やEB法は、真空中で溶解する
几めに、真空装置や電源等の設備が太がかりとなり、そ
のランニングコストも大きい欠点がある。また、VAR
法などのアーク溶解法では、溶解のために電極作製の面
倒な作業を要する欠点もある。
However, the VAR method and the EB method have disadvantages in that they require heavy equipment such as a vacuum device and a power source to perform melting in a vacuum, and their running costs are also large. Also, VAR
Arc melting methods such as the method also have the disadvantage of requiring troublesome work to prepare electrodes for melting.

このようなことから、最近、CaOなどの酸化物がTi
0zより安定なことを利用して、カルシア(Cab)な
どの酸化耐火物からなるるつぼ内でテタ/およびチタン
合金の溶解素材を誘導加熱により溶解する、るつぼ溶解
方法が開発され友(岡田稔他、”チタニウム・ジルコニ
ウム”、 34(1986)4゜42〕。
For this reason, recently, oxides such as CaO have been
Taking advantage of the fact that it is more stable than 0z, a crucible melting method has been developed in which a molten material of teta/titanium alloy is melted by induction heating in a crucible made of an oxidized refractory such as calcia (Cab). , “Titanium-Zirconium”, 34 (1986) 4°42].

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のるつぼ溶解方法では、活性金属以外の通常の金属
を溶解する場合には特に問題がないが、活性金属および
その合金を溶解する場合には、その溶湯とるつぼとが反
応して、るつほの溶損金主じる。このため、るつぼを高
い頻度で交換しなければならず、これが溶解のコスト高
につながる。
With the above crucible melting method, there is no particular problem when melting ordinary metals other than active metals, but when melting active metals and their alloys, the molten metal and the crucible react and the crucible melts. Mainly due to melting money. Therefore, the crucible must be replaced frequently, which leads to high melting costs.

′1九、るつぼからの汚染も生じる。'19. Contamination from the crucible also occurs.

従って、この発明は、上述の現状に鑑み、チタン等の活
性金属およびその合金を、耐火物製るつほを大きく溶損
させることなく溶解することができる、活性金属のるつ
は溶解方法を提供することを目的とするものである。
Therefore, in view of the above-mentioned current situation, the present invention provides a method for melting active metals such as titanium and their alloys without causing significant melting damage to refractory melts. The purpose is to provide

〔問題点を解決するための手段〕[Means for solving problems]

この発明のるつは溶解方法は、耐火物製るつぼ内に収容
した活性金属またはその合金を、常圧を超える圧力の不
活性ガス雰囲気下で誘導加熱して、溶解することに特徴
を有するものである。
The crucible melting method of the present invention is characterized in that the active metal or its alloy contained in a refractory crucible is melted by induction heating in an inert gas atmosphere at a pressure exceeding normal pressure. It is.

以下、この発明のるつぼ溶解方法について詳述する。The crucible melting method of the present invention will be described in detail below.

第1図は、この発明のるつぼ溶解方法の一実施態様を示
す説明図である。
FIG. 1 is an explanatory diagram showing one embodiment of the crucible melting method of the present invention.

@1図において、1は圧力容器2内に設置され几耐火物
製るつぼ、3はるつは1t−取巻く高周波誘導加熱コイ
ルで、この発明では、圧力容器2内を常圧を超える圧力
の不活性ガス雰囲気とし、るつぼ1内に収容され比活性
金属を、不活性ガスによる加圧下で加熱コイル3により
誘導加熱し、溶解するものである。
@1 In the figure, 1 is a refractory crucible installed in the pressure vessel 2, and 3 is a 1t-surrounding high-frequency induction heating coil. In an active gas atmosphere, the specific active metal contained in the crucible 1 is melted by induction heating by a heating coil 3 under pressure with an inert gas.

圧力容器2は予め空気を排除し次のち、圧力容器2に取
付は友ガス供給管4aからAr等の不活性ガスを供給し
て、常圧を超える例えば10気圧以下の圧力に不活性ガ
スt?It4たす。圧力容器z内の不活性ガス雰囲気の
圧力制御は、圧力容器2内に1佼付は九図示しない圧力
センサーによって圧力容器2内の不活性ガス雰囲気の圧
力を検出して、これに基づき、圧力容器2外に設は比圧
カスイッチ5VCより、ガス供給管4aおよびガス排出
管4bの開閉弁6aおよび6bの開度を調整することに
より行なう。なお、7It′i加熱コイル3用の高周波
電源、8は活性金属の合金化用副原料投入ホッパーであ
る。
Air is removed from the pressure vessel 2 in advance, and then an inert gas such as Ar is supplied from the companion gas supply pipe 4a to the pressure vessel 2, and the pressure of the inert gas t exceeds normal pressure, for example, 10 atmospheres or less. ? It4 plus. The pressure of the inert gas atmosphere in the pressure vessel z is controlled by detecting the pressure of the inert gas atmosphere in the pressure vessel 2 with a pressure sensor (not shown) in the pressure vessel 2, and controlling the pressure based on this. The setting outside the container 2 is performed by adjusting the opening degrees of the on-off valves 6a and 6b of the gas supply pipe 4a and the gas discharge pipe 4b using the specific pressure switch 5VC. Note that 7It'i is a high frequency power source for the heating coil 3, and 8 is a hopper for charging auxiliary raw materials for alloying active metals.

以上において、るつぼ1内に収容された活性金属が溶解
すると、活性金属はるつは1を構成する酸化耐火物と反
応し、これを還元する。即ち、活性金属をM、酸化耐火
物を[0として、化学反応式で示せば、次の(1)式の
通りである。
In the above, when the active metal contained in the crucible 1 is melted, the active metal reacts with the oxidized refractory constituting the crucible 1 and reduces it. That is, if the active metal is M and the oxidized refractory is [0, the chemical reaction formula is as shown in the following formula (1).

M(tl+M’0(sl −4M’ (L 、 f )
 +MO(s)−=・(1)一般にM′の融点はMの融
点に比較して高くなく、M′の蒸気圧はMの蒸気圧に比
べて大きい。このため、系の圧力が低いとT1)式の反
応は右に進み、酸化耐火物M’0の還元による分解が促
進される。系の圧力を高めると(1)式の反応は右に進
みずらくなり、酸化耐火物M’Oの還元による分解が抑
制される。
M(tl+M'0(sl-4M'(L, f)
+MO(s)-=・(1) Generally, the melting point of M' is not higher than that of M, and the vapor pressure of M' is greater than that of M. Therefore, when the system pressure is low, the reaction of equation T1) proceeds to the right, promoting decomposition by reduction of the oxidized refractory M'0. When the pressure of the system is increased, the reaction of formula (1) becomes difficult to proceed to the right, and decomposition due to reduction of the oxidized refractory M'O is suppressed.

そこで、上述したように、圧力容器2内を常圧を超える
圧力の不活性ガス雰囲気として、不活性ガスによる加圧
下でるつぼ1内の活性金属fr、溶解すれば、減圧下、
常圧下では還元により分解される酸化耐火物でも分解が
抑制されるので、るつぼ1t−大きく溶損させることな
く、活性金属を溶解させることができる。
Therefore, as mentioned above, if the active metal fr in the crucible 1 is melted under pressure of the inert gas by creating an inert gas atmosphere with a pressure exceeding normal pressure in the pressure vessel 2, then under reduced pressure,
Since decomposition of even oxidized refractories which are decomposed by reduction under normal pressure is suppressed, active metals can be melted without significant melting loss in the crucible.

〔実施例〕〔Example〕

先のIEI図に示した圧力容器2内のるつぼ1内にチタ
ン500tを収容して、Arガス下で加熱コイル3によ
り誘導加熱し、溶解した。
500 tons of titanium was placed in the crucible 1 in the pressure vessel 2 shown in the IEI diagram above and melted by induction heating using the heating coil 3 under Ar gas.

るつぼ1はカルシア(Cab)製で、外径55耀φ、加
熱コイル3は内径150mφ、高周波電源7は30KH
z、30KWの定格であった。容器2内のArガス雰囲
気の圧力は、この発明の範囲内の常圧を超える10気圧
までの圧力と、この発明の範囲外の常圧との場合を試し
友。
The crucible 1 is made of Calcia (Cab) and has an outer diameter of 55 mm, an inner diameter of the heating coil 3 of 150 m, and a high frequency power source 7 of 30 KH.
z, it was rated at 30KW. The pressure of the Ar gas atmosphere in the container 2 was tested at a pressure of up to 10 atm, which exceeds normal pressure within the range of the present invention, and at normal pressure, which is outside the range of the present invention.

そのときに得られたArガス雰囲気の圧力と相対的るつ
ぼ溶損lとの関係を、第2図に示す。ここで、相対的る
つぼ溶損量とは、チタンの溶湯により溶損したるつぼ1
の溶損量ヲ、圧力容器2内のArガス雰囲気が常圧のと
きの溶損量ヲ1.0として表示したものである。
The relationship between the pressure of the Ar gas atmosphere obtained at that time and the relative melting loss l of the crucible is shown in FIG. Here, the relative crucible melt loss amount refers to the amount of crucible melt damage caused by molten titanium.
The amount of melting loss is expressed as 1.0 when the Ar gas atmosphere in the pressure vessel 2 is at normal pressure.

第2図に示されるように、圧力容器2内のArガス雰囲
気の圧力が常圧を超えて高くなればなる程、相対的るつ
ぼ溶損量は1.0 ’e下廻ってより低くなっており、
5気圧以上では相対的るつぼ溶損量は0.5未満にもな
っている。従って、るつぼ1内に収容したチタンiAr
による加圧下で誘導加熱して、溶解することにより、る
つぼ1に大きな溶損金主じさせることなくチタンを溶解
することができたことが判る。
As shown in Fig. 2, as the pressure of the Ar gas atmosphere inside the pressure vessel 2 becomes higher than normal pressure, the relative amount of crucible erosion decreases to below 1.0'e. ,
At 5 atm or higher, the relative amount of crucible erosion loss is less than 0.5. Therefore, the titanium iAr contained in the crucible 1
It can be seen that titanium was able to be melted without causing a large amount of melted metal in the crucible 1 by induction heating and melting under pressure.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明のるつぼ溶解方法によれ
ば、耐火物製るつぼを大きく溶損させることなく、活性
金属およびその合金を溶解することができる。従って、
活性金属の溶解コストを低減でき、ま几、るつぼからの
汚染も小さくできる。
As explained above, according to the crucible melting method of the present invention, active metals and their alloys can be melted without significantly damaging the refractory crucible. Therefore,
The cost of dissolving active metals can be reduced, and contamination from the furnace and crucible can be reduced.

また、チタンおよびチタン合金だけでなく、ニオブ等の
活性金属およびその合金の溶解にも適用でき、るつぼも
カルシア製に限らず、マグネシア等の酸化耐火物製のる
つぼを適宜使用することができる。
Furthermore, it can be applied not only to titanium and titanium alloys, but also to melting active metals such as niobium and their alloys, and the crucible is not limited to calcia, but crucibles made of oxidized refractories such as magnesia can be used as appropriate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明のるつぼ溶解方法の一実施態様を示
す説明図、第2図は、Arガス雰囲気の圧力と相対的る
つぼ溶損量との関係を示したグラフである。図面におい
て、 1・・・耐火物製るつぼ、  2・・・圧力容器、3・
・・高周波誘導加熱コイル、 4a・・・ガス供給管、 4b・・・ガス排出管、5・
・・圧力スイッチ、 5a、5b・・・開閉弁、7・・
・高周波電源。 晃契宕役訃す曽−一
FIG. 1 is an explanatory diagram showing an embodiment of the crucible melting method of the present invention, and FIG. 2 is a graph showing the relationship between the pressure of the Ar gas atmosphere and the relative amount of crucible melting loss. In the drawings, 1... refractory crucible, 2... pressure vessel, 3...
...High frequency induction heating coil, 4a...Gas supply pipe, 4b...Gas discharge pipe, 5.
...Pressure switch, 5a, 5b...Opening/closing valve, 7...
・High frequency power supply. So-ichi, the role of Kokigo, dies.

Claims (1)

【特許請求の範囲】[Claims] 耐火物製るつぼ内に収容した活性金属またはその合金を
、常圧を超える圧力の不活性ガス雰囲気下で誘導加熱し
て、溶解することを特徴とする、活性金属のるつぼ溶解
方法。
A method for melting an active metal in a crucible, the method comprising melting an active metal or its alloy contained in a refractory crucible by induction heating in an inert gas atmosphere at a pressure exceeding normal pressure.
JP62071698A 1987-03-27 1987-03-27 Method for crucible melting of active metal Granted JPS63238223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62071698A JPS63238223A (en) 1987-03-27 1987-03-27 Method for crucible melting of active metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62071698A JPS63238223A (en) 1987-03-27 1987-03-27 Method for crucible melting of active metal

Publications (2)

Publication Number Publication Date
JPS63238223A true JPS63238223A (en) 1988-10-04
JPH0442460B2 JPH0442460B2 (en) 1992-07-13

Family

ID=13468022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62071698A Granted JPS63238223A (en) 1987-03-27 1987-03-27 Method for crucible melting of active metal

Country Status (1)

Country Link
JP (1) JPS63238223A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250425A (en) * 1987-04-06 1988-10-18 Daido Steel Co Ltd Method for melting metal having high melting point
JPH02108450A (en) * 1988-10-17 1990-04-20 Yasuo Yoneda Method for casting titanium or titanium base alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63250425A (en) * 1987-04-06 1988-10-18 Daido Steel Co Ltd Method for melting metal having high melting point
JPH02108450A (en) * 1988-10-17 1990-04-20 Yasuo Yoneda Method for casting titanium or titanium base alloy

Also Published As

Publication number Publication date
JPH0442460B2 (en) 1992-07-13

Similar Documents

Publication Publication Date Title
EP2455501B1 (en) Method for producing alloy ingot
JP2009538991A (en) Dissolution method using graphite dissolution vessel
Choudhury State of the art of superalloy production for aerospace and other application using VIM/VAR or VIM/ESR
US4169722A (en) Aluminothermic process
EP0485073A1 (en) Nozzle, vessel and spray forming
JPS63238223A (en) Method for crucible melting of active metal
JPS57146466A (en) Casting method for titanium casting consisting of pure titanium or alloy consisting essentially of titanium
JPH08132182A (en) Method for melting and continuous casting of metal
RU2398908C2 (en) Installation for production of ferrotitanium by electric-arc melt of titanium containing material under layer of protective flux
JPH0440413B2 (en)
JPS6263626A (en) Production of low oxygen ti alloy
JP4209964B2 (en) Method for melting and casting metal vanadium and / or metal vanadium alloy
JP7491941B2 (en) Steel ingot manufacturing method
Reitz et al. Fundamentals of desoxidation behaviour of Ti-alloys by chamber ESR with Ca-reactive slags
JP2002235124A (en) Method for recovering chromium from chromium- containing slag
Beard et al. Kilogram scale reductions of vanadium pentoxide to vanadium metal
JP2005211927A (en) Bottom part molten metal discharging type casting apparatus
JPS59219423A (en) Production of fe-ti alloy for occluding hydrogen
JPS63303016A (en) Vacuum arc melting method
JPS5930777B2 (en) Method of manufacturing chromium or chromium alloy ingots
JPS63183139A (en) Melting method for ti-al alloy
McCullough Plasmarc Furnace, A New Concept in Melting Metals
LV15720B (en) Method and device for obtaining a high titanium alloy during the electrolytic remelting process
JPS61210141A (en) Ni-ti alloy having superior shock resistance and its manufacture
JPS5937338B2 (en) Method of manufacturing chromium or chromium alloy ingots