JPS63183139A - Melting method for ti-al alloy - Google Patents

Melting method for ti-al alloy

Info

Publication number
JPS63183139A
JPS63183139A JP1305087A JP1305087A JPS63183139A JP S63183139 A JPS63183139 A JP S63183139A JP 1305087 A JP1305087 A JP 1305087A JP 1305087 A JP1305087 A JP 1305087A JP S63183139 A JPS63183139 A JP S63183139A
Authority
JP
Japan
Prior art keywords
crucible
alloy
melting
melting point
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1305087A
Other languages
Japanese (ja)
Inventor
Ryoji Baba
良治 馬場
Hiroyuki Ichihashi
市橋 弘行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1305087A priority Critical patent/JPS63183139A/en
Publication of JPS63183139A publication Critical patent/JPS63183139A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a Ti-Al alloy excellent in quality, by placing metallic titanium in a crucible composed of graphite or calcareous refractory, by heating the above to a specific temp. in an inert-gas atmosphere, and by adding pure Al. CONSTITUTION:Ti 25 is put in a graphite or calcia crucible 2 free from erosion by molten Ti, etc., and unreactive to Ti, and the inside of a vacuum vessel 1 in which the above crucible 2 is placed is formed into high vacuum or subjected to introduction of an Ar gas from an inlet 11, and then heated by means of an induction coil 3 provided to the outside periphery of the crucible. At the point of time when a temp. in a range of 1,300-1,670 deg.C (the melting point of Ti) is reached, Al in a vessel 6 evacuated from an outlet 7 is added into the crucible 2 by means of a conveying trough 9. In this way, the evaporation losses, due to superheating, of Al heaving low melting point are removed and the absorption of oxygen in calcia of the crucible 2 by Ti-Al alloy is prevented, so that Ti-Al alloy excellent in purity and composition ratio can be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高周波誘導加熱によるTi−An系合金の
熔解法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for melting a Ti--An alloy by high-frequency induction heating.

〔従来の技術〕[Conventional technology]

T1) Al、TiAj!等のTi−AJ!系合金は、
例えば高温用合金等として注目され、開発が進められて
いる。溶解法としては、TiとAlの融点差が大きく、
また比重差も大きく、更に両元素とも活性金属であるた
めに、Ti−Al系合金の溶解には、高周波誘導加熱等
による一般の溶解法は適用できず、もっばら消耗電極式
溶解法、プラズマビーム溶解法、電子ビーム溶解法とい
った特殊な方法が用いられている。
T1) Al, TiAj! Ti-AJ! The alloys are
For example, it has attracted attention as an alloy for high temperatures, and development is progressing. As a melting method, there is a large difference in melting point between Ti and Al,
In addition, the difference in specific gravity is large, and both elements are active metals, so general melting methods such as high-frequency induction heating cannot be applied to melt Ti-Al alloys, and consumable electrode melting methods, plasma Special methods such as beam melting and electron beam melting are used.

消耗電極式熔解法は、TiとAlをその合金組成に合せ
て混合し押し固めて製造したコンパクトを溶接でつなぎ
、得られた電極をアークによりルツボ内に溶落させ、プ
ールしながら凝固させて行く、また、プラズマビーム溶
解法、電子ビーム溶解法は、合金組成に応じてハース上
に供給される原料をプラズマビーム、電子ビームにより
溶解してモールドに送り込む、モールドに送り込まれた
溶解原料はモールドの底から溶解速度に応じた速さで下
方に引き抜かれる。
The consumable electrode melting method involves mixing Ti and Al according to their alloy compositions, pressing them together, connecting the compacts by welding, melting the resulting electrode into a crucible using an arc, and solidifying it while pooling. In addition, in the plasma beam melting method and electron beam melting method, the raw material supplied on the hearth is melted with a plasma beam or electron beam depending on the alloy composition and sent into the mold. It is pulled downward from the bottom at a rate that depends on the rate of dissolution.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

これらの方法においては、いずれもルツボまたはモール
ドとして、強制水冷式の鋼橋成体が用いられる。
In all of these methods, a forced water-cooled steel bridge body is used as a crucible or mold.

ところが、前者の消耗電極式溶解法にあっては、溶落す
る溶解原料がこのルツボ内で漸次凝固されて行くため、
インゴットサイズに比べて溶融プールが本質的に小さく
、成分偏析が避けられないことから、成分の不均一を招
来する問題がある。
However, in the former consumable electrode melting method, the molten raw material that melts through is gradually solidified within the crucible.
Since the molten pool is essentially small compared to the ingot size and component segregation is unavoidable, there is a problem of non-uniformity of the components.

また、後者のプラズマビーム溶解法、電子ビーム溶解法
にあっては、この問題の他に、溶融プールの凝固がモー
ルド壁部で速く、インゴットの引き抜きが困難になる問
題もある。
Furthermore, in the latter plasma beam melting method and electron beam melting method, in addition to this problem, there is also the problem that the molten pool solidifies quickly at the mold wall, making it difficult to pull out the ingot.

この他にも、前者の溶解法にあっては、電極成形から溶
解までの工程が煩雑で製造コストが高い。
In addition, in the former melting method, the steps from electrode molding to melting are complicated and manufacturing costs are high.

TiとAlは本来的に溶接性が悪く、電極強度が低いた
めに、溶解中に電橋落下を生じる危険性が高い、上記溶
接性はAlの比率が高まるほど低下するので、Al比率
の高い合金では電極成形が不可能となる等の問題がある
Ti and Al inherently have poor weldability and have low electrode strength, so there is a high risk of the bridge falling during melting.The above weldability decreases as the Al ratio increases, so Alloys have problems such as the impossibility of electrode molding.

本発明は、高周波誘導加熱の導入により、これらの問題
点を全て解決した熔解法を提供するものである。
The present invention provides a melting method that solves all of these problems by introducing high-frequency induction heating.

〔問題点を解決するための手段〕[Means for solving problems]

Ti−Ajt系合金の溶解に高周波誘導加熱が導入でき
れば、電極成形は不用となり、また、ルツボ内で大量の
原料を一度に完全溶解させ得ることから、成分の不均一
も生じず、更に、インゴットを引き抜く必要がないので
、引き抜きに起因する問題も解決される。つまり、高周
波誘導加熱の導入により、前述の問題点が一挙に解決さ
れるのである。
If high-frequency induction heating could be introduced to melt Ti-Ajt alloys, electrode forming would be unnecessary, and since a large amount of raw material could be completely melted at once in the crucible, non-uniformity of ingredients would not occur, and the ingot could be Since there is no need to pull out, problems caused by pulling out are also solved. In other words, the above-mentioned problems can be solved at once by introducing high-frequency induction heating.

ところが、高周波誘導加熱では、加熱方式の関係上、水
冷銅製のルツボは使用できず、耐火物製のルツボが使用
されなければならない、しかし、一般にこの耐火物とし
て使用されているマグネシア質、マグネシアクロマイト
質のものは、溶解状態のTi、Ti合金と接触すると、
短時間で侵食され、またルツボ内のT is T s合
金に冶金的影響を与えることから、使用不可能である。
However, in high-frequency induction heating, water-cooled copper crucibles cannot be used due to the heating method, and crucibles made of refractories must be used. However, magnesia or magnesia chromite, which is generally used as this refractory, When quality materials come into contact with molten Ti or Ti alloys,
It is unusable because it erodes in a short time and has a metallurgical effect on the T is T s alloy in the crucible.

そこで本出願人は、TI、’l’i合金を高周波誘導加
熱方式で溶解できるルツボを開発し、このルツボおよび
このルツボを用いたT is T を合金の溶解法を先
に出願した(特開昭58−132345および特開昭5
8−133338号)、このルツボは、Ca酸化物のよ
うな石灰質耐火物(カルシア)を使用したもので、溶解
Ti、溶解T1合金に容易には侵食されず、またTiや
その合金成分との反応もほとんどないものである。
Therefore, the present applicant has developed a crucible that can melt TI and 'l'i alloys by high-frequency induction heating, and has previously filed an application for this crucible and a method for melting T is T alloys using this crucible (Japanese Patent Application Laid-Open No. 1982-132345 and Japanese Patent Application Publication No. 1983
8-133338), this crucible uses a calcareous refractory (calcia) such as Ca oxide, which is not easily corroded by molten Ti or molten T1 alloy, and is not easily corroded by Ti or its alloy components. There is almost no reaction.

しかし、このルツボにTiとAnを装入して誘導加熱し
たところ、装入原料温度が約660℃に達したところで
、Aj+が溶解し、その後の温度上昇によってAlの溶
湯が過熱されて蒸発し、またAlと石灰質耐火物との反
応が始まり、これに入熱が消費されて装入原料温度が上
昇しにくくなり、溶解を中止せざるを得ない結果になっ
た。溶解を中止した段階での装入原料温度は1500℃
近傍であったが、Tiの状態に何らの進展も認められな
いのに、ANはほとんど消失していた。
However, when Ti and An were charged into this crucible and heated by induction, Aj+ melted when the temperature of the charged raw materials reached approximately 660°C, and the subsequent temperature rise overheated the molten Al and caused it to evaporate. In addition, a reaction between Al and the calcareous refractory started, which consumed the heat input, making it difficult to raise the temperature of the charged raw material, and the melting had to be stopped. The temperature of the charged raw material at the stage when melting was stopped was 1500℃
Although it was nearby, AN had almost disappeared, although no progress was observed in the state of Ti.

本発明者らは、その対策について鋭意実験研究を繰り返
したところ、Tiの装入に対してAlの装入を遅らせる
のが有効なことを知見した。しかし、Tiの溶解後にA
lを添加するのでは、溶湯Tiと耐火物の反応による合
金中の酸素上昇や、Alの蒸発による成分変動を招来す
る危険がある。
The inventors of the present invention repeatedly conducted extensive experimental research on countermeasures against this problem, and found that it is effective to delay the charging of Al with respect to the charging of Ti. However, after dissolving Ti, A
If 1 is added, there is a risk of an increase in oxygen in the alloy due to the reaction between the molten Ti and the refractory, and a change in composition due to evaporation of Al.

従ってAlを添加する時期は、ルツボ内のTi温度がT
t−Al系合金の融点近傍から純Tiの融点近傍までの
範囲がよいことが判った。Ti温度がこの範囲内のとき
にAlを添加すれば、Alの溶解と、TiとAlとの合
金化が同時並行して進み、しかも溶湯がスパーヒートに
至らず、合金中の酸素量の増加が抑制され、Alの歩留
りが大巾に向上する。
Therefore, when adding Al, the Ti temperature inside the crucible is T.
It has been found that a range from near the melting point of the t-Al alloy to near the melting point of pure Ti is good. If Al is added when the Ti temperature is within this range, the melting of Al and the alloying of Ti and Al will proceed simultaneously, and the molten metal will not reach sparheating, increasing the amount of oxygen in the alloy. is suppressed, and the yield of Al is greatly improved.

本発明は、斯かる知見に基づきなされたもので、黒鉛質
耐火物または石灰質耐火物もしくは石灰質耐火物を内面
にライニングしたルツボに純Tiを入れおき、これを真
空またはアルゴン雰囲気中で高周波誘導加熱により加熱
して、ルツボ内の純Ti温度が1300℃以上で融点以
下の時にルツボ内にAlを添加し、溶解を行うことを特
徴とするTi−Al系合金の溶解法を要旨とする。
The present invention was made based on this knowledge, and involves placing pure Ti in a crucible lined with a graphite refractory, a calcareous refractory, or a calcareous refractory on the inside, and subjecting it to high-frequency induction heating in a vacuum or argon atmosphere. The gist is a method for melting a Ti-Al alloy, which is characterized in that Al is added to the crucible and melted when the temperature of pure Ti in the crucible is 1300° C. or higher and lower than the melting point.

本発明の溶解法において使用する炉は、高周波誘導加熱
方式の炉である。
The furnace used in the melting method of the present invention is a high frequency induction heating type furnace.

炉内に設置されるルツボは、石灰質耐火物製、もしくは
石灰質耐火物を内面にライニングしたものとする。石灰
質耐火物としては前述したCa酸化物(カルシア)以外
に、CaO−MgO1CaO−C,CaO−Mg0−C
等がある。また、石灰質耐火物以外には、Cを90〜9
9重量%含有する黒鉛質耐火物製のルツボも使用可能で
ある。
The crucible installed in the furnace is made of calcareous refractory or has an inner surface lined with calcareous refractory. In addition to the above-mentioned Ca oxide (calcia), calcareous refractories include CaO-MgO1CaO-C, CaO-Mg0-C
etc. In addition, other than calcareous refractories, C is 90 to 9
A crucible made of graphite refractory containing 9% by weight can also be used.

これは、Ti−Al系合金の融点近傍でTiおよびAl
と耐火物との反応が少ないからである。石灰質耐火物や
黒鉛質耐火物には必要に応じてバインダー等を加えても
よい。
This is because Ti and Al are near the melting point of Ti-Al alloy.
This is because there is little reaction between the metal and the refractory. A binder or the like may be added to the calcareous refractory or graphite refractory as necessary.

加熱は、装入原料の酸化を防止し、かつ装入原料への冶
金的影響を排除するため、真空またはアルゴン雰囲気中
で行われる。
Heating is carried out in vacuum or in an argon atmosphere in order to prevent oxidation of the charge and to eliminate metallurgical influences on the charge.

Alの添加は、ルツボ内に籾袋したTiの温度が130
0℃以上で融点以下の時に行われる。その理由は、Ti
−Ajl系合金の中で最も低融点化合物であるTt A
 J sでも融点が1350℃近傍であり、ルツボ内の
Tiがこの温度より低いときにAlを添加した場合には
、Ajlは約660℃で溶融するものの、その後の加熱
によってもTiAl、の融点が高いためにTiとの合金
化が進まず、Alの溶湯が過熱されて蒸発し、またAl
と耐火物との反応が促進されるからである0本発明者ら
の傾向が顕著で溶解不能となる。逆に、Tiがその融点
(1670℃)超のとき、すなわち溶解状態のときにA
lを添加すると、Ti−Al系合金の融点が低いために
溶湯がスーパーヒートの状態を呈し、耐火物との反応で
合金中の酸素量が増加する0本発明者らの調査によれば
、厳密には合金の種類によって多少の差はあるが、Ti
温度がその融点を超えると、酸素量の増加が顕著となり
品質上問題を生じる。
The addition of Al was performed when the temperature of the Ti bag in the paddy bag in the crucible was 130°C.
It is carried out when the temperature is above 0°C and below the melting point. The reason is that Ti
-TtA, which is the lowest melting point compound among Ajl alloys
The melting point of Js is around 1350℃, and if Al is added when the temperature of Ti in the crucible is lower than this temperature, Ajl will melt at about 660℃, but the melting point of TiAl will decrease even with subsequent heating. Because of the high temperature, alloying with Ti does not proceed, and the molten Al is overheated and evaporates, and the Al
This is because the reaction between the refractories and the refractories is accelerated, and the inventors' tendency is remarkable, making them impossible to dissolve. Conversely, when Ti exceeds its melting point (1670°C), that is, when it is in a molten state, A
According to the investigation by the present inventors, when 1 is added, the molten metal becomes superheated due to the low melting point of the Ti-Al alloy, and the amount of oxygen in the alloy increases due to the reaction with the refractory. Strictly speaking, there are some differences depending on the type of alloy, but Ti
When the temperature exceeds the melting point, the amount of oxygen increases significantly, causing quality problems.

Alの添加量はTi−An!系合金の溶解目標組成に見
合った量に歩留(95〜98%)を考慮した量とする。
The amount of Al added is Ti-An! The amount is determined in consideration of the yield (95 to 98%) in accordance with the melting target composition of the system alloy.

Alを添加した後は通常の誘導加熱熔解と同様の操業を
行うことで、目標とするTi−Al系合金が得られる。
After adding Al, the target Ti-Al alloy can be obtained by performing the same operation as normal induction heating melting.

〔実施例〕〔Example〕

第1図は本発明の溶解法に適した炉設備の一例を示した
ものである。
FIG. 1 shows an example of furnace equipment suitable for the melting method of the present invention.

1は主気密容器で、内部にルツボ2を設置し、ルツボ2
の周囲を加熱コイル3で包囲している。
1 is the main airtight container with crucible 2 installed inside.
is surrounded by a heating coil 3.

ルツボ2は一般の耐火物からなる容器の内面にカルシア
の内張り4を設けたもので、台座5上に載置されている
。また、加熱コイル3は水冷されたコイルで19図示し
ていないケーブルを介して高周波の交流が給電されて、
ルツボ2内の原料25を誘導加熱する。
The crucible 2 is a container made of a general refractory material with a calcia lining 4 provided on the inner surface thereof, and is placed on a pedestal 5. The heating coil 3 is a water-cooled coil that is supplied with high-frequency alternating current through a cable (not shown).
The raw material 25 in the crucible 2 is heated by induction.

6は主真空容器の上方に設けられた気密構造のAl装入
室で、排気ロアにより図示していない真空排気系に接続
するとともに、ロックバルブ8を備えた連絡斜道9を介
して主真空容器と通じている。この連絡斜道9内には、
後端を斜道9から主真空容器内に突出して、先端をルツ
ボ2の口に臨む斜搬送樋lOが設けられ、Al装入室6
内のAlが前記樋10上を滑落してルツボ2内に装入さ
れる。
Reference numeral 6 denotes an Al charging chamber with an airtight structure provided above the main vacuum vessel, which is connected to a vacuum exhaust system (not shown) by an exhaust lower, and is also connected to the main vacuum via a connecting ramp 9 equipped with a lock valve 8. It communicates with the container. Inside this connecting slope 9,
A diagonal conveyance gutter lO is provided whose rear end protrudes from the diagonal path 9 into the main vacuum vessel and whose tip faces the mouth of the crucible 2.
The Al inside slides down on the gutter 10 and is charged into the crucible 2.

なお、1)は主真空容器lの下部に設けたアルゴン導入
管、12は主真空容器1の上部に設けた排気管、13.
14は圧力調整弁、15はルツボ2内の試料を採取する
試料採取器、16はルツボ2内の原料温度を測定する温
度計である。
Note that 1) is an argon introduction pipe provided at the bottom of the main vacuum vessel 1, 12 is an exhaust pipe provided at the top of the main vacuum vessel 1, and 13.
14 is a pressure regulating valve, 15 is a sample collector for collecting a sample inside the crucible 2, and 16 is a thermometer for measuring the temperature of the raw material inside the crucible 2.

17は鋳型18を収納する副真空容器であり、排気管1
9によって図示していない真空排気系に接続されている
。またこの副真空容器17は、スリット20に嵌合して
上下に昇降する気密性にすぐれたスライド式の開閉扉2
1を介して前記主真空容器lと接続する。またこの開閉
5t21の反対側には鋳型1Bを容器外に搬出する出口
22が設けられ、この出口22には上記開閉m21と同
様の気密性にすぐれた上下スライド式の開閉a23を備
えている。
17 is a sub-vacuum container that houses the mold 18, and an exhaust pipe 1
9, it is connected to a vacuum exhaust system (not shown). The sub-vacuum container 17 also has a sliding door 2 that fits into a slit 20 and moves up and down with excellent airtightness.
1 to the main vacuum vessel l. Further, on the opposite side of this opening/closing 5t21, there is provided an outlet 22 for carrying the mold 1B out of the container, and this outlet 22 is equipped with a vertically sliding opening/closing a23 having excellent airtightness similar to the opening/closing m21 described above.

鋳型18はレール24上に移動可能に設けられており、
前記ルツボ2とこのモールド1Bとは略々同容量である
The mold 18 is movably provided on the rail 24,
The crucible 2 and this mold 1B have approximately the same capacity.

第1図の炉設備により本発明の溶解法を実施するには、
先ず、ルツボ2に所定量の純Tiを装入する。
To carry out the melting method of the present invention using the furnace equipment shown in FIG.
First, a predetermined amount of pure Ti is charged into the crucible 2.

次に、開閉扉21を閉じ、排気管12および7からそれ
ぞれ主真空容器lとAl装入室6内を排気して真空雰囲
気とする。また必要に応じ、主真空容器lおよびAl装
入室6内にアルゴン導入管1)および、l装入室排気ロ
アよりアルゴンガスを充填してアルゴンガス雰囲気とす
る。
Next, the opening/closing door 21 is closed, and the main vacuum vessel 1 and the Al charging chamber 6 are evacuated from the exhaust pipes 12 and 7, respectively, to create a vacuum atmosphere. Further, if necessary, argon gas is filled into the main vacuum vessel 1 and the Al charging chamber 6 from the argon introduction pipe 1) and the exhaust lower of the charging chamber 1 to create an argon gas atmosphere.

しかる後、ルツボ2内のTiを真空またはアルゴンガス
雰囲気中で加熱コイル3により誘導加熱し、Ti温度が
1300〜1700℃に到達した時点で所要量のAlを
Aj!装入室6から送樋lO上を滑落させてルツボ2内
に装入する。
Thereafter, the Ti in the crucible 2 is heated by induction using the heating coil 3 in a vacuum or argon gas atmosphere, and when the Ti temperature reaches 1300 to 1700°C, the required amount of Al is added to Aj! It is slid down from the charging chamber 6 on the feed channel 1O and charged into the crucible 2.

一方、上記熔解と並行して、鋳型18を収納する副真空
容器17では、出口の開閉扉23を閉じて排気管19か
ら排気して内部を真空雰囲気とし、更に必要に応じてア
ルゴンガス雰囲気としておく。
On the other hand, in parallel with the above-mentioned melting, in the sub-vacuum container 17 that houses the mold 18, the outlet door 23 is closed and the exhaust is evacuated from the exhaust pipe 19 to create a vacuum atmosphere, and if necessary, an argon gas atmosphere is created. put.

そして、上記溶解が終了した後、直ちに開閉扉21を開
いて鋳型18を主真空容器1内のルツボ2に近接した位
置に搬入せしめ、図示していない吊上傾動器によりルツ
ボ2を吊上げ傾動させて、その中の鋳型18に鋳込む6
以上が溶解の1サイクルである。
After the above-mentioned melting is completed, the opening/closing door 21 is immediately opened to transport the mold 18 to a position close to the crucible 2 in the main vacuum vessel 1, and the crucible 2 is lifted and tilted by a lifting tilter (not shown). and cast it into the mold 18 therein6.
The above is one cycle of dissolution.

第1図に構造を示す炉設備を使用し、上記手順で実際に
溶解を行った結果を次に説明する。
The results of actual melting according to the above procedure using the furnace equipment whose structure is shown in FIG. 1 will be described below.

ルツボ2は内面に40〜50tmの厚みでカルシアライ
ニングを施し、内径120〜130m5、深さ250■
1に仕上げた。加熱コイル3は出カフ0KW、周波数5
KSのものである。
Crucible 2 has a calcia lining with a thickness of 40 to 50 tm on the inner surface, an inner diameter of 120 to 130 m5, and a depth of 250 mm.
Finished it at 1. Heating coil 3 has an output of 0 KW and a frequency of 5.
It belongs to KS.

そして先ず、’90m■φx200m(5,7kg)の
純Tiを主真空容器lの外で上記ルツボ2に装入し、こ
れを容器l内に装入し、容器lを密閉した後、容器内雰
囲気を5X10”Paに真空引きし、しかる後、アルゴ
ンを容器内圧力が大気圧より水柱で約50m−高くなる
まで導入した。
First, 90m x 200m (5.7 kg) of pure Ti is charged into the crucible 2 outside the main vacuum vessel 1, and this is charged into the container 1. After sealing the container 1, inside the vessel The atmosphere was evacuated to 5.times.10" Pa, and then argon was introduced until the pressure within the vessel was about 50 m water column above atmospheric pressure.

次に、ルツボ2内の純Tiを上記加熱コイル3により高
周波誘導加熱し、2色温度計による純Ti温度が160
0℃になったところで、Al装入室より3.2kirの
ショットAlを添加した。
Next, the pure Ti in the crucible 2 is heated by high frequency induction using the heating coil 3, and the temperature of pure Ti is 160°C as measured by a two-color thermometer.
When the temperature reached 0° C., 3.2 kir of shot Al was added from the Al charging chamber.

Al添加後、約1分でIIII調に溶解に至り、5分間
ルツボ2に保持した後、黒鉛質の鋳型18(120mm
φ)に鋳込んだ。
After adding Al, it melted to a III-tone in about 1 minute, and after keeping it in the crucible 2 for 5 minutes, a graphite mold 18 (120 mm
φ).

このようにして得られたTi−Aji系合金インゴット
の、トップ、ミドル、ボトムの3部分について、表皮、
中心の各成分組成を調査した結果を第1表に示すが、品
質は各部で均一であり、酸素量の上昇も0.05%程度
と僅かであった。また、Alの歩留りも98%と良好で
あった。
The top, middle, and bottom parts of the Ti-Aji alloy ingot obtained in this way were examined for the skin,
Table 1 shows the results of investigating the composition of each component in the center, and the quality was uniform in each part, and the increase in oxygen content was only about 0.05%. Moreover, the yield of Al was also good at 98%.

また、比較のために、Al添加時の純Ti温度を100
0〜1750℃の間で種々変化させて溶解試験を行った
結果は、第2表に示されるように、概ね1300℃未満
ではAlの蒸発およびAlと耐火物との反応で溶解が不
可能となり、1700℃超では溶湯のスーパーヒートに
よりAlの歩留りが低下し、合金の酸素量が増加してい
る。最も順調な溶解が行えるのは、Ti−AJ系合金の
融点より0〜50℃高い範囲である。ちなみに本合金系
の融点はTi3 Alで1650℃、TiAj!で14
80℃、TiAl、で1360℃である。
For comparison, the temperature of pure Ti when adding Al was set to 100
As shown in Table 2, the results of melting tests conducted at various temperatures between 0 and 1750°C show that below 1300°C, melting becomes impossible due to the evaporation of Al and the reaction between Al and the refractory. , above 1700°C, the yield of Al decreases due to superheating of the molten metal, and the amount of oxygen in the alloy increases. The most smooth melting is possible in a range of 0 to 50°C higher than the melting point of the Ti-AJ alloy. By the way, the melting point of this alloy system is 1650℃ for Ti3Al, TiAj! So 14
80°C, TiAl, 1360°C.

また、本発明の熔解法では、ルツボ内で全量の原料を一
度に完全熔解させ得、成分の不均一が生じないことから
、V、Nb、、Mn、W等の第3元素の添加も容易であ
る。
In addition, in the melting method of the present invention, the entire amount of raw materials can be completely melted at once in the crucible, and non-uniformity of components does not occur, so it is easy to add third elements such as V, Nb, Mn, and W. It is.

第1表 第2表 〔発明の効果〕 以上の説明から明らかなように、本発明の溶解法は、従
来消耗電極法やプラズマビーム法、電子ビーム法といっ
た?jI雑な溶解法に転らざるを得なかったTi−Aj
l系合金の溶解を、高周波誘導加熱法により簡単に行い
得るもので、これにより一度に大量の原料が完全溶解さ
れ、能率、品質の両面で多大の効果を生じるとともに、
コンパクト電橋、水冷銅モールドを使用しないので、電
極形成、水冷銅モールドの使用に起因する問題点も全て
解決され、全体として極めて能率的、経済的に溶解を行
い、製品の品質およびコストに与える効果は多大である
Table 1 Table 2 [Effects of the Invention] As is clear from the above explanation, the melting method of the present invention can be applied to the conventional consumable electrode method, plasma beam method, or electron beam method. jI Ti-Aj had no choice but to turn to a crude dissolution method
The melting of l-based alloys can be easily carried out using high-frequency induction heating, which allows a large amount of raw material to be completely melted at once, which has great effects in terms of both efficiency and quality.
Since compact electric bridges and water-cooled copper molds are not used, all problems caused by electrode formation and the use of water-cooled copper molds are solved, and overall the melting process is extremely efficient and economical, which improves product quality and cost. The effects are huge.

【図面の簡単な説明】 第1図は本発明の溶解法を実施するのに適した炉設備の
一例について、その構造を示す断面図である。 図中、l:主真空容器、2ニルツボ、3:加熱コイル、
6:Al装入室、17:副翼空容器、18:鋳型。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing the structure of an example of furnace equipment suitable for carrying out the melting method of the present invention. In the figure, l: main vacuum vessel, 2 nil acupuncture point, 3: heating coil,
6: Al charging chamber, 17: Secondary wing empty container, 18: Mold.

Claims (1)

【特許請求の範囲】[Claims] (1)黒鉛質耐火物または石灰質耐火物もしくは石灰質
耐火物を内面にライニングしたルツボに純Tiを入れ置
き、これを真空またはアルゴン雰囲気中で高周波誘導加
熱により加熱して、ルツボ内の純Ti温度が1300℃
以上で融点以下の時にルツボ内にAlを添加し、溶解を
行うことを特徴とするTi−Al系合金の溶解法。
(1) Pure Ti is placed in a crucible whose inner surface is lined with graphite refractory, calcareous refractory, or calcareous refractory, and heated by high-frequency induction heating in a vacuum or argon atmosphere to raise the temperature of pure Ti in the crucible. is 1300℃
A method for melting a Ti-Al alloy, characterized in that Al is added into a crucible and melted when the temperature is below the melting point.
JP1305087A 1987-01-22 1987-01-22 Melting method for ti-al alloy Pending JPS63183139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1305087A JPS63183139A (en) 1987-01-22 1987-01-22 Melting method for ti-al alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1305087A JPS63183139A (en) 1987-01-22 1987-01-22 Melting method for ti-al alloy

Publications (1)

Publication Number Publication Date
JPS63183139A true JPS63183139A (en) 1988-07-28

Family

ID=11822297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1305087A Pending JPS63183139A (en) 1987-01-22 1987-01-22 Melting method for ti-al alloy

Country Status (1)

Country Link
JP (1) JPS63183139A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109778020A (en) * 2019-03-11 2019-05-21 江苏华企铝业科技股份有限公司 The high-densit aluminum titanium alloy ingot of high-purity and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109778020A (en) * 2019-03-11 2019-05-21 江苏华企铝业科技股份有限公司 The high-densit aluminum titanium alloy ingot of high-purity and its manufacturing method

Similar Documents

Publication Publication Date Title
US3342250A (en) Method of and apparatus for vacuum melting and teeming steel and steellike alloys
Heidloff et al. Advanced gas atomization processing for Ti and Ti alloy powder manufacturing
US20110094705A1 (en) Methods for centrifugally casting highly reactive titanium metals
US5311655A (en) Method of manufacturing titanium-aluminum base alloys
US20090133850A1 (en) Systems for centrifugally casting highly reactive titanium metals
KR102616983B1 (en) Processes for producing low nitrogen, essentially nitride-free chromium and chromium plus niobium-containing nickel-based alloys and the resulting chromium and nickel-based alloys
US5102450A (en) Method for melting titanium aluminide alloys in ceramic crucible
JP3571212B2 (en) Metal and alloy melting method and melting casting method
US3425826A (en) Purification of vanadium and columbium (niobium)
Bandyopadhyay et al. Behavior of alloying elements during electro-slag remelting of ultrahigh strength steel
CN105344949B (en) A kind of manufacture of iron and steel by melting molds new technology
CN107699747A (en) A kind of high Cu contents Al Si Li Cu casting alloys and preparation method thereof
JP2906618B2 (en) Method and apparatus for continuous melting and casting of metal
JPS63183139A (en) Melting method for ti-al alloy
JPS6112838A (en) Manufacturing apparatus of spongy titanium
US3501291A (en) Method for introducing lithium into high melting alloys and steels
EP3842556B1 (en) Inoculation process for grain refinement of a nickel base alloy
JPS63273562A (en) Production of ti-al alloy casting
US20080178705A1 (en) Group IVB Metal Processing with Electric Induction Energy
US3508914A (en) Methods of forming and purifying nickel-titanium containing alloys
JPS6352983B2 (en)
JP7491941B2 (en) Steel ingot manufacturing method
CN213335494U (en) Large-capacity continuous casting multifunctional suspension smelting furnace
US2912731A (en) Method for casting group iv metals
JPS6112837A (en) Manufacture of metallic titanium